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Abstract—We develop a geometric view of Ralescu’s concept
of a many-valued cardinality of fuzzy sets. The view facilitates an
easy understanding of this concept and helps elucidate its nature.
We demonstrate that the view enables to obtain properties of this
concept as consequences of theorems regarding the geometric
view that are derived by a straightforward geometric reasoning.
We observe that the developed view applies to a natural gen-
eralization of Ralescu’s concept for which it reveals why this
generalization is more difficult to analyze.

Index Terms—Many-valued set, fuzzy set, cardinality, fuzzy
cardinality.

I. OUR AIM

THE notion of cardinality entered considerations on many-
valued sets and, in particular, fuzzy sets in the early stage

of development; see, e.g., [7] and [4] for the first contributions
and [11] for a comprehensive account of the developments.
In his well-known paper [9], Ralescu proposed interesting
notions of both, the so-called fuzzy and scalar cardinality
of fuzzy sets. Our aim is to provide a geometric interpre-
tation of Ralescu’s cardinality concepts. For one, the view
we develop reveals a new understanding of Ralescu’s notions
of cardinality. Secondly, the view enables a straightforward
geometric analysis of Ralescu’s notions. We demonstrate this
by providing simple proofs of some properties of Ralescu’s
fuzzy and scalar cardinality obtained in the original paper [9]
as well as in the recent paper [2], and by presenting new
considerations on the cardinality concepts that are naturally
offered by the geometric view.

II. RALESCU’S CONCEPT OF FUZZY AND SCALAR
CARDINALITY

CONSIDER a fuzzy set A : U → [0, 1] in a finite universe
U = {u1, . . . , un}. That is, A represents a many-valued

characteristic function of a collection with an unsharp, gradual
boundary to which each element u in U is a member to the
degree A(u) ∈ [0, 1]. Denote by A(1), . . . , A(n) the member-
ship degrees A(u1), . . . , A(un) ordered in a non-increasing
manner, i.e.,

A(1) ≥ · · · ≥ A(n) and put A(0) = 1 and A(n+1) = 0. (1)

The non-increasing sequence A(1), . . . , A(n) thus results by
a permutation of A(u1), . . . , A(un). Ralescu [9] defined the
so-called fuzzy cardinality of A as the fuzzy set |A|Rf assign-
ing to a non-negative integer k = 0, 1, . . . , n the degree

|A|Rf (k) = min{A(k), 1−A(k+1)}, (2)

which is interpreted as the truth degree of the statement “A has
k elements.” Furthermore, he defined the scalar cardinality
|A|Rs of A by

|A|Rs =

 0 if A = ∅,
j if A ̸= ∅ and A(j) ≥ 0.5,
j − 1 if A ̸= ∅ and A(j) < 0.5,

(3)

where

j = max{k ; 1 ≤ k ≤ n and A(k−1) +A(k) > 1}. (4)

We present examples which shall be used in the rest of this
paper.

Example 1. For the fuzzy set

A = {0.85/u1,
0.8/u2,

0.6/u3,
0.6/u4,

0.3/u5,
0.2/u6}, (5)

one has A(0) = 1, A(1) = 0.85, A(2) = 0.8, A(3) = 0.6,
A(4) = 0.6, A(5) = 0.3, A(6) = 0.2, and A(7) = 0. One easily
verifies that

|A|Rf = {0.15/0, 0.2/1, 0.4/2, 0.4/3, 0.6/4, 0.3/5, 0.2/6}

and
|A|Rs = 4.

Example 2. For the fuzzy set

B = {0.3/u1,
0.8/u2,

0.2/u3,
0.5/u4,

0.85/u5,
0.6/u6},

we obtain B(0) = 1, B(1) = 0.85, B(2) = 0.8, B(3) = 0.6,
B(4) = 0.5, B(5) = 0.3, B(6) = 0.2, B(7) = 0, and one has

|B|Rf = {0.15/0, 0.2/1, 0.4/2, 0.5/3, 0.5/4, 0.3/5, 0.2/6}

|B|Rs = 4.

Example 3. For the fuzzy set

C = {0.85/u1,
0.8/u2,

0.6/u3,
0.5/u4,

0.5/u5,
0.5/u6,

0.5/u7,
0.3/u8,

0.2/u9},

the rearrangement yields C(0) = 1, C(1) = 0.85, C(2) = 0.8,
C(3) = 0.6, C(4) = 0.5, C(5) = 0.5, C(6) = 0.5, C(7) = 0.5,
C(8) = 0.3, C(9) = 0.2, C(10) = 0, and one gets

|C|Rf = {0.15/0, 0.2/1, 0.4/2, 0.5/3, 0.5/4,
0.5/5, 0.5/6, 0.5/7, 0.3/8, 0.2/9}

and
|C|Rs = 7.

Remark 1. The purpose of both cardnality concepts is to
express the size of a given fuzzy set A. While |A|Rs is a non-
negative integer, |A|Rf is a fuzzy set of non-negative integers
for which |A|Rf (k) may be regarded as a degree to which it is
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plausible to consider k as the number of elements in A. One
easily checks that both |A|Rs and |A|Rf generalize the notion
of a cardinality of a classical finite set: If A is a characteristic
function of a classical set with k elements, then |A|Rs = k and,
moreover, |A|Rf (k) = 1 and |A|Rf (i) = 0 for i ̸= k.

Ralescu’s notions of scalar and fuzzy cardinality are inter-
esting in that they both take into account the relationships
among the membership degrees A(u) rather than just the
individual degrees like most alternative approaches. Yet, since
the original paper [9] does not primarily focus on the prop-
erties of the cardinality concepts, it does not answer some
natural questions. For instance, since the definition (2) of |A|Rf

expresses—in a many-valued setting—a natural idea that the
cardinality of A is k if A contains k but not k+1 elements, one
naturally asks for the maximum of |A|Rf and for the integers
at which the maximum is attained, i.e., for the most plausible
cardinalities. Moreover, since the definition of |A|Rs is—due to
(4)—basically iterative in nature, one asks for a direct formula
for |A|Rs.

The above questions, along with those regarding the rela-
tionship between the two cardinality concepts, are studied in
a recent paper [2]. Our aim is to show that considerations on
both of Ralescu’s cardinality concepts may be conducted by
using a natural geometric view which clarifies both concepts.
In addition, we show that the properties obtained in [2] as well
as other properties can be obtained within this geometric view.
For this purpose, the following notions shall be used. First, let

max |A|Rf = max{|A|Rf (0), |A|Rf (1), |A|Rf (2), . . . },

i.e., max |A|Rf is the largest membership degree attained by
|A|Rf . Furthermore, let

argmax |A|Rf = {i ; |A|Rf (i) = max |A|Rf},

i.e., argmax |A|Rf denotes the set of non-negative integers for
which max |A|Rf is attained.

III. GEOMETRIC VIEW BEHIND THE CONCEPTS OF
CARDINALITY

OUR geometric view may be explained as follows. The
degrees A(0), A(1), . . . , A(n+1) ordered as in (1) can be

represented by points P0, P1, . . . , Pn in the xy-plane defined
as

Pk = ⟨A(k), A(k+1)⟩ for k = 0, 1, . . . , n. (6)

In what follows, we shall write Pk = ⟨xk, yk⟩. Since 0 ≤
xk ≤ 1 and xk = A(k) ≥ A(k+1) = yk for all k, every
point Pk is located below or on the main diagonal of the unit
square. A point Pk located below the main diagonal, i.e., with
xk > yk, shall be called a subdiagonal point, while a point Pk

positioned on the main diagonal, i.e., with xk = yk, shall be
called a diagonal point. Since A(0) = 1 and A(n+1) = 0 by
definition, the sequence P0, P1, . . . , Pn contains at least one
subdiagonal point for each fuzzy set A. It is also immediate
that a fuzzy set A is crisp, i.e., A(u) is either 0 or 1 for each
u ∈ U , iff P0, P1, . . . , Pn contains just one subdiagonal point.

Because the y-coordinate of Pk coincides with the x-
coordinate of Pk+1, the points P0, P1, . . . , Pn form a step-
like geometric pattern. Formally, for Pk = ⟨xk, yk⟩ being
a subdiagonal point, a step S(Pk) in Pk is the union

S(Pk) = [⟨yk, yk⟩, ⟨xk, yk⟩] ∪ [⟨xk, yk⟩, ⟨xk, xk⟩]

of the horizontal line

[⟨yk, yk⟩, ⟨xk, yk⟩] = {⟨x, yk⟩ | yk ≤ x ≤ xk}

connecting the main diagonal with Pk and the vertical line

[⟨xk, yk⟩, ⟨xk, xk⟩] = {⟨xk, y⟩ | yk ≤ y ≤ xk}

connecting Pk with the main diagonal.
The notion of a step in Pk is illustrated in figure 1.

Pk

xk

yk

xkyk x

y

Fig. 1. Step in Pk .

A step-pattern corresponding to a fuzzy set A is defined as
a union of steps in all subdiagonal points⋃

{S(Pk) |Pk is subdiagonal point}.

For instance, for the fuzzy set (5) defined in example 1 the
corresponding step-pattern is shown in figure 2. Note that
as a result of A(3) = A(4), P2 and P3 have the same y-
coordinates, and P3 and P4 share their x-coordinates.

P0

P1

P2

P3

P4

P5

P6

A(0)=1

A(1)

A(1)A(2)

A(2)

A(3)=A(4)A(5)

A(3)=A(4)

A(5)

A(6)

A(7)=0
A(6)

x

y

Fig. 2. Step-pattern corresponding to the fuzzy set A in example 1.
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Formula (2) for the fuzzy cardinality |A|Rf is based on the
function f : [0, 1]2 → [0, 1] defined as

f(x, y) = min{x, 1− y}

in that
|A|Rf (k) = f(xk, yk). (7)

The graph of f is depicted in figure 3. In figure 4, we display
the projections of several contour lines of f on the xy-plane.
For brevity, we shall write f(Pk) instead of f(xk, yk), and
speak of “contours” instead of “projections of the contour
lines.” For given a ∈ [0, 1], the set of points

f−1(a) = {⟨x, y⟩ | f(x, y) = a}

shall be referred to as the a-contour. The 0.5-contours of the
three fuzzy sets used in our examples are depicted as the red
line segments in figures 5 and 6.

0

0.5

1

0
0.2

0.4
0.6

0.8
1
0

0.5

1

x
y

Fig. 3. Graph of f(x, y) = min{x, 1− y}.

x

y

f−1(0)

f−1(0.1)

f−1(0.2)

f−1(0.3)

f−1(0.4)

f−1(0.5)

f−1(0.6)

f−1(0.7)

f−1(0.8)

f−1(0.9)

f−1(1)

Fig. 4. Projections of the contour lines of f(x, y) = min{x, 1− y} on the
xy-plane.

We now consider the role of 0.5-contours in the geometric
considerations of Ralescu’s cardinality. We shall say that Pk

is on the 0.5-contour if f(Pk) = 0.5; above the 0.5-contour if
f(Pk) > 0.5; and below the 0.5-contour if f(Pk) < 0.5. For
instance, in the left part of figure 6, P2 and P3 are below and

on the 0.5-contour, respectively; in figure 5, P4 is above the
0.5-contour.

The following assertions provide a basic insight needed for
our analysis. They all concern arbitrary fuzzy sets A with the
corresponding points P0, P1, . . . , Pn given by (6).

Lemma 1. There exists at most one point above the 0.5-
contour.

Proof. Suppose Pk = ⟨xk, yk⟩ is above the 0.5-contour, i.e.,
xk > 0.5 and yk < 0.5. Recall that due to the ordering of
the membership degrees of A, xk ≥ yk. If k > 0 then for
every l = 0, . . . , k − 1, Pl is below the 0.5-contour. Indeed,
Pk−1 is below the 0.5-contour since yk−1 = xk > 0.5 and
xk−1 ≥ yk−1 > 0.5. By a similar reasoning, Pk−2, . . . , P0 are
all below the 0.5-contour. If k < n then Pk+1 is below the
0.5-contour since xk+1 = yk < 0.5 and yk+1 ≤ xk+1 < 0.5,
and similarly for Pk+2, . . . , Pn. Both cases are demonstrated
in figure 5.

P0

P1

P2P3

P4

P5

P6

A(0)A(6)
x

y

Fig. 5. Step-pattern corresponding to the fuzzy set A in example 1. Point P4

is the only point located above 0.5-contour.

The step-patterns in figure 6 corresponding to the fuzzy sets
B and C of examples 2 and 3, respectively, demonstrate that
it may happen that none of Pis is above the 0.5-contour.

We now turn to the question of how many points may
actually lie on the 0.5-contour. Figure 5 demonstrates that
there may actually be no such point. On the other hand,
figure 6 makes it clear that there may be two or three such
points; an easy modification would provide fuzzy sets for
which four, five, etc., points are on the 0.5-contour. The
following lemma shows that no other option exists.

Lemma 2. One of the following cases occurs:
(i) There is no point on the 0.5-contour.

(ii) There are at least two points on the 0.5-contour.
In the latter case, if Pk, Pk+1, . . . , Pk+r−1 are all the r ≥
2 points on the 0.5-contour, Pk and Pk+r−1 are subdi-
agonal Pk+1, . . . , Pk+r−2 are diagonal. Moreover, all the
other points, P0, . . . , Pk−1, Pk+r, . . . , Pn, are below the 0.5-
contour.
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Proof. We show that if there exists a point on the 0.5-contour,
there must be at least two such points. Consider thus a fuzzy
set having at least one point on the 0.5-contour and suppose
Pk is the first of them.

If Pk is diagonal, i.e., Pk = ⟨0.5, 0.5⟩, then (1) implies
k > 0. Therefore xk−1 ≥ 0.5 and yk−1 = 0.5, i.e., Pk−1 is
on the 0.5-contour as well, contradicting the assumption that
Pk is the first point on the 0.5-contour.

Let thus Pk be subdiagonal. If Pk is on the vertical part of
the 0.5-contour, i.e., xk = 0.5 and yk < 0.5, then again (1)
implies k > 0. Now, we can easily see that yk−1 = 0.5 so
Pk−1 is on the 0.5-contour as well which again contradicts
the fact that Pk is the first point on the 0.5-contour.

To sum up, the first point on 0.5-contour is subdiagonal
and lies on the horizontal part of the 0.5-contour. In other
words, Pk = ⟨xk, 0.5⟩ with xk > 0.5. Obviously, xk+1 = 0.5
and yk+1 ≥ 0.5 so the immediately following point Pk+1 is
on the vertical part of the 0.5-contour. Therefore, there are at
least two points on this contour.

We can now consider the previous arguments in a dual
manner, in which case we obtain that the last point Pl on the
0.5-contour is subdiagonal and lies on the vertical part of this
contour, i.e., xl = 0.5 and yl > 0.5 (and, moreover, l < n),
and the immediately previous point Pl−1 is on the horizontal
part of the 0.5-contour.

Putting together: There are at least two points on the
0.5-contour—namely, Pk = ⟨xk, 0.5⟩ with xk > 0.5 and
Pl = ⟨0.5, xl⟩ with yl < 0.5—and any other point on the
0.5-contour must be diagonal with coordinates ⟨0.5, 0.5⟩.

The following lemma provides a further insight into the
possible configurations of the points.

Lemma 3. There is no point on the 0.5-contour if and only
if there exists just one point above the 0.5-contour.

Proof.
“⇒”: Suppose that there exists no point on the 0.5-contour. In

addition, assume that P0 is above the 0.5-contour; this
case happens whenever y0 = A(1) < 0.5. By applying
lemma 1 we immediately obtain that P0 is the unique
point above the 0.5-contour.
Conversely, let us suppose P0 is below the 0.5-contour,
i.e., y0 = A(1) > 0.5. Consider the set

M = {Pi |xi > 0.5 and yi > 0.5}.

Since M is nonempty (indeed, P0 ∈ M ) and finite
(because U is a finite universe), we may consider the
greatest k such that Pk ∈ M . Note also that Pn /∈ M
because yn = A(n+1) = 0 ≯ 0.5, so Pk ̸= Pn and we
can thus consider the point Pk+1 with xk+1 = yk > 0.5.t
As Pk+1 /∈ M and there is no point on the 0.5-contour,
we conclude yk+1 < 0.5. Therefore, Pk+1 is above the
0.5-contour. By employing lemma 1 we obtain that Pk+1

is the only point above the 0.5-contour.
“⇐”: Let Pk, 0 < k < n, be the only point above the 0.5-

contour. We thus have xk > 0.5 and yk < 0.5 and,
therefore, xk−1 ≥ xk > 0.5 and yk−1 = xk > 0.5, which
implies that Pk−1 is below the 0.5-contour. Analogously,

P0

P1

P2

P3

P4

P5

P6

B(0)B(6)
x

y

P0

P1

P2

P3

P4=P5=P6

P7

P8

P9

C(0)C(9)
x

y

Fig. 6. Left: Step-pattern corresponding to the fuzzy set B in example 2.
Points P3 and P4 are on 0.5-contour. Right: Step-pattern corresponding to
the fuzzy set C in example 3. Points P3, . . . , P7 are on 0.5-contour.

xk+1 = yk < 0.5 and yk+1 ≤ xk+1 < 0.5, implying that
Pk+1 is below the 0.5-contour.
Now, let Pi and Pj (i ̸= 0, j ̸= n) be points such that
xi > 0.5, yi > 0.5 and xj < 0.5, yj < 0.5. That is,
both points are below the 0.5-contour. Then Pi−1 and
Pj+1 are below the 0.5-contour as well; indeed, xi−1 ≥
xi > 0.5, yi−1 = xi > 0.5 and xj+1 = yj < 0.5,
yj+1 ≤ xj+1 < 0.5. By induction we then obtain that
the points P0, . . . , Pk−1 and Pk+1, . . . , Pn are bellow the
0.5-contour, so there is no point on this contour.
One proceeds in a similar way if either P0 or Pn is the
only point above the 0.5-contour.

As a consequence of theorem 2 and 3, two situations may
occur for an arbitrary fuzzy set A and the corresponding points
P0, P1, . . . , Pn given by (6). The first one is demonstrated in
figure 5: Exactly one of the points is above the 0.5-contour
and all other points are below this contour. The second one is
depicted in figure 6: Two or more points are on the 0.5-contour
and all other points are below this contour.
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IV. PROPERTIES OF RALESCU’S CARDINALITY VIA THE
GEOMETRIC VIEW

IN this section, we derive basic properties of and relation-
ships between Ralescu’s two cardinality concepts. Some of

these results appeared in somewhat modified or different forms
in [2]. We also show how the results in [2] can be derived from
the assertions presented in this section.

Theorem 1.
(a) Let there be no point on the 0.5-contour and let Pk be the

only point above the 0.5-contour (according to lemma 3).
Then

max |A|Rf = f(Pk) > 0.5,

and
argmax |A|Rf = {k}.

(b) Let there be points on the 0.5-contour and let Pk be the
first of them. Then there exists r ≥ 2 such that

max |A|Rf = f(Pk) = · · · = f(Pk+r−1) = 0.5,

and
argmax |A|Rf = {k, . . . , k + r − 1}.

Proof.
(a) If Pk and Pj are above and below the 0.5-contour,

respectively, it obviously holds that f(Pk) > f(Pj). So
we have

max{f(P0), . . . , f(Pn)} = f(Pk) > 0.5,

and
argmax{f(P0), . . . , f(Pn)} = {k}.

Since |A|Rf (l) = f(Pl), l = 0, . . . , n, see (7), we
immediately obtain the claim.

(b) From lemma 2 (b) we have that there is r ≥ 2 such that
the points Pk, . . . , Pk+r−1 are on the 0.5-contour and the
rest of the points are below this contour. If Pi and Pj are
on and below the 0.5-contour, respectively, it holds that
f(Pi) > f(Pj). Therefore we have

max{f(P0), . . . , f(Pn)}
= f(Pk) = · · · = f(Pk+r−1) = 0.5,

and

argmax{f(P0), . . . , f(Pn)} = {k, . . . , k + r − 1}.

Again, to obtain the claim we use (7).

Remark 2. The first part of theorem 3 in [2] claiming that

#argmax |A|Rf = p+ 1,

where p = #{u ∈ U ;A(u) = 0.5}, can be viewed as
a consequence of lemma 2 and theorem 1 (the second part
shall be discussed in remark 3). Indeed, if there is no point on
the 0.5-contour (i.e., there is no u ∈ U such that A(u) = 0.5)
then we have #argmax |A|Rf = 1 = p + 1. On the other
hand, if there is a point on 0.5-contour, then there are r ≥ 2
points Pk, . . . , Pk−p+1 with

xk > 0.5, xk+1 = 0.5, . . . , xk−r+1 = 0.5,

i.e., p = r − 1. From theorem 1 we then get

#argmax |A|Rf = r = p+ 1.

Theorem 2.
(a) Let there be no point on the 0.5-contour and let Pk be

the only point above the 0.5-contour. Then |A|Rs = k.
(b) Let there be points on the 0.5-contour and let Pk be the

first of them. Then |A|Rs = k + 1.

Proof. The definition of index j (see equation 4) can equiva-
lently be stated as:

j = min{k ; 0 ≤ k ≤ n− 1 and A(k) +A(k+1) ≤ 1}.

The condition A(k) + A(k+1) ≤ 1 can be easily rewritten as
yk ≤ 1 − xk, so Pj = ⟨xj , yj⟩ is the first point lying below
or on the secondary diagonal.
(a) Suppose Pk is the only point above the 0.5-contour, i.e.,

xk > 0.5 and yk < 0.5. Then we have yk−1 > 0.5 and
xk−1 > 0.5, since

yk−1 = xk > 0.5 and xk−1 ≥ yk−1 > 0.5.

Therefore,

1− xk−1 < 0.5 and yk−1 > 1− xk−1.

That is, Pk−1 is above the secondary diagonal. Obviously,
all the preceding points P0, . . . , Pk−2 lie above the sec-
ondary diagonal too.
Now, we consider two possibilities: (i) Pk is the point
lying below or on the secondary diagonal, i.e., j = k.
Since A(j) = A(k) = xk > 0.5, (3) yields

|A|Rs = j = k.

(ii) Let Pk be above the secondary diagonal. Then

yk+1 ≤ xk+1 = yk < 0.5,

1− xk+1 > 0.5.

So
yk+1 ≤ 1− xk+1,

which means that Pk+1 is the first point lying below the
secondary diagonal, i.e., j = k + 1. Because A(j) =
A(k+1) = xk+1 < 0.5, (3) implies

|A|Rs = j − 1 = k + 1− 1 = k.

(b) Now, suppose Pk is the first point on the 0.5-contour.
Then xk > 0.5 and yk = 0.5 as we have already shown
in the proof of lemma 2. That is,

yk = 0.5 > 1− xk,

so Pk is above the secondary diagonal. Obviously, all
the previous points P0, . . . , Pk−1 lie above the secondary
diagonal too.
Now, lemma 2 implies that Pk+1 is on the 0.5-contour,
and xk+1 = 0.5 and yk+1 ≤ 0.5. Then yk+1 ≤ 0.5 =
1− xk+1, so Pk+1 is the first point below the secondary
diagonal. We thus obtain j = k + 1 and since A(j) =
A(k+1) = xk+1 = 0.5, we finally have

|A|Rs = j = k + 1.
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Remark 3. The second part of theorem 3 in [2] claiming that

argmax |A|Rf = {k1, . . . , kp+1},

where k1 = |A|Rs, k2 = |A|Rs − 1, k3 = |A|Rs + 1,
k4 = |A|Rs + 2, . . . , kp+1 = |A|Rs + p − 1, and p =
#{u ∈ U ;A(u) = 0.5}, can be viewed as a consequence
of theorems 1 and 2. Namely, consider two cases.

First, there is no point on the 0.5-contour and let Pk be the
only point above the 0.5-contour. Then from theorem 1 (a) we
have argmax |A|Rf = {k}, and from theorem 2 (a) we have
k = |A|Rs. So

argmax |A|Rf = {|A|Rs} = {k1}. (8)

Second, let there be points on the 0.5-contour and let Pk be
the first of them. From theorem 1 (b) we have that there exists
r ≥ 2 such that argmax |A|Rf = {k, . . . , k+ r−1} and from
theorem 2 (b) we have k = |A|Rs − 1. Since p = r − 1 (see
also remark 2), we get

argmax |A|Rf = {|A|Rs − 1, |A|Rs , . . . , |A|Rs + r − 2}
= {|A|Rs − 1, |A|Rs , . . . , |A|Rs + p− 1}
= {k1, . . . , kp+1}. (9)

Remark 4. Theorem 4 in [2] restoring |A|Rs from |A|Rf is
a direct consequence of remark 3. Indeed, from (8) we immedi-
ately obtain that |A|Rs is the unique element in argmax |A|Rf

if argmax |A|Rf is a singleton, and from (9) we get that
|A|Rs is the second smallest element in argmax |A|Rf if
argmax |A|Rf is not a singleton.

Remark 5. Theorem 5 in [2] stating that

max |A|Rf =

{
min{A(|A|Rs)

, 1−A(|A|Rs+1)}>0.5 if p = 0,
0.5 if p > 0,

where p = #{u ∈ U ;A(u) = 0.5}, can be easily derived
from theorems 1 and 2.

Indeed, let there be no point on the 0.5-contour, i.e., p = 0,
and let Pk be the only point above the 0.5-contour, then from
theorem 2 (a) we have |A|Rs = k, so

f(Pk) = min{xk, 1− yk} = min{A(k), 1−A(k+1)}
= min{A(|A|Rs)

, 1−A(|A|Rs+1)}.

From theorem 1 (a) we now obtain

max |A|Rf = f(Pk) = min{A(|A|Rs)
, 1−A(|A|Rs+1)} > 0.5.

If there are points on the 0.5-contour, i.e., p > 0, then
theorem 1 (b) yileds

max |A|Rf = 0.5.

We now present two other important properties on Ralescu’s
cardinality concepts which are derived from the geometric
view. The first one is convexity, for which the geometric view
provides a straightforward argument (cf. [9]).

Theorem 3. The fuzzy cardinality |A|Rf of any fuzzy set A is
a convex fuzzy set.

Proof. We consider the common notion of convexity of a
fuzzy set: Its membership function is bell-shaped, i.e., is

nondecreasing until it reaches its maximum and then becomes
nonincreasing.

First, we assume that Pk is the only point above the 0.5-
contour. From theorem 1 (a) we have that |A|Rf has the
maximal value in k. Using the geometric view it is now easy
to see that j1 ≤ j2 ≤ k implies

|A|Rf (j1) = f(Pj1) = min{xj1 , 1− yj1} = 1− yj1 ≤
1− yj2 = min{xj2 , 1− yj2} = f(Pj2) = |A|Rf (j2),

i.e., |A|Rf is nondecreasing for j ∈ {0, . . . , k}. Similarly, it is
simple to check that k ≤ l1 ≤ l2 implies

|A|Rf (l1) = f(Pl1) = min{xl1 , 1− yl1} = xl1 ≥
xl2 = min{xl2 , 1− yl2} = f(Pl2) = |A|Rf (l2),

i.e., |A|Rf is noninceasing for l ∈ {k, . . . , n}.
For the second case, i.e., if points on the 0.5-contour exist,

one proceeds in a similar way by taking an arbitrary point on
the 0.5-contour as Pk.

The following statement presents an alternative closed-form
expression of scalar cardinality which is directly based on the
developed geometric view, and is more compact compared to
theorem 2.

Theorem 4. Let P0, P1, . . . , Pn be points given by (6). Then

|A|Rs = #{Pi ; xi > 0.5, yi ≥ 0.5}.

Proof. Due to lemma 1–lemma 3, it is sufficient to distinguish
the following two cases. First, let Pk be the only point above
the 0.5-contour. Then, as we have pointed out above,

xi > 0.5, yi > 0.5 for i < k,

xk > 0.5, yk < 0.5,

xj < 0.5, yj < 0.5, for j > k.

Hence, theorem 2 implies

#{Pi ; xi > 0.5, yi ≥ 0.5} = #{P0, . . . , Pk−1} = k = |A|Rs .

Second, let Pk be the first point on the 0.5-contour. Then

xi > 0.5, yi > 0.5 for i < k,

xk > 0.5, yk = 0.5,

xj ≤ 0.5, yj ≤ 0.5, for j > k.

Therefore, theorem 2 yields

#{Pi ; xi > 0.5, yi ≥ 0.5} = #{P0, . . . , Pk}
= k + 1 = |A|Rs .

V. GEOMETRIC VIEW OF A MORE GENERAL
INTERPRETATION OF MANY-VALUED CARDINALITY

In the concluding remarks of [2], a natural generalization of
Ralescu’s fuzzy cardinality has been suggested which is based
on the formula

|A|Rf (k) = A(k) ⊗ ¬A(k+1), (10)

with ⊗ being a truth function of a conjunction, such as a t-
norm, and ¬ being a truth function of a negation. Ralescu’s
fuzzy cardinality (2) then becomes a particular case for a⊗b =
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min(a, b) and ¬a = 1 − a in (10). In the rest of this section
we provide some properties of the generalized concept for
the two other fundamental continuous t-norms ⊗, namely the
Łukasiewicz and the product t-norms, which can easily be
derived using our geometric view.

For the well-known Łukasiewicz connectives, i.e., a⊗ b =
max{0, a+ b− 1} and ¬a = 1− a, we obtain

|A|Rf (k) = max{0, A(k) + (1−A(k+1))− 1}
= max{0, A(k) −A(k+1))} = A(k) −A(k+1),

(11)

since A(k) − A(k+1) ≥ 0 for all k = 0, . . . , n − 1. Consider
the corresponding function f : [0, 1]2 → [0, 1] defined as

f(x, y) = x− y.

The contours of f , whose graph is depicted in figure 7, form
the lines parallel with the main diagonal as illustrated in
figure 8. In this case, we clearly have

argmax |A|Rf = {k ; the drop from
A(k) to A(k+1) is maximal}

and max |A|Rf is the extent of the maximal drop, as demon-
strated in the following example.

0

0.5

1

0
0.2

0.4
0.6

0.8
1
0

0.5

1

x
y

Fig. 7. Graph of f(x, y) = x− y.

Example 4. For the fuzzy set

D = {0.9/u1,
0.6/u2,

0.5/u3,
0.5/u4,

0.2/u5,
0.1/u6}

(11) implies

|D|Rf = {0.1/0, 0.3/1, 0.1/2, 0.3/4, 0.1/5, 0.1/6}.

Figure 9 shows the step-pattern corresponding to the fuzzy set
D. The maximal drop from xk = A(k) to yk+1 = A(k+1)

occurs for k = 1 and k = 4 (the corresponding points P1 and
P4 are denoted by a double circle). Therefore,

argmax |D|Rf = {1, 4}.

The geometric view gives us the following simple interpre-
tation of fuzzy cardinality based on formula (11).

x

y

f−1(0)

f−1(0.1)

f−1(0.2)

f−1(0.3)

f−1(0.4)

f−1(0.5)

f−1(0.6)

f−1(0.7)

f−1(0.8)

f−1(0.9)

f−1(1)

Fig. 8. Projections of the contour lines of f(x, y) = x− y on the xy-plane.

P0

P1

P2

P3

P4

P5P6

D(0)D(6)
x

y

Fig. 9. Step-pattern corresponding to the fuzzy set D in example 4. Points
P1 and P4 are on the 0.3-contour of f(x, y) = x− y.

Theorem 5. For the fuzzy cardinality based on Łukasiewicz
t-norm, the following holds:

|A|Rf (k) =
√
2·dk,

where dk is the Euclidean distance of Pk from the main
diagonal.

Proof. From figure 10 we can easily see that dk = |PkSk|,
where Sk = [sk, sk] with

sk =
xk + yk

2
.
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Now we have

dk =
√
(xk − sk)2 + (yk − sk)2

=

√(xk − yk
2

)2

+
(yk − xk

2

)2

=

√
2· (xk − yk)2

4

=

√
2

2
·(xk − yk)

=

√
2

2
·f(xk, yk),

so
|A|Rf (k) = f(xk, yk) =

2√
2
·dk =

√
2·dk.

Pk

Sk

xk

yk

sk

xkyk sk

dk

x

y

Fig. 10. The distance dk of point Pk from the main diagonal.

Unlike the original case, i.e., with ⊗ = min, it may happen
in the Lukasiewicz case that the corresponding step-pattern
contains points that do not immediately follow each other but
still lie on the same contour, i.e., they have the same distance
from the main diagonal. In fact, the fuzzy set of example 4
has this property as is apparent from figure 9. Since the value
|A|Rf (k) is simply

√
2 times the distance of Pk from the main

diagonal, the fuzzy cardinality |A|Rf need not be a convex
fuzzy set; see again figure 9. In particular, argmax |A|Rf is
not a set of consecutive natural numbers in general, as in the
case of Ralescu’s original fuzzy cardinality (theorem 1). This
fact makes it impossible to define the scalar cardinality based
on the Łukasiewicz t-norm in such a way that it is easily
describable, as we obtained for Ralescu’s scalar cardinality in
theorem 2.

For the product t-norm, i.e., a ⊗ b = a · b, and with ¬ set
again to ¬a = 1− a, (10) yields

|A|Rf (k) = A(k) · (1−A(k+1)). (12)

As above, consider the corresponding function f : [0, 1]2 →
[0, 1], i.e.,

f(x, y) = x · (1− y).

The graph of f is depicted in figure 11 and some of the
contours of f are shown in figure 12. As in the Łukasiewicz

0

0.5

1

00.2
0.4

0.6
0.8

1
0

0.2

0.4

0.6

0.8

1

xy

Fig. 11. Graph of f(x, y) = x · (1− y).

x

y

f−1(0)

f−1(0.1)

f−1(0.2)

f−1(0.3)

f−1(0.4)

f−1(0.5)

f−1(0.6)

f−1(0.7)

f−1(0.8)

f−1(0.9)

f−1(1)

Fig. 12. Projections of the contour lines of f(x, y) = x · (1 − y) on the
xy-plane.

t-norm, |A|Rf is not convex fuzzy set in general, as we can
see in example 5. A more detailed description of the fuzzy
cardinality (12) is even more involved than for Ralescu’s
original fuzzy cardinality (2) or the fuzzy cardinality based
on Łukasiewicz t-norm (11), because the contours of f are
mostly non-linear.

Example 5. For the fuzzy set

E = {0.7/u1,
0.6/u2,

0.5/u3,
0.4/u4,

0.35/u5,
0.3/u6}

(12) yields

|E|Rf = {0.3/0, 0.28/1, 0.3/2, 0.3/3, 0.26/4, 0.245/5, 0.3/6}.

One immediately observes that

argmax |E|Rf = {0, 2, 3, 6}.

Figure 13 shows the step-pattern corresponding to E.
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P0P1

P2

P3

P6

P4

P5

E(0)E(6)
x

y

Fig. 13. Step-pattern corresponding to the fuzzy set E in example 5. Points
P0, P2, P3 and P6 are on the 0.3-contour of f(x, y) = x · (1− y).

VI. CONSLUSION

IN this paper, we present a geometric view of both fuzzy and
scalar cardinality of a fuzzy set introduced by Ralescu [9].

This view is visually appealing, easy to understand, and
provides an alternative justification for the results concerning
these cardinalities presented in [2]. Moreover, the proposed
view reveals a new description of scalar cardinality that was
previously unknown.

We also discuss a geometric view of a natural generalization
of Ralescu’s concept, i.e., the fuzzy cardinalities based on the
Łukasiewicz and the product t-norms. The view reveals two
important properties that are satisfied by Ralescu’s concept,
make it considerably easier to analyze, and enable a simple
closed-form definition of the scalar cardinality. These two
properties are convexity of fuzzy cardinality (which is not
satisfied by either the Łukasiewicz- and the product-based
fuzzy cardinality) and piecewise linearity of contours (which
is not satisfied by the fuzzy cardinality based on the product
t-norm).

To sum up, the proposed geometric view not only enables
alternative proofs of existing results, but reveals a new, sig-
nificant insight into Ralescu’s concepts of fuzzy and scalar
cardinality.
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