A geometric view of Ralescu’s many-valued cardinality

Eduard Bartl, Radim Belohlavek
Department of Computer Science, Palacky University Olomouc, Czech Republic

Abstract—We develop a geometric view of Ralescu’s concept
of a many-valued cardinality of fuzzy sets. The view facilitates an
easy understanding of this concept and helps elucidate its nature.
We demonstrate that the view enables to obtain properties of this
concept as consequences of theorems regarding the geometric
view that are derived by a straightforward geometric reasoning.
We observe that the developed view applies to a natural gen-
eralization of Ralescu’s concept for which it reveals why this
generalization is more difficult to analyze.

Index Terms—Many-valued set, fuzzy set, cardinality, fuzzy
cardinality.

I. OUR AIM

HE notion of cardinality entered considerations on many-

valued sets and, in particular, fuzzy sets in the early stage
of development; see, e.g., [7] and [4] for the first contributions
and [11] for a comprehensive account of the developments.
In his well-known paper [9], Ralescu proposed interesting
notions of both, the so-called fuzzy and scalar cardinality
of fuzzy sets. Our aim is to provide a geometric interpre-
tation of Ralescu’s cardinality concepts. For one, the view
we develop reveals a new understanding of Ralescu’s notions
of cardinality. Secondly, the view enables a straightforward
geometric analysis of Ralescu’s notions. We demonstrate this
by providing simple proofs of some properties of Ralescu’s
fuzzy and scalar cardinality obtained in the original paper [9]
as well as in the recent paper [2], and by presenting new
considerations on the cardinality concepts that are naturally
offered by the geometric view.

II. RALESCU’S CONCEPT OF FUZZY AND SCALAR
CARDINALITY

ONSIDER a fuzzy set A : U — [0, 1] in a finite universe

U ={uy,...,u,}. That is, A represents a many-valued
characteristic function of a collection with an unsharp, gradual
boundary to which each element » in U is a member to the
degree A(u) € [0, 1]. Denote by A),..., A, the member-
ship degrees A(u1),...,A(u,) ordered in a non-increasing
manner, i.e.,

A(l) > 2> A(n) and put A(O) =1 and A(n+1) =0. ()

The non-increasing sequence Ayy,..., A(,) thus results by
a permutation of A(uy),..., A(u,). Ralescu [9] defined the
so-called fuzzy cardinality of A as the fuzzy set |A|, assign-
ing to a non-negative integer k = 0,1,...,n the degree

|Algs (k) = min{ Ay, 1 — Agsn ) (2)

which is interpreted as the truth degree of the statement “A has
k elements.” Furthermore, he defined the scalar cardinality
| Al of A by

0 if A=10,
|[Algs =14 J if A# () and Ay > 0.5, 3)
7j—1 ifA;EQ)and A(j)<0.57
where
j=max{k;1<k<nand Ag_1)+Aw >1}. @

We present examples which shall be used in the rest of this
paper.
Example 1. For the fuzzy set
A= {0.85/,“1, 0.8/u2’ O'G/U3, 0'6/11,4, 0.3/u5’ 02/“6}7 (5)
one has A(o) = 1, A(l) = 0.85, A(g) = 0.8, A(g) = 0.6,
A(4) = 0.6, A(s) = 0.3, A(G) = 0.2, and A(7) = (. One easily
verifies that
|Alge = {*170,%71,%72,%93,%/4,%5,°76}
and
|A|R,s =4 D
Example 2. For the fuzzy set
B = {0'3/141,0'8/u2, 0'2/U3,0'5/11,4,0'857115,0'6/1%},
we obtain B(O) =1, B(l) = (.85, B(g) = 0.8, B(g) = 0.6,
By = 0.5, Bsy = 0.3, Bgy = 0.2, B(7y = 0, and one has
|B|Rf — {0.15/07 0.2/17 0.4/2’ 0.5/3, 0.5/4’ 0.3/57 0'2/6}
|B|Rs =4 O
Example 3. For the fuzzy set
C— {0.85/,&170.8/u2’0.6/u37045/u470.5/u57
O'S/UG,O'S/U7,O'3/U8,0'2/11,9},
the rearrangement yields C(O) =1, C(l) = 0.85, C(Q) = 0.8,
Ci3) = 0.6, Cyy = 0.5, C5) = 0.5, C5) = 0.5, C7) = 0.5,
Cg) = 0.3, C9) = 0.2, C(10y = 0, and one gets
[Clee = 170,791,292, %73,%4,
0.5/5 ().5/6 ().5/7 0.3/8 ().2/9}

and
IClgs =7 O

Remark 1. The purpose of both cardnality concepts is to
express the size of a given fuzzy set A. While |A|g, is a non-
negative integer, |A|p; is a fuzzy set of non-negative integers
for which | Al (k) may be regarded as a degree to which it is




plausible to consider k as the number of elements in A. One
easily checks that both |A|g and |A|g, generalize the notion
of a cardinality of a classical finite set: If A is a characteristic
Sfunction of a classical set with k elements, then \A|RS =k and,

moreover, |A|s (k) =1 and |A|g; (1) = 0 for i # k.

Ralescu’s notions of scalar and fuzzy cardinality are inter-
esting in that they both take into account the relationships
among the membership degrees A(u) rather than just the
individual degrees like most alternative approaches. Yet, since
the original paper [9] does not primarily focus on the prop-
erties of the cardinality concepts, it does not answer some
natural questions. For instance, since the definition (2) of | A|g;
expresses—in a many-valued setting—a natural idea that the
cardinality of A is k if A contains & but not k+1 elements, one
naturally asks for the maximum of |A|g, and for the integers
at which the maximum is attained, i.e., for the most plausible
cardinalities. Moreover, since the definition of |A| is—due to
@I)—basically iterative in nature, one asks for a direct formula
for |A|g,-

The above questions, along with those regarding the rela-
tionship between the two cardinality concepts, are studied in
a recent paper [2]. Our aim is to show that considerations on
both of Ralescu’s cardinality concepts may be conducted by
using a natural geometric view which clarifies both concepts.
In addition, we show that the properties obtained in [2[] as well
as other properties can be obtained within this geometric view.
For this purpose, the following notions shall be used. First, let

max | Al = max{|Alp; (0, [Algs (1), [Alge (), 1,

i.e., max |A|g; is the largest membership degree attained by
|A| . Furthermore, let

argmax |Alpy = {i; [A|gg (i) = max [A|g;},

i.e., argmax |A|g; denotes the set of non-negative integers for
which max |A|y; is attained.

III. GEOMETRIC VIEW BEHIND THE CONCEPTS OF
CARDINALITY

UR geometric view may be explained as follows. The

degrees Aoy, A1), .., A(nq1) ordered as in () can be
represented by points Py, P, ..., P, in the zy-plane defined
as

Pk. = <A(k)7A(k+1)> for k:O,l,...,n. (6)
In what follows, we shall write P, = (zk,y). Since 0 <
zr < 1 and z, = A(k) > A(k+1) = y; for all k, every
point Py is located below or on the main diagonal of the unit
square. A point Py located below the main diagonal, i.e., with
T > Yk, shall be called a subdiagonal point, while a point P,
positioned on the main diagonal, i.e., with xj = yy, shall be
called a diagonal point. Since Ay = 1 and A(,11) = 0 by
definition, the sequence Py, Pi,..., P, contains at least one
subdiagonal point for each fuzzy set A. It is also immediate
that a fuzzy set A is crisp, i.e., A(u) is either 0 or 1 for each
w e U, iff Py, Py,..., P, contains just one subdiagonal point.

Because the y-coordinate of Pj coincides with the -
coordinate of Py, the points Py, Py,..., P, form a step-
like geometric pattern. Formally, for P, = (x,yr) being
a subdiagonal point, a step S(Py) in Py is the union

S(Pi) = [(Yks Yr)s @k Y)Y [(@hes i) (Thy k)]
of the horizontal line
(ks yie)s (T, yi)] = {(zs ) [ye < @ <y}
connecting the main diagonal with P}, and the vertical line

(ks i), Tk, xr)] = {(Tr, y) |ye <y < 2k}

connecting Pj, with the main diagonal.
The notion of a step in Py, is illustrated in figure [}

Y

Tk -

Yk ; Py

Fig. 1. Step in Py.

A step-pattern corresponding to a fuzzy set A is defined as
a union of steps in all subdiagonal points

U{S (Pg) | Py, is subdiagonal point}.

For instance, for the fuzzy set (3) defined in example [T] the
corresponding step-pattern is shown in figure [2] Note that
as a result of A3y = Ay, P> and P3 have the same y-
coordinates, and P53 and P, share their z-coordinates.

Aw) Ay A =AwAe) Ag) Ap=1 *

Fig. 2. Step-pattern corresponding to the fuzzy set A in example



Formula (@) for the fuzzy cardinality |A|g, is based on the
function f : [0,1]% — [0, 1] defined as

f(azy) = min{x, 1- y}

in that
|Alge (k) = f (28, yx)- (7

The graph of f is depicted in figure [3] In figure ] we display
the projections of several contour lines of f on the zy-plane.
For brevity, we shall write f(Pj) instead of f(xy,yx), and
speak of “contours” instead of “projections of the contour
lines.” For given a € [0, 1], the set of points

fHa) = {{z,9) | f(z,y) = a}

shall be referred to as the a-contour. The 0.5-contours of the
three fuzzy sets used in our examples are depicted as the red
line segments in figures [3] and [6]

Fig. 3. Graph of f(z,y) = min{z,1 — y}.
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Fig. 4. Projections of the contour lines of f(z,y) = min{z,1 — y} on the
zy-plane.

We now consider the role of 0.5-contours in the geometric
considerations of Ralescu’s cardinality. We shall say that P
is on the 0.5-contour if f(Py) = 0.5; above the 0.5-contour if
f(Px) > 0.5; and below the 0.5-contour if f(Py) < 0.5. For
instance, in the left part of figure[6] P, and P; are below and

on the 0.5-contour, respectively; in figure [5] Py is above the
0.5-contour.

The following assertions provide a basic insight needed for
our analysis. They all concern arbitrary fuzzy sets A with the
corresponding points Py, Py, ..., P, given by ().

Lemma 1. There exists at most one point above the 0.5-
contour.

Proof. Suppose P;, = {(xy,yi) is above the 0.5-contour, i.e.,
zr, > 0.5 and y;, < 0.5. Recall that due to the ordering of
the membership degrees of A, xp > yi. If k > 0 then for
every l = 0,...,k — 1, P is below the 0.5-contour. Indeed,
Py is below the 0.5-contour since yr_1 = x > 0.5 and
Tip—1 > Yr—1 > 0.5. By a similar reasoning, Py_o, ..., Py are
all below the 0.5-contour. If k < n then Py is below the
0.5-contour since i1 = yYr < 0.5 and yYr4+1 < xp+1 < 0.5,
and similarly for Pyyo, ..., P,. Both cases are demonstrated

in figure O

Fig. 5. Step-pattern corresponding to the fuzzy set A in examplem Point Py
is the only point located above 0.5-contour.

The step-patterns in figure [ corresponding to the fuzzy sets
B and C of examples [2] and [3] respectively, demonstrate that
it may happen that none of P;s is above the 0.5-contour.

We now turn to the question of how many points may
actually lie on the 0.5-contour. Figure [5] demonstrates that
there may actually be no such point. On the other hand,
figure [6| makes it clear that there may be two or three such
points; an easy modification would provide fuzzy sets for
which four, five, etc., points are on the 0.5-contour. The
following lemma shows that no other option exists.

Lemma 2. One of the following cases occurs:

(i) There is no point on the 0.5-contour.
(i1) There are at least two points on the 0.5-contour.

In the latter case, if Py, Pii1,...,Piyr—1 are all the r >
2 points on the 0.5-contour, Py and Pyi,_1 are subdi-
agonal Piyi,...,Pyyr._o are diagonal. Moreover, all the
other points, P, .. ., Py, are below the 0.5-
contour.

'7Pk—17pk+’r'a"
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Proof. We show that if there exists a point on the 0.5-contour,
there must be at least two such points. Consider thus a fuzzy
set having at least one point on the 0.5-contour and suppose
Py is the first of them.

If P, is diagonal, i.e., P, = (0.5,0.5), then implies
k > 0. Therefore xj_1 > 0.5 and y,_1 = 0.5, i.e.,, Py_1 is
on the 0.5-contour as well, contradicting the assumption that
Py, is the first point on the 0.5-contour.

Let thus P, be subdiagonal. If Py is on the vertical part of
the 0.5-contour, i.e., xx = 0.5 and y, < 0.5, then again (II])
implies £ > 0. Now, we can easily see that y,_1 = 0.5 so
Py_; is on the 0.5-contour as well which again contradicts
the fact that Py, is the first point on the 0.5-contour.

To sum up, the first point on 0.5-contour is subdiagonal
and lies on the horizontal part of the 0.5-contour. In other
words, Py = (x,0.5) with 23 > 0.5. Obviously, zj+; = 0.5
and yx4+1 > 0.5 so the immediately following point Py, is
on the vertical part of the 0.5-contour. Therefore, there are at
least two points on this contour.

We can now consider the previous arguments in a dual
manner, in which case we obtain that the last point P, on the
0.5-contour is subdiagonal and lies on the vertical part of this
contour, i.e., ; = 0.5 and y; > 0.5 (and, moreover, [ < n),
and the immediately previous point P,_; is on the horizontal
part of the 0.5-contour.

Putting together: There are at least two points on the
0.5-contour—namely, P, = (zj,0.5) with z; > 0.5 and
P, = (0.5,x;) with y; < 0.5—and any other point on the
0.5-contour must be diagonal with coordinates (0.5,0.5). O

The following lemma provides a further insight into the
possible configurations of the points.

Lemma 3. There is no point on the 0.5-contour if and only
if there exists just one point above the 0.5-contour.

Proof.

Suppose that there exists no point on the 0.5-contour. In
addition, assume that P, is above the 0.5-contour; this
case happens whenever yo = A(;) < 0.5. By applying
lemma [I| we immediately obtain that Py is the unique
point above the 0.5-contour.

Conversely, let us suppose P is below the 0.5-contour,
ie., Yo = A(l) > (.5. Consider the set

M ={P;|z; > 0.5 and y; > 0.5}.

Since M is nonempty (indeed, Py € M) and finite
(because U is a finite universe), we may consider the
greatest k such that P, € M. Note also that P, ¢ M
because y, = A(nt1) = 0 # 0.5, so Py # P, and we
can thus consider the point Py with 241 = yr > 0.5.t
As P11 ¢ M and there is no point on the 0.5-contour,
we conclude yi41 < 0.5. Therefore, Py is above the
0.5-contour. By employing lemma [I] we obtain that Py,
is the only point above the 0.5-contour.

<”: Let P, 0 < k < n, be the only point above the 0.5-

contour. We thus have z; > 0.5 and y; < 0.5 and,
therefore, x;_1 > a1 > 0.5 and yx—1 = xp > 0.5, which
implies that P;_; is below the 0.5-contour. Analogously,

Clo)

Fig. 6. Left: Step-pattern corresponding to the fuzzy set B in example 2]
Points P3 and Py are on 0.5-contour. Right: Step-pattern corresponding to
the fuzzy set C in example 3] Points Ps, ..., Py are on 0.5-contour.

Tr+1 = Yk < 0.5 and yr41 < 2541 < 0.5, implying that
Py is below the 0.5-contour.

Now, let P; and P; (i # 0, j # n) be points such that
z; > 0.5, y; > 0.5 and z; < 0.5, y; < 0.5. That is,
both points are below the 0.5-contour. Then P;_; and
Pj41 are below the 0.5-contour as well; indeed, z;_1 >
x; > 0.5, y;-1 = x; > 0.5 and z;41 = y; < 0.5,
Yj+1 < xj+1 < 0.5. By induction we then obtain that
the points Fy, ..., Py_1 and Pyy1, ..., P, are bellow the
0.5-contour, so there is no point on this contour.

One proceeds in a similar way if either Py or P, is the
only point above the 0.5-contour. O

As a consequence of theorem [2] and [3] two situations may
occur for an arbitrary fuzzy set A and the corresponding points
Py, P, ..., P, given by @) The first one is demonstrated in
figure B} Exactly one of the points is above the 0.5-contour
and all other points are below this contour. The second one is
depicted in figure [6} Two or more points are on the 0.5-contour
and all other points are below this contour.



IV. PROPERTIES OF RALESCU’S CARDINALITY VIA THE
GEOMETRIC VIEW

N this section, we derive basic properties of and relation-

ships between Ralescu’s two cardinality concepts. Some of
these results appeared in somewhat modified or different forms
in [2]]. We also show how the results in [2]] can be derived from
the assertions presented in this section.

Theorem 1.

(a) Let there be no point on the 0.5-contour and let Py, be the
only point above the 0.5-contour (according to lemma 3).
Then

max |A|gs = f(Px) > 0.5,

and
argmax |Alg; = {k}.

(b) Let there be points on the 0.5-contour and let Pj, be the
first of them. Then there exists r > 2 such that

max [Alg, = f(Py) =+ = f(Prgr-1) = 0.5,

and
argmax |Alg, = {k,...,k+r—1}.

Proof.

(a) If P, and P; are above and below the 0.5-contour,
respectively, it obviously holds that f(Py) > f(P;). So
we have

max{f(Py),...,f(Pn)} = f(Px) > 0.5,

and
argmax{f(F),..., f(Pn)} = {k}.

Since |A|z; (1) = f(P), I = 0,...,n, see ([@), we
immediately obtain the claim.

(b) From lemma [2] (b) we have that there is r > 2 such that
the points P, ..., Py4+,—1 are on the 0.5-contour and the
rest of the points are below this contour. If P; and P; are
on and below the 0.5-contour, respectively, it holds that
f(P;) > f(Pj). Therefore we have

max{f(PO)a ey f(PTL)}
= f(P) =+ = f(Prgr-1) = 0.5,
and
argmax{f(Py),...,f(Pn)} =1{k,....,k+r—1}.
Again, to obtain the claim we use (7). O

Remark 2. The first part of theorem 3 in [2] claiming that
#argmax|Alg, =p+1,

where p = #{u € U;A(u) = 0.5}, can be viewed as
a consequence of lemma [2] and theorem [I] (the second part
shall be discussed in remark E]) Indeed, if there is no point on
the 0.5-contour (i.e., there is no u € U such that A(u) = 0.5)
then we have # argmax |A|g; = 1 = p + 1. On the other
hand, if there is a point on 0.5-contour, then there are r > 2
points Py, ..., Py_py1 with

T > 0.5,l‘k+1 = 05, ) T 05,

i.e., p =1 — 1. From theorem E] we then get
#argmax|Alg, =r=p+1.

Theorem 2.

(a) Let there be no point on the 0.5-contour and let Pj, be
the only point above the 0.5-contour. Then |A|g, = k.

(b) Let there be points on the 0.5-contour and let Py be the
first of them. Then |A|g, =k + 1.

Proof. The definition of index j (see equation ) can equiva-
lently be stated as:

j=min{k;0<k<n-—1and A(k) +A(k+1) <1}.

The condition Ay + Ax4+1) < 1 can be easily rewritten as

yr < 1— g, so P; = (x;,y,) is the first point lying below

or on the secondary diagonal.

(a) Suppose P is the only point above the 0.5-contour, i.e.,
xr > 0.5 and y, < 0.5. Then we have y,_1 > 0.5 and
xp_1 > 0.5, since

Yp—1 =T > 0.5 and xp_1 > yr—1 > 0.5.
Therefore,

1—2,1<05 and yr_1 >1—2p_1.

That is, P, is above the secondary diagonal. Obviously,
all the preceding points Fp, ..., Py_o lie above the sec-
ondary diagonal too.

Now, we consider two possibilities: (i) Py is the point
lying below or on the secondary diagonal, i.e., 7 = k.
Since A(jy = Aw) = xx > 0.5, (@) yields

|[Algs =7 =k.
(ii) Let Py be above the secondary diagonal. Then

Y1 < g1 = Yr < 0.5,
1-— Tyl > 0.5.

So
Ykt1 < 1 — 21,

which means that Pj; is the first point lying below the
secondary diagonal, i.e., 7 = k + 1. Because A(j) =
A(k+1) = Tp+1 < 0.5, @ implies

Alpe=j—1=k+1-1=F

(b) Now, suppose Py is the first point on the 0.5-contour.
Then z; > 0.5 and y; = 0.5 as we have already shown
in the proof of lemma @ That is,

yp = 0.5 > 1 — x,

so P is above the secondary diagonal. Obviously, all
the previous points P, ..., Pr_; lie above the secondary
diagonal too.

Now, lemma [Z] implies that Py is on the 0.5-contour,
and zpy1 = 0.5 and yg4+1 < 0.5. Then yg41 < 0.5 =
1 — 241, S0 Py is the first point below the secondary
diagonal. We thus obtain j = k + 1 and since A(;) =
A(gs1) = Ti+1 = 0.5, we finally have

Alp, =7 =k + 1. 0



Remark 3. The second part of theorem 3 in [2] claiming that

argmax [Alg; = {k1,... . kpt1},
where k1 = |Alg, k2 = [Algs — 1, ks = |Alg, + L,
ky = |Algs + 2, ..., kpy1 = |Algs +p— 1, and p =

#{u € U;A(u) = 0.5}, can be viewed as a consequence
of theorems E] and @ Namely, consider two cases.

First, there is no point on the 0.5-contour and let P be the
only point above the 0.5-contour. Then from theorem [I] (a) we
have arg max |A|g; = {k}, and from theorem [2| (a) we have
k= |A|g,. So

arg max |Alp, = {|Alp.} = {k1}- ®)

Second, let there be points on the 0.5-contour and let P, be
the first of them. From theorem [I] (b) we have that there exists
r > 2 such that argmax [A|g; = {k,...,k+r—1} and from
theorem [2| (b) we have k = |A|z, — 1. Since p =7 — 1 (see
also remark [2), we get

argmax |A|Rf = {|A|R:> - 17 |A‘Rs y ‘A|Rs +r— 2}
= {|A|Rs - 1’ |A‘Rs yrry ‘A|Rs +p - 1}
={ki,...,kpt1}- )

Remark 4. Theorem 4 in [2] restoring |A[g, from |A[g is
a direct consequence of remarkE} Indeed, from (8) we immedi-
ately obtain that |A| is the unique element in arg max |A|g,
if argmax|A|g; is a singleton, and from (©) we get that
|A|ps is the second smallest element in argmax|A[g, if
arg max |A|g; is not a singleton.

Remark 5. Theorem 5 in [2] stating that

. min{A(‘A‘ §)71_A(|A| S+1)}>O.5 if p=0,
max [Algy = { 0.5 ! ! if p>0,

where p = #{u € U; A(u) = 0.5}, can be easily derived
from theorems [1] and 21

Indeed, let there be no point on the 0.5-contour, i.e., p = 0,
and let P be the only point above the 0.5-contour, then from
theorem [2] (a) we have |A|g, = k, so

f(Pr) = min{zy,1 —yp} = min{A), 1 — Apgn)}
=min{A(a,), 1 = Aqa -
From theorem [T] (a) we now obtain
max |A|Rf = f(Pk) = min{A(‘A|RS),1 — A(‘A‘RS‘H)} > 0.5.

If there are points on the 0.5-contour, ie., p > 0, then
theorem [I] (b) yileds

max |Alg; = 0.5.

We now present two other important properties on Ralescu’s
cardinality concepts which are derived from the geometric
view. The first one is convexity, for which the geometric view
provides a straightforward argument (cf. [9]]).

Theorem 3. The fuzzy cardinality |A|g; of any fuzzy set A is
a convex fuzzy set.

Proof. We consider the common notion of convexity of a
fuzzy set: Its membership function is bell-shaped, i.e., is

nondecreasing until it reaches its maximum and then becomes
nonincreasing.

First, we assume that P is the only point above the 0.5-
contour. From theorem [I| (a) we have that |A|; has the
maximal value in k. Using the geometric view it is now easy
to see that j; < jo < k implies

| Alge (1) = f(Pj,) = min{z;,, 1 —y;, } =1 -y; <
-y, = min{x]év 1- yj2} = f(PjQ) = ‘A|Rf (J2)s
i.e., |A|g; is nondecreasing for j € {0,..., k}. Similarly, it is
simple to check that k£ <[y <[y implies
|A|Rf (ll) = f(‘Pll) = min{xh?l - yll} =@, 2
Li, = min{xlw 1- le} - f(Plz) - ‘A|Rf (ZQ)v
i.e., |A|g; is noninceasing for [ € {k,...,n}.
For the second case, i.e., if points on the (.5-contour exist,

one proceeds in a similar way by taking an arbitrary point on
the 0.5-contour as P. O

The following statement presents an alternative closed-form
expression of scalar cardinality which is directly based on the
developed geometric view, and is more compact compared to
theorem 2

Theorem 4. Let Py, P, ..., P, be points given by (6). Then
|Algs = #{Pi; zi > 0.5,y; > 0.5}.
Proof. Due to lemma[THemma 3] it is sufficient to distinguish

the following two cases. First, let P, be the only point above
the 0.5-contour. Then, as we have pointed out above,

x; > 0.5,y; > 0.5 for i < k,

T > 0.5,y < 0.5,

z; < 0.5,y; <0.5, for j > k.
Hence, theorem [2] implies
#{137,7 z; > 0.5,y; > 05} = #{Po,...,Pkfl} =k= |A|Rs
Second, let P be the first point on the 0.5-contour. Then

x; > 0.5,y; > 0.5 for i < k,

T > 0.5,y = 0.5,

T < 0.5,yj < 0.5, for j > k.
Therefore, theorem [2] yields

#{P;; x; >0.5,y; > 05} = #{Py,..., Py}
=k+1=|Alg,- O

V. GEOMETRIC VIEW OF A MORE GENERAL
INTERPRETATION OF MANY-VALUED CARDINALITY

In the concluding remarks of [2], a natural generalization of
Ralescu’s fuzzy cardinality has been suggested which is based
on the formula

|Algs (k) = Ay ® A1), (10)

with ® being a truth function of a conjunction, such as a t-
norm, and — being a truth function of a negation. Ralescu’s
fuzzy cardinality () then becomes a particular case for a®b =



min(a,b) and ~a = 1 — a in (I0). In the rest of this section
we provide some properties of the generalized concept for
the two other fundamental continuous t-norms &, namely the
Lukasiewicz and the product t-norms, which can easily be
derived using our geometric view.

For the well-known ELukasiewicz connectives, i.e., a @ b =
max{0,a+b— 1} and -a = 1 — a, we obtain

|A|Rf (k}) = maX{O,A(k) + (1 — A(k+1)> — 1}

= max{0, Agr) — Ag41)} = Ay — A1),
1D

since Ay — Ag41) = 0 for all k = 0,...,n — 1. Consider
the corresponding function f : [0,1]> — [0, 1] defined as

flz,y)=z—y.

The contours of f, whose graph is depicted in figure [7] form
the lines parallel with the main diagonal as illustrated in
figure [8] In this case, we clearly have

argmax |A|g; = {k;the drop from
Ay to A1) is maximal}

and max | A, is the extent of the maximal drop, as demon-
strated in the following example.

1r

0.5

O

0.4 0
Yy T 00

Fig. 7. Graph of f(z,y) =z — y.

Example 4. For the fuzzy set
D = {%Yuy, %, O5us, O%uy, “Yus, ©Yag)
(TT) implies
Dl = {030,031, 0-2 0-34 0.l/5 0.6

Figure 0] shows the step-pattern corresponding to the fuzzy set
D. The maximal drop from x, = Ay 10 ypr1 = A
occurs for £ =1 and k = 4 (the corresponding points P; and
P, are denoted by a double circle). Therefore,

argmax |D|p, = {1,4}. O

The geometric view gives us the following simple interpre-
tation of fuzzy cardinality based on formula (TT).

N IR IR I S
—_— N "D D —

Fig. 9. Step-pattern corresponding to the fuzzy set D in example E Points
Py and Py are on the 0.3-contour of f(z,y) =z — y.

Theorem 5. For the fuzzy cardinality based on tukasiewicz
t-norm, the following holds:

|Alge (k) = V2-dg,

where dj, is the Euclidean distance of Py from the main
diagonal.

Proof. From figure we can easily see that di = |PySk|,
where S, = [sg, S| with

Tr + Yk

S — B



Now we have

(zr — s1)% + (yr — 58)?

v
B ()

(zh — yr)?
— /9. 0k T Jk)
4
V2
= 7'(% — Uk)
V2
= 7'f($k7yk),
SO )
|Algs (k) = f(@k, yk) = 72'dl~c = /2.dy, O
Y
Tk ) 7 i
Sk Sk/ < |
Yk P }
Yk Sk Tk x

Fig. 10. The distance dj of point Pj from the main diagonal.

Unlike the original case, i.e., with ® = min, it may happen
in the Lukasiewicz case that the corresponding step-pattern
contains points that do not immediately follow each other but
still lie on the same contour, i.e., they have the same distance
from the main diagonal. In fact, the fuzzy set of example [
has this property as is apparent from figure 9] Since the value
|A| g (k) is simply v/2 times the distance of P from the main
diagonal, the fuzzy cardinality |A|g; need not be a convex
fuzzy set; see again figure El In particular, argmax |A|g; is
not a set of consecutive natural numbers in general, as in the
case of Ralescu’s original fuzzy cardinality (theorem [T)). This
fact makes it impossible to define the scalar cardinality based
on the Lukasiewicz t-norm in such a way that it is easily
describable, as we obtained for Ralescu’s scalar cardinality in
theorem

For the product t-norm, i.e., a ® b = a - b, and with — set
again to ~a = 1 — a, (10) yields

[Alpe (k) = Ay - (1 = Aget))-

As above, consider the corresponding function f : [0,1]* —
[0,1], ie.,

12)

flz,y)=2-(1—y).

The graph of f is depicted in figure [I1] and some of the
contours of f are shown in figure As in the Lukasiewicz

y %2 00 ac

Fig. 11. Graph of f(z,y) =z (1 —y).

Y

|
—

s s T S
|
L

Fig. 12. Projections of the contour lines of f(z,y) = = - (1 — y) on the
zy-plane.

t-norm, |A|g, is not convex fuzzy set in general, as we can
see in example 5] A more detailed description of the fuzzy
cardinality (12) is even more involved than for Ralescu’s
original fuzzy cardinality (Z) or the fuzzy cardinality based
on Lukasiewicz t-norm @), because the contours of f are
mostly non-linear.

Example 5. For the fuzzy set
E = {%Tuy, "Yuy, g, Yy, 35 us, “Yug)
(T2) yields
Bl = {0-3/0,0-28/1 039 0-33 0.26/4 0.245/5 0.3/}
One immediately observes that
argmax |E|g, = {0,2,3,6}.

Figure [T3] shows the step-pattern corresponding to E. O



Fig. 13. Step-pattern corresponding to the fuzzy set E in example [5] Points
Py, P2, P3 and Ps are on the 0.3-contour of f(z,y) =z (1 —y).

VI. CONSLUSION

N this paper, we present a geometric view of both fuzzy and

scalar cardinality of a fuzzy set introduced by Ralescu [9].
This view is visually appealing, easy to understand, and
provides an alternative justification for the results concerning
these cardinalities presented in [2]. Moreover, the proposed
view reveals a new description of scalar cardinality that was
previously unknown.

We also discuss a geometric view of a natural generalization
of Ralescu’s concept, i.e., the fuzzy cardinalities based on the
Lukasiewicz and the product t-norms. The view reveals two
important properties that are satisfied by Ralescu’s concept,
make it considerably easier to analyze, and enable a simple
closed-form definition of the scalar cardinality. These two
properties are convexity of fuzzy cardinality (which is not
satisfied by either the fLukasiewicz- and the product-based
fuzzy cardinality) and piecewise linearity of contours (which
is not satisfied by the fuzzy cardinality based on the product
t-norm).

To sum up, the proposed geometric view not only enables
alternative proofs of existing results, but reveals a new, sig-
nificant insight into Ralescu’s concepts of fuzzy and scalar
cardinality.
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