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Factorization of classical, two-valued Boolean data became a widely studied topic in the past 
decade due to its role in analyzing relational data as well as its significance for other fields. 
Recently, various extensions to factorization of ordinal data, or data with graded (fuzzy) 
attributes, have been proposed. We identify and describe a fundamental problem regarding 
quality of factors, which is non-existent in the Boolean case, but naturally appears in the more 
general setting of ordinal data. As we demonstrate, the problem gets more significant with 
growing size of the factorized data. We analyze the problem, propose a method to alleviate it, 
and evaluate experimentally our solution to the problem. We also provide a discussion regarding 
ramifications of our findings for the concept of cardinality of fuzzy sets.

1. Introduction to factorization of ordinal data

1.1. Basic factorization problem

A factorization problem, which we consider and which subsumes the well known factorization of Boolean matrices, may be 
described as follows. Consider an 𝑛 ×𝑚 matrix 𝐼 whose entries 𝐼𝑖𝑗 , for 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑚, are elements of an ordered scale 𝐿; in 
the basic interpretation, the entry 𝐼𝑖𝑗 at row 𝑖 and column 𝑗 represents a degree to which the object 𝑖 has the attribute 𝑗. In particular, 
we assume that the degrees form a complete lattice ⟨𝐿, ≤, 0, 1⟩, i.e. a partially ordered set bounded by 0 and 1 in which arbitrary 
suprema ⋁ and infima ⋀ exist, equipped with additional operations as explained below. The set of all such matrices shall be denoted 
𝐿𝑛×𝑚.

The goal is to factorize 𝐼 , i.e. to find a decomposition of the object-attribute matrix 𝐼 into an object-factor matrix 𝐴 ∈𝐿𝑛×𝑘 and a 
factor-attribute matrix 𝐵 ∈𝐿𝑘×𝑚 such that

𝑘 is small and 𝐼 ≈𝐴◦𝐵, (1)

where 𝐼 ≈𝐴◦𝐵 denotes that 𝐼 is approximately equal to 𝐴◦𝐵 and ◦ denotes the sup-⊗-composition (product) of matrices, i.e.

(𝐴◦𝐵)𝑖𝑗 =
𝑘⋁

𝑙=1
𝐴𝑖𝑙 ⊗𝐵𝑙𝑗 . (2)

In order to focus on the phenomenon we address, we assume that the lattice 𝐿 of degrees is a chain included in the real unit interval 
[0, 1] (i.e. 𝐿 ⊆ [0, 1]) and that ⊗ is commutative, associative, isotone, and satisfies 𝑎 ⊗ 1 = 𝑎 for each 𝑎 ∈𝐿.
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Remark 1.

(a) For 𝐿 = {0, 1}, the present factorization becomes the well-known factorization of Boolean (also called binary) matrices [5,13,15], 
as ⊗ then becomes the function of logical conjunction and (2) becomes the max-min product of Boolean matrices.

(b) For 𝐿 = [0, 1] or 𝐿 = {0, 1∕𝑛, … , 𝑛−1∕𝑛, 1}, ⊗ becomes a t-norm and we obtain a factorization of matrices with graded (fuzzy) 
attributes [2–4].

(c) Two particular instances of the factorization problem are considered in the literature: The first is the discrete basis problem 
(DBP), in which a number 𝑘 is given and the problem is to find 𝑘 factors such that 𝐼 is as similar to 𝐴◦𝐵 as possible [4,15]. The 
second is the approximate factorization problem (AFP), in which an 𝜀 > 0 is given and the problem is to find as few factors as 
possible for which the similarity of 𝐼 and 𝐴◦𝐵 is at least 𝜀 [3,5].

(d) A more general factor model has recently been proposed in [9]. In this paper, the authors also consider a semantic problem 
related in a broader sense to the problem addressed in our paper. We comment on this in more detail in section 5.

1.2. Matrix similarity

To assess approximate equality (similarity, closeness) of matrices 𝐼 and 𝐴◦𝐵, one naturally employs [3,4] the function

𝑆(𝐼,𝐴◦𝐵) =
𝑛,𝑚∑
𝑖,𝑗=1

(𝐼𝑖𝑗 ↔ (𝐴◦𝐵)𝑖𝑗 ) (3)

or its normalized version

𝑠(𝐼,𝐴◦𝐵) =

∑𝑛,𝑚

𝑖,𝑗=1(𝐼𝑖𝑗 ↔ (𝐴◦𝐵)𝑖𝑗 )

𝑛 ⋅𝑚
, (4)

where ↔ is a suitable function of many-valued logical equivalence. Starting from ⊗, cf. (2), a natural, logically well-behaving option 
is to take the biresiduum ↔, which is defined by 𝑎 ↔ 𝑏 = (𝑎 → 𝑏) ∧ (𝑏 → 𝑎), where → is the so-called residuum induced by ⊗ [10,11]. 
For instance, if ⊗ is the Łukasiewicz t-norm, given by 𝑎 ⊗𝑏 =max(0, 𝑎 +𝑏 −1), the residuum is the well-known Łukasiewicz implication 
𝑎 → 𝑏 =min(1, 1 − 𝑎 + 𝑏), in which case the corresponding ↔ is given by 𝑎 ↔ 𝑏 = 1 − |𝑎 − 𝑏|.
Remark 2. In the Boolean case, i.e. when 𝐿 = {0, 1}, it is a common practice to utilize a distance function rather than a similarity 
function. For this purpose, one employs [5,13,15] the matrix metric 𝐸 based on the 𝐿1-norm (equivalently, the Hamming distance), 
i.e.

𝐸(𝐼,𝐴◦𝐵) =
𝑛,𝑚∑
𝑖,𝑗=1

|𝐼𝑖𝑗 − (𝐴◦𝐵)𝑖𝑗 |,
or its normalized version

𝑒(𝐼,𝐴◦𝐵) = 𝐸(𝐼,𝐴◦𝐵)
𝑛 ⋅𝑚

.

In the Boolean case, one may choose whether to proceed with similarity, cf. (3) and (4), or the above-described distance, because 
when denoting by ↔ the classical logical equivalence, one has

𝑆(𝐼,𝐴◦𝐵) = 𝑛 ⋅𝑚−𝐸(𝐼,𝐴◦𝐵) and

𝑠(𝐼,𝐴◦𝐵) = 1 − 𝑒(𝐼,𝐴◦𝐵).

1.3. Interpretation of factors

Due to the properties of the above model and the employed functions ⊗ and ⋁, factors may naturally be interpreted and 
visualized. Namely, the 𝑙th factor (𝑙 = 1, … , 𝑘) in the decomposition (1) may be identified with the pair ⟨𝐴_𝑙 , 𝐵𝑙_⟩ consisting of the 𝑙th 
column 𝐴_𝑙 of 𝐴 and the 𝑙th row 𝐵𝑙_ of 𝐵. The degrees 𝐴𝑖𝑙 and 𝐵𝑙𝑗 comprising factor 𝑙 are naturally interpreted as the degree to which 
factor 𝑙 applies to the object 𝑖 (or, object 𝑖 possesses factor 𝑙) and the degree to which the attribute 𝑗 is a particular manifestation of 
factor 𝑙, respectively.

Moreover, the 𝑙th factor ⟨𝐴_𝑙 , 𝐵𝑙_⟩ may be visualized as the crossproduct 𝐴_𝑙◦𝐵𝑙_, i.e. an 𝑛 ×𝑚 matrix defined by

(𝐴_𝑙◦𝐵𝑙_)𝑖𝑗 =𝐴𝑖𝑙 ⊗ 𝐵𝑙𝑗 . (5)

As we shall see, such matrices represent certain rectangular patterns and since (2) may be rewritten as

𝐴◦𝐵 = 𝐴_1◦𝐵1_ ∨ ⋯ ∨ 𝐴_𝑘◦𝐵𝑘_,

an approximate decomposition of 𝐼 into 𝐴 ⊗ 𝐵 in fact means that the given matrix 𝐼 may approximately be expressed as a 
∨-superposition of 𝑘 rectangular patterns 𝐴_𝑙◦𝐵𝑙_. Note that in the Boolean case, this means that 𝐼 is obtained as a max-superposition 
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of 𝑘 rectangles, each of which is full of 1s.
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Example 1. Consider the five-element chain 𝐿 = {0, 1∕4, 1∕2, 3∕4, 1} equipped with the Łukasiewicz operations, and the following 4 × 5
matrix:

𝐼 =

⎛⎜⎜⎜⎜⎝

1∕2 1 1∕4 1 3∕4
1 0 3∕4 3∕4 3∕4
1∕2 1 1 3∕4 1
1∕4 1∕4 3∕4 0 3∕4

⎞⎟⎟⎟⎟⎠
. (6)

One may check that 𝐼 =𝐴◦𝐵, where

𝐴 =

⎛⎜⎜⎜⎜⎝

1∕4 1 1 1∕2
3∕4 0 0 1
1 1 1 1∕2
3∕4 1∕4 1∕4 1∕4

⎞⎟⎟⎟⎟⎠
and 𝐵 =

⎛⎜⎜⎜⎜⎝

1∕2 1∕4 1 1∕4 1
1∕2 1 1∕4 3∕4 3∕4
1∕2 1∕4 1∕4 1 3∕4
1 0 3∕4 3∕4 3∕4

⎞⎟⎟⎟⎟⎠
.

The individual factors ⟨𝐴_𝑙 , 𝐵𝑙_⟩ are represented by the columns of 𝐴 and rows of 𝐵, respectively, and may be visualized by the 
corresponding crossproducts 𝐴_𝑙◦𝐵𝑙_ as follows:

𝐴_1◦𝐵1_ =

⎛⎜⎜⎜⎜⎝

0 0 1∕4 0 1∕4
1∕4 0 3∕4 0 3∕4
1∕2 1∕4 1 1∕4 1
1∕4 0 3∕4 0 3∕4

⎞⎟⎟⎟⎟⎠
,

𝐴_2◦𝐵2_ =

⎛⎜⎜⎜⎜⎝

1∕2 1 1∕4 3∕4 3∕4
0 0 0 0 0
1∕2 1 1∕4 3∕4 3∕4
0 1∕4 0 0 0

⎞⎟⎟⎟⎟⎠
,

𝐴_3◦𝐵3_ =

⎛⎜⎜⎜⎜⎝

1∕2 0 1∕4 1∕4 1∕4
1 0 3∕4 3∕4 3∕4
1∕2 0 1∕4 1∕4 1∕4
1∕4 0 0 0 0

⎞⎟⎟⎟⎟⎠
,

𝐴_4◦𝐵4_ =

⎛⎜⎜⎜⎜⎝

1∕2 1∕4 1∕4 1 3∕4
1∕4 0 0 3∕4 1∕2
1∕4 0 0 3∕4 1∕2
0 0 0 0 0

⎞⎟⎟⎟⎟⎠
.

Since 𝐼 =𝐴◦𝐵, we have

𝐼 =𝐴_1◦𝐵1_ ∨𝐴_2◦𝐵2_ ∨𝐴_3◦𝐵3_ ∨𝐴_4◦𝐵4_

and 𝑠(𝐼, 𝐴◦𝐵) = 1. When the first factor is considered and the remaining ones are dropped, one obtains an approximate decomposition 
of 𝐼 into 𝐴_1◦𝐵1_, for which

𝑠(𝐼,𝐴_1◦𝐵1_) = 0.7.

With two factors, the decomposition is considerably precise already since

𝑠(𝐼,𝐴_1◦𝐵1_ ∨𝐴_2◦𝐵2_) = 0.91.

2. Flat factors and why they appear

We now present the phenomenon addressed in this paper. Note at the outset that, as shall become apparent, the phenomenon is 
non-existent in the two-valued Boolean case, i.e. when 𝐿 = {0, 1}. In the multiple-valued case, the phenomenon appears on larger 
data, which is also where we observed it. In particular, we encountered this phenomenon when analyzing data from the British 
educational system; some of our findings are reported in section 4.

For convenience, we shall visualize matrices with degrees by arrays in which matrix entries are represented by shades of gray. 
In particular, we use the set 𝐿 containing seven grades, 0, 1∕6, 2∕6, 3∕6, 4∕6, 5∕6, and 1, which proved useful in analyzing ordinal data, 
because—as is well known—people are comfortable working with 7 ±2-element scales [16]. Furthermore, we employ the Łukasiewicz 
t-norm and the corresponding biresiduum; see section 1.2. The correspondence of the degrees 𝑎 ∈𝐿 to the shades of gray is as follows:
473
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2.1. Desirable factors vs. flat factors

According to the reasoning adopted in factor analysis, a set of 𝑘 factors, which are represented by the matrices 𝐴 and 𝐵, 
approximately explains the input data 𝐼 if the entries 𝐼𝑖𝑗 and (𝐴◦𝐵)𝑖𝑗 have the same or at least reasonably similar values for most 
entries ⟨𝑖, 𝑗⟩. Typically, this is achieved in such a way that each factor 𝑙 = 1, … , 𝑘 significantly explains some large part of the input 
data 𝐼 .

Example 2. Consider the following 7 × 9 matrix 𝐼 :

(a) Consider, furthermore, the following factor 𝐹1 = ⟨𝐶1, 𝐷1⟩:

The parts 𝐶1 and 𝐷1 are depicted as the column (7 × 1 matrix) and the row (1 × 9 matrix) to the left and on the top of the 7 × 9 array, 
which itself represents the crossproduct 𝐶1◦𝐷1. One may observe that factor ⟨𝐶1, 𝐷1⟩ explains reasonably well the part of the input 
matrix 𝐼 corresponding to rows 2–5 and columns 5–8. Namely, the entries of this part of 𝐼 have the same or similar values to those 
of the 4 × 4 non-white part of the 7 × 9 array displaying the factor.

(b) Another good factor is the following factor 𝐹2 = ⟨𝐶2, 𝐷2⟩:

Likewise, factor ⟨𝐶2, 𝐷2⟩ explains well the part of 𝐼 that corresponds to the non-white entries of the crossproduct 𝐶2◦𝐷2, i.e. the part 
of the input matrix 𝐼 corresponding to rows 3–5 and columns 3–6.

Since both factor ⟨𝐶1, 𝐷1⟩ and factor ⟨𝐶2, 𝐷2⟩ significantly explain a reasonably large part of the input matrix 𝐼 , they are 
considered natural and informative. Such factors are desirable and their discovery is the very purpose of factorization.

Example 3. It may, nevertheless, happen that a factor does not have the desirable property described above. Consider the following 
factor 𝐹3 = ⟨𝐶3, 𝐷3⟩; intuitively, this factor does not significantly explain any reasonably large part of the input matrix 𝐼 :
474
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Fig. 1. Matrix 𝐶1◦𝐷1 (top left), matrix 𝐼 ↔ 𝐶1◦𝐷1 of biresidua (top right), and matrices representing equality (bottom left) and at least 5∕6-equality (bottom right) of 
entries in 𝐼 and 𝐶1◦𝐷1 .

Factors like the one presented in Example 3 shall be called flat. These are factors ⟨𝐶, 𝐷⟩ that explain to some small extent a large 
part of the input matrix 𝐼 , but they do not explain any part of 𝐼 significantly. That is, a large number of entries (𝐶◦𝐷)𝑖𝑗 have slightly 
similar values to the corresponding values 𝐼𝑖𝑗 in the input matrix 𝐼 , but the similarities are not significant in any reasonably large 
part of 𝐼 .

It might seem that flat factors would not appear naturally when computing factors from data. In the next section we explain why, 
on the contrary, flat factors may actually be preferred by factorization algorithms that are designed by principles directly generalized 
from the principles of factorization algorithms for Boolean data. The problem of how to avoid flat factors is addressed in section 3.

2.2. Why do flat factors appear?

Factorization algorithms for Boolean data and their extensions for data with graded attributes have to deal with the fact that the 
factorization problem and its commonly considered variants are NP-hard (for the Boolean case, see [18] and also [5,15]; for the case 
of graded attributes, see [7]). Virtually all current algorithms cope with the NP-hardness by computing factors one by one using a 
particular greedy strategy, obtaining thus suboptimal solutions to the factorization problem.

Generally speaking, the strategies to compute a new factor which are proposed in the literature aim at selecting a factor that 
explains most of the data not explained by the previously generated factors. At the end, one intends to come up with a set of 𝑘
factors, represented by the 𝑛 × 𝑘 and 𝑘 ×𝑚 matrices 𝐴 and 𝐵, that maximize the approximate equality (3), i.e. maximize

𝑆(𝐼,𝐴◦𝐵).

Suppose 𝑙−1 factors have been computed, i.e. the 𝑛 × (𝑙−1) and (𝑙−1) ×𝑚 matrices 𝐴(𝑙−1) and 𝐵(𝑙−1) have been obtained. In order to 
select a good 𝑙th factor, and thus obtain the 𝑛 × 𝑙 and 𝑙 ×𝑚 matrices 𝐴(𝑙) and 𝐵(𝑙), it therefore seems reasonable to select a factor that 
maximizes the approximate equality

𝑆(𝐼,𝐴(𝑙)◦𝐵(𝑙)).

While such strategy is—as we shall see—reasonable for Boolean data, it naturally leads to selection of flat, and thus undesirable, 
factors when factorizing graded data. This is particularly apparent when computing the first factor, as shown by the next examples.

Consider again the 7 × 9 input matrix 𝐼 from Example 2 and the factors 𝐹1 = ⟨𝐶1, 𝐷1⟩, 𝐹2 = ⟨𝐶2, 𝐷2⟩, and 𝐹3 = ⟨𝐶3, 𝐷3⟩ from 
Examples 2 (a), (b), and Example 3, respectively. The top part of Fig. 1 depicts the crossproduct 𝐶1◦𝐷1 (i.e. represents factor 𝐹1) and 
the matrix 𝐼 ↔ 𝐶1◦𝐷1 consisting of entry-wise biresidua

(𝐼 ↔ 𝐶1◦𝐷1)𝑖𝑗 = 𝐼𝑖𝑗 ↔ (𝐶1◦𝐷1)𝑖𝑗 .

As each entry ⟨𝑖, 𝑗⟩ of 𝐼 ↔ 𝐶1◦𝐷1 represents closeness of 𝐼 and 𝐶1◦𝐷1 at entry ⟨𝑖, 𝑗⟩, the matrix 𝐼 ↔ 𝐶1◦𝐷1 of biresidua may be 
regarded as the entry-by-entry representation of quality of factor 𝐹1 = ⟨𝐶1, 𝐷1⟩.

The bottom part of Fig. 1 depicts equality and approximate equality of matrices 𝐼 and 𝐶1◦𝐷1: The bottom left matrix represents 
equality in the entries of 𝐼 and the entries of 𝐶1◦𝐷1 in that its black entries ⟨𝑖, 𝑗⟩ are those for which 𝐼𝑖𝑗 = (𝐶1◦𝐷1)𝑖𝑗 ; the bottom 
right matrix represents 5∕6-equality in that its black entries are those for which 𝐼𝑖𝑗 ↔ (𝐶1◦𝐷1)𝑖𝑗 ≥ 5∕6. The same information for factors 
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𝐹2 = ⟨𝐶2, 𝐷2⟩ and 𝐹3 = ⟨𝐶3, 𝐷3⟩ is shown in Fig. 2 and Fig. 3, respectively.
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Fig. 2. Matrix 𝐶2◦𝐷2 (top left), matrix 𝐼 ↔ 𝐶2◦𝐷2 of biresidua (top right), and matrices representing equality (bottom left) and at least 5∕6-equality (bottom right) of 
entries in 𝐼 and 𝐶2◦𝐷2 .

Fig. 3. Matrix 𝐶3◦𝐷3 (top left), matrix 𝐼 ↔ 𝐶3◦𝐷3 of biresidua (top right), and matrices representing equality (bottom left) and at least 5∕6-equality (bottom right) of 
entries in 𝐼 and 𝐶3◦𝐷3 .

Figs. 1, 2, and 3 make more precise our intuitive observations from the previous section according to which factors ⟨𝐶1, 𝐷1⟩
and ⟨𝐶2, 𝐷2⟩ are desirable. Namely, the matrices of biresidua clearly show that each of these factors significantly explains a clearly 
delineated part of the input matrix 𝐼 . On the other hand, factor ⟨𝐶3, 𝐷3⟩ is undesirable because it is flat: As the matrix 𝐼 ↔ 𝐶3◦𝐷3 of 
biresidua and the matrices representing equality and 5∕6-equality of entries reveal, the factor does not significantly explain any part 
of 𝐼 .

Yet, factor ⟨𝐶3, 𝐷3⟩ shall be preferred by factorization algorithms that aim at maximizing 𝑆(𝐼, 𝐴◦𝐵). Namely, the values of 
similarity 𝑆(𝐼, 𝐶𝑙◦𝐷𝑙) as well as normalized similarity 𝑠(𝐼, 𝐶𝑙◦𝐷𝑙) for the three factors are shown in the following table:1

⟨𝐶1 ,𝐷1⟩ ⟨𝐶2 ,𝐷2⟩ ⟨𝐶3 ,𝐷3⟩
𝑆(𝐼,𝐶𝑙◦𝐷𝑙) 26.649 23.499 33.012

𝑠(𝐼,𝐶𝑙◦𝐷𝑙) 0.423 0.373 0.524

The reason for the significantly higher similarity values of factor ⟨𝐶3, 𝐷3⟩, and hence its preference over ⟨𝐶1, 𝐷1⟩ and ⟨𝐶2, 𝐷2⟩
becomes apparent when realizing that, in general, the similarity 𝑆(𝐼, 𝐶◦𝐷) of 𝐼 and the matrix 𝐶◦𝐷 representing factor ⟨𝐶, 𝐷⟩ equals 
the sum of all entries of the biresidua matrix 𝐼 ↔ 𝐶◦𝐷, cf. (3):

𝑆(𝐼,𝐶◦𝐷) = [𝐼11 ↔ (𝐶◦𝐷)11] + [𝐼12 ↔ (𝐶◦𝐷)12] +⋯+ [𝐼𝑛𝑚 ↔ (𝐶◦𝐷)𝑛𝑚] =
𝑛,𝑚∑
𝑖,𝑗=1

(𝐼 ↔ 𝐶◦𝐷)𝑖𝑗 .
476

1 Note that 𝑆(𝐼, 𝐶𝑙◦𝐷𝑙) = 𝑛𝑚 ⋅ 𝑠(𝐼, 𝐶𝑙◦𝐷𝑙) = 63 ⋅ 𝑠(𝐼, 𝐶𝑙◦𝐷𝑙).
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Fig. 4. Matrix 𝐶1◦𝐷1 ∨𝐶2◦𝐷2 (top left), matrix 𝐼 ↔ (𝐶1◦𝐷1 ∨𝐶2◦𝐷2) of biresidua (top right), and matrices representing equality (bottom left) and at least 5∕6-equality 
(bottom right) of entries in 𝐼 and 𝐶1◦𝐷1 ∨𝐶2◦𝐷2 .

Now, while 𝑆(𝐼, 𝐶1◦𝐷1) and 𝑆(𝐼, 𝐶2◦𝐷2) result as sums of a small number of high values in entries (dark entries) of the corresponding 
biresidua matrices, the higher value 𝑆(𝐼, 𝐶3◦𝐷3) results as a sum of large number of relatively small values (light grey entries) of the 
biresidua matrix 𝐼 ↔ 𝐶3◦𝐷3; cf. the biresidua matrices in the top right parts in Figs. 1, 2, and 3.

Remark 3. Interestingly, the flat factor ⟨𝐶3, 𝐷3⟩ is preferred even over the two-element combination (i.e. max-superposition) of 
factors ⟨𝐶1, 𝐷1⟩ and ⟨𝐶2, 𝐷2⟩, which is represented by the matrix 𝐶1◦𝐷1 ∨𝐶2◦𝐷2. In this case, the same kind of information as above 
is presented in Fig. 4. Namely, for the similarity 𝑆(𝐼, 𝐶1◦𝐷1 ∨𝐶2◦𝐷2) of 𝐼 and the matrix 𝐶1◦𝐷1 ∨𝐶2◦𝐷2 consisting of the two factors 
one has

𝑆(𝐼,𝐶1◦𝐷1 ∨𝐶2◦𝐷2) = 32.004 < 𝑆(𝐼,𝐶3◦𝐷3).

For the normalized version, 𝑠(𝐼, 𝐶1◦𝐷1 ∨𝐶2◦𝐷2) = 0.508 < 𝑠(𝐼, 𝐶3◦𝐷3).

Remark 4. Notice that the effects described in this section do not appear when factorizing binary matrices: Since the biresiduum 
coincides with classical equivalence for 𝐿 = {0, 1}, the values in the biresidua matrices 𝐼 ↔ 𝐶◦𝐷 are the values of classical 
equivalence, hence are 0 or 1. As a result, there are no small values of biresidua in 𝑆(𝐼, 𝐶1◦𝐷1) whose sum could exceed the 
sum of large values in 𝑆(𝐼, 𝐶2◦𝐷2) for any two factors ⟨𝐶1, 𝐷1⟩ and ⟨𝐶2, 𝐷2⟩.
3. Avoiding flat factors

In order to avoid flat factors, we propose to retain the basic logic of factorization but change what accounts for the undesirable 
effects presented in the previous section. We demonstrate below in this section and more thoroughly in section 4 that this new 
approach results in eliminating flat factors and computation of factors that are natural and have good ability to explain the 
data.

The observations from the previous section suggest to suppress the role of small values in the matrices 𝐼 ↔ 𝐴◦𝐵, whose 
accumulation results in the undesirable preference of flat factors. For this purpose, we employ a suitable function

𝑐 ∶𝐿→ [0,1],

whose properties are discussed below, and define a modification of the matrix similarity function (3) as follows:

𝑆𝑐(𝐼,𝐴◦𝐵) =
𝑛,𝑚∑
𝑖,𝑗=1

(𝑐(𝐼𝑖𝑗 ↔ (𝐴◦𝐵)𝑖𝑗 )). (7)

The normalized version is then defined correspondingly:

𝑠𝑐(𝐼,𝐴◦𝐵) =
𝑆𝑐(𝐼,𝐴◦𝐵)

𝑛 ⋅𝑚
, i.e. 𝑠𝑐(𝐼,𝐴◦𝐵) =

∑𝑛,𝑚

𝑖,𝑗=1(𝑐(𝐼𝑖𝑗 ↔ (𝐴◦𝐵)𝑖𝑗 ))

𝑛 ⋅𝑚
.

The function 𝑐 as employed in 𝑆𝑐(𝐼, 𝐴◦𝐵) allows us to alleviate the effect of obtaining a large value by accumulation of small 
values 𝐼𝑖𝑗 ↔ (𝐴◦𝐵)𝑖𝑗 . Namely, 𝑆𝑐(𝐼, 𝐴◦𝐵) becomes a sum in which the original values 𝐼𝑖𝑗 ↔ (𝐴◦𝐵)𝑖𝑗 , being summed in 𝑆(𝐼, 𝐴◦𝐵), are 
replaced by smaller values 𝑐(𝐼𝑖𝑗 ↔ (𝐴◦𝐵)𝑖𝑗 ), alleviating thus undesirable effect mentioned above.

To serve this purpose, 𝑐 clearly needs to be subdiagonal, i.e. satisfy 𝑐(𝑎) ≤ 𝑎 for each truth degree 𝑎 ∈ 𝐿, and isotone, i.e. satisfy 
𝑐(𝑎) ≤ 𝑐(𝑏) for any 𝑎 ≤ 𝑏. Moreover, we also require that the largest truth degree does not get smaller by 𝑐, i.e. 𝑐(1) = 1, and observe 
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that the symmetric condition, 𝑐(0) = 0, follows from subdiagonality. To sum up, our basic requirements for 𝑐 are as follows:
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𝑐(𝑎) ≤ 𝑎, (8)

𝑎 ≤ 𝑏 implies 𝑐(𝑎) ≤ 𝑐(𝑏), (9)

𝑐(0) = 0 and 𝑐(1) = 1 (10)

for all truth degrees 𝑎, 𝑏 ∈ 𝐿. From our experiments, it turns out that alleviating the accumulation of small values needs to be more 
severe for large matrices in order to avoid flat factors, because more values accumulate in large matrices. Therefore, it seems natural 
to consider 𝑐 as a function 𝑐𝑛,𝑚 parametrized by 𝑛 and 𝑚 (number of rows and columns, respectively) and require

𝑐𝑛,𝑚(𝑎) ≤ 𝑐𝑝,𝑞(𝑎) for 𝑛 ≥ 𝑝 and 𝑚 ≥ 𝑞 (11)

for each 𝑎 ∈𝐿. For brevity, we nevertheless omit indices and still use 𝑐 rather than 𝑐𝑛,𝑚 if there is no danger of confusion.

To focus on the main points in this contribution, we refrain from investigating the functions 𝑐 in general. Rather, we present our 
results below for functions 𝑐 of the form

𝑐(𝑎) = 𝑎𝑞
√
𝑛𝑚 (12)

for a real number 𝑞 > 0 as a parameter, which is a simple function that yields good results in suppressing flat factors.

Remark 5.

(a) Functions 𝑐 satisfying the first three properties, i.e. properties (8)–(10), or their variations, are known in fuzzy logic as 
intensifying (or, truth-stressing) modifiers and serve as models of intensifying linguistic hedges, i.e. unary connectives such 
as “very,” “rather,” and the like and were pioneered in [20]; see also [11,14].

(b) Notice that the identity function 𝑐(𝑎) = 𝑎, which is obtained by setting 𝑞 = 1√
𝑛𝑚

in (12), satisfies the above conditions and that 
we have 𝑆𝑐 = 𝑆 for this choice.

(c) In general, the function 𝑐 defined by (12) satisfies the above conditions (9)–(11), but not (8) in general. It is immediate to check 
that 𝑐 satisfies (8) if and only if 𝑞

√
𝑛𝑚 ≥ 1. Note, however, that it is not our aim in this paper to explore the variety of functions 

𝑐 satisfying the above conditions. Such exploration, practical as well as theoretical, is left for future explorations.

Example 4. Consider again the 7 × 9 input matrix 𝐼 from Example 2 and the factors 𝐹1 = ⟨𝐶1, 𝐷1⟩, 𝐹2 = ⟨𝐶2, 𝐷2⟩, and 𝐹3 = ⟨𝐶3, 𝐷3⟩
from Examples 2 (a), (b), and Example 3, respectively. We have observed in the above examples that when 𝑆 is used to measure 
quality of factors, 𝐹3 is preferred over 𝐹1 as well as over 𝐹2. Due to Remark 5 (b), 𝑆 coincides with 𝑆𝑐 for 𝑞 = 1√

7⋅9
≈ 0.126. In order 

for 𝐹3 not to be preferred, we hence need to set 𝑞 > 0.126. Already with 𝑞 = 0.2, we obtain the following values of quality of the 
respective factors:

⟨𝐶1 ,𝐷1⟩ ⟨𝐶2 ,𝐷2⟩ ⟨𝐶3 ,𝐷3⟩
𝑆𝑐 (𝐼,𝐶𝑙◦𝐷𝑙) 16.500 12.000 11.000

𝑠𝑐 (𝐼,𝐶𝑙◦𝐷𝑙) 0.262 0.190 0.175

That is, when 𝑐 is given by 𝑞 = 0.2, the flat factor 𝐹3 is no longer preferred over 𝐹1 and 𝐹2. The matrices 𝐶𝑙◦𝐷𝑙 , the biresiduum 
matrices 𝐼 ↔ 𝐶𝑙◦𝐷𝑙 , and the modified biresiduum matrices 𝑐(𝐼 ↔ 𝐶𝑙◦𝐷𝑙) for this case are depicted in Fig. 5.

4. Experimental evaluation

In the previous section, we demonstrated using the running example that our approach indeed leads to avoiding flat factors. In 
this section, we illustrate that the problem addressed in this paper and its solution we proposed are relevant from the viewpoint 
of existing factorization algorithms. For this purpose, we consider two significant factorization algorithms, namely GreConD𝐿 and 
Asso𝐿, for which we refer to [3,4,6] and [4], respectively.

We first show that the current algorithms naturally lead to computation of flat factors. Secondly, we make it apparent that a 
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simple modification of these algorithms based on our proposal described above alleviates the problem, i.e. suppresses computation 
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Fig. 5. Matrices 𝐶𝑙◦𝐷𝑙 , the biresiduum matrices 𝐼 ↔ 𝐶𝑙◦𝐷𝑙 , and the modified biresiduum matrices 𝑐(𝐼 ↔ 𝐶𝑙◦𝐷𝑙) for the factors from Examples 2 (a), (b), and 
Example 3.

of flat factors. We first consider small synthetic data, so that a reader may verify the computation process. Then, we examine larger 
synthetic as well as real data.

4.1. Employed algorithms

We now briefly describe GreConD𝐿 and Asso𝐿, which we use for our purpose. We also describe our modifications of these 
algorithms to suppress flat factors. The performance of factorization algorithms is commonly assessed using the matrix similarity 
function (3) or its normalized version (4). This also applies to GreConD𝐿 and Asso𝐿. Both these algorithms compute factors in a 
greedy manner to achieve—after the algorithm finishes with a set  of factors—a large value of approximate equality 𝑆(𝐴◦𝐵 , 𝐼)
of 𝐴◦𝐵 (matrix reconstructed from the factors) and 𝐼 (input matrix).

Even though GreConD𝐿 and Asso𝐿 are rather different as regards their strategies, they both may be viewed as maximizing a 
particular function, which corresponds to how well the computed factors cover the input data matrix 𝐼 . We shall hence call the 
respective functions Cover, and describe them as part of our description of GreConD𝐿 and Asso𝐿.

GreConD𝐿: brief description and our modification. For the already computed set  of factors, which is initially empty, GreConD𝐿

constructs the next factor by adding sequentially the most promising attributes to an initially empty fuzzy set 𝐷, which determines 
the factor. In more detail, if 𝐷 denotes a fuzzy set of attributes of the factor constructed so far, the algorithm selects an attribute 
𝑗 ∈ {1, … , 𝑚} and degree 𝑎 ∈𝐿 maximizing the value

Cover( , 𝐼,𝐷) = 𝑆𝑐

(
𝐴◦𝐵 ∨𝐷+↓◦𝐷+↓↑, 𝐼

)
, (13)

where 𝐷+ = 𝐷 ∪ {𝑎∕𝑗}, and ↓ along with ↑ are certain fundamental operators (for details about these operators, see e.g. [6]). Note 
now with regard to (13):

– 𝐴◦𝐵 is the matrix reconstructed from the previously computed set  of factors.

– ⟨𝐷+↓, 𝐷+↓↑⟩ is the new candidate factor obtained from the fuzzy set 𝐷 ∪ {𝑎∕𝑗}.

– The matrix 𝐷+↓◦𝐷+↓↑ represents part of 𝐼 explained by factor ⟨𝐷+↓, 𝐷+↓↑⟩. Hence 𝐴◦𝐵 ∨𝐷+↓◦𝐷+↓↑ is the matrix reconstructed 
from  to which ⟨𝐷+↓, 𝐷+↓↑⟩ is added.

– Two basic variants of GreConD𝐿 have been examined in the past. In the first one [6], the new factor ⟨𝐷+↓, 𝐷+↓↑⟩ is selected to 
maximize the number of entries fully covered by the factor that were not covered by the factors in  , i.e. entries ⟨𝑖, 𝑗⟩ for which 
(𝐷+↓◦𝐷+↓↑)𝑖𝑗 = 1 but (𝐴◦𝐵 )𝑖𝑗 < 1. One may verify that the first variant is equivalent to (i.e. delivers the same factors as) the 
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one described above with (13) in which 𝑐 is defined by
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𝑐(𝑎) =
{

1, for 𝑎 = 1,
0, for 𝑎 < 1.

The second variant results from (13) by replacing 𝑆𝑐 by 𝑆, or, equivalently, by letting 𝑐 be the identity function. This variant is 
directly derived from the quality assessment of the set  of factors, which itself is based on 𝑆.

– Our modification consists in that we allow in (13) a general function 𝑐 satisfying the conditions described above. From a technical 
viewpoint, our modification is more general than the previously considered variants of GreConD𝐿. More important, however, is 
the fact that our modification originates from the analysis of flat factors and a natural way to suppress flat factors.

Asso𝐿: brief description and our modification. Asso𝐿 uses the rows of the so-called association matrix , which is computed from the 
input object-attribute matrix 𝐼 ∈𝐿𝑛×𝑚, as rows of the factor-attribute matrix 𝐵. The association matrix  is of dimension (𝑚 ⋅ |𝐾|) ×𝑚

and is defined for each 𝑗 ∈ {1, … , 𝑚}, 𝑎 ∈𝐾 and 𝑗′ ∈ {1, … , 𝑚} by

⟨𝑗,𝑎⟩,𝑗′ = round 𝑐𝑎(𝑝, 𝑞),

where 𝐾 ⊆𝐿 ⧵ {0} is a chosen set of truth degrees, round is a function rounding its argument to appropriate neighboring truth degree 
in the scale 𝐿, and 𝑐𝑎(𝑝, 𝑞) is a conditional probability that the presence of attribute 𝑝 to degree at least 𝑎 implies the presence of the 
attribute 𝑞 to degree 1.

The algorithm computes the factors one by one. With the set  ′ of factors computed so far, the next factor ⟨𝐶, 𝐷⟩ is obtained 
the following way. One selects degrees 𝑐1, … , 𝑐𝑛 ∈𝐿 and a row ⟨𝑗,𝑎⟩_ ∈𝐿1×𝑚 of the association matrix  such that the expanded set 
 =  ′ ∪ {⟨𝐶, 𝐷⟩} with

𝐶 =
⎛⎜⎜⎝
𝑐1
⋮
𝑐𝑛

⎞⎟⎟⎠ and 𝐷 =⟨𝑗,𝑎⟩_
explains the input data 𝐼 the best in that the value of the following cost function Cover is maximized since

Cover( , 𝐼,𝑤+,𝑤−) =𝑤+ ⋅
𝑛,𝑚∑
𝑖,𝑗=1

{𝑐
(
(𝐴◦𝐵 )𝑖𝑗 ↔ 𝐼𝑖𝑗

)
; (𝐴◦𝐵 )𝑖𝑗 ≤ 𝐼𝑖𝑗}

+𝑤+ ⋅ |{⟨𝑖, 𝑗⟩ ; (𝐴◦𝐵 )𝑖𝑗 > 𝐼𝑖𝑗}| (14)

−𝑤− ⋅
𝑛,𝑚∑
𝑖,𝑗=1

{1 − 𝑐
(
(𝐴◦𝐵 )𝑖𝑗 ↔ 𝐼𝑖𝑗

)
; (𝐴◦𝐵 )𝑖𝑗 > 𝐼𝑖𝑗},

where the weights 𝑤+ and 𝑤− express the importance of the so-called uncovered and overcovered entries, respectively; see [4]

for details. Note at this point that the original Asso𝐿 algorithm actually results by letting 𝑐 be the identity function and that our 
modification of Asso𝐿 results by employing a function 𝑐 satisfying the conditions described in the previous section. Note furthermore 
that for 𝑤+ =𝑤− = 1, the function coincides with the above-defined similarity 𝑆𝑐 (𝐴◦𝐵 , 𝐼):

Cover( , 𝐼,1,1) =
𝑛,𝑚∑
𝑖,𝑗=1

{𝑐
(
(𝐴◦𝐵 )𝑖𝑗 ↔ 𝐼𝑖𝑗

)
; (𝐴◦𝐵 )𝑖𝑗 ≤ 𝐼𝑖𝑗}

+
𝑛,𝑚∑
𝑖,𝑗=1

{𝑐
(
(𝐴◦𝐵 )𝑖𝑗 ↔ 𝐼𝑖𝑗

)
; (𝐴◦𝐵 )𝑖𝑗 > 𝐼𝑖𝑗}

=
𝑛,𝑚∑
𝑖,𝑗=1

(
𝑐((𝐴◦𝐵 )𝑖𝑗 ↔ 𝐼𝑖𝑗 )

)
= 𝑆𝑐(𝐴◦𝐵 , 𝐼).

Therefore, by employing general weights 𝑤+ and 𝑤− the function Cover represents a generalization of 𝑆𝑐 by putting different 
emphasis on undercovering and overcovering of the entries of the input matrix 𝐼 .

4.2. Synthetic data

Small matrix processed by Asso𝐿. Consider first the following 4 × 4 matrix 𝐼 and its corresponding association matrix for 𝐾 = {1}:
480
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For the original Asso𝐿, i.e. by setting the identity for 𝑐, and with 𝑤+ =𝑤− = 1, there exist several factors with the maximal value of 
Cover defined by (14). The following two of them are created using the first row of the association matrix:

The value of Cover for both of these factors equals 12, as one checks by computing the cardinality of the corresponding biresidua 
matrices:

One may notice that the first matrix of biresidua contains quite a large area filled with the values 0.25 and 0.75 making the 
corresponding factor flat. On the other hand, the second matrix of biresidua does not contain any such area: 75% of all entries 
are explained by the second factor exactly (black part), while 25% of all entries are not explained at all (white part).

Which of these two factors are selected by the original Asso𝐿 depends on the implementation of this algorithm (namely, it depends 
on the order in which the rows of the association matrix  are processed). However, when our modification of Asso𝐿 is used with a 
more strict function 𝑐, the value of Cover of the flat factor obviously becomes smaller than 12 and, as a result, the non-flat factor is 
selected (regardless of implementation).

Small matrix processed by GreConD𝐿. Consider now the following 5 × 5 matrix:

For the original GreConD𝐿, i.e. taking identity for 𝑐, there exist the following two candidate factors maximizing the value of Cover
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defined by (13):
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The value of Cover for both of these factors equals to 22, as one easily verifies by computing the cardinality of the following biresidua 
matrices:

As one can see, the second matrix of biresidua contains a relatively large area containing the values 0.5 and 0.75, making the second 
factor flat. On the other hand, the first matrix of biresidua contains only four entries filled with the values 0.25; the remaining 21
entries contain the value 1, i.e. 21 of the 25 entries of 𝐼 are fully explained by this factor.

It is hence obvious that when a proper modifying function is used, the modified algorithm GreConD𝐿 selects the first factor, 
suppressing thus the flat factor, which may be selected by the original version of GreConD𝐿.

Large matrix processed by Asso𝐿. We now apply Asso𝐿 to a randomly generated 90 × 10 matrix depicted in the left part of Fig. 6. 
The matrix on the right is the corresponding association matrix computed for 𝐾 = {0.5, 0.75, 1}; see the description of Asso𝐿 in 
section 4.1 for the role of 𝐾 . The weights are set to 𝑤+ = 2 and 𝑤− = 1. We consider only the first factor 𝐹1 and the corresponding 
matrix of biresidua. Obviously, flatness appears on the consequent factors as well, but we refrain from presenting them due to space 
constraints.

Fig. 7 shows the biresiduum matrix corresponding to the first factor computed by the original Asso𝐿 (left) and the first factor 
computed by the modified Asso𝐿 (right) with the function 𝑐 defined by

𝑐(𝑎) =
{

1, for 𝑎 = 1,
0, otherwise.

(15)

One may notice that the biresiduum matrix on the left contains many gray values, i.e. values around 0.5. The corresponding factor 
is thus flat. On the contrary, the biresiduum matrix on the right is significantly more contrasting; that is, the gray values are present 
much less frequently, while the black values occupy a bigger area. Notice that the entries with black values are just the entries of the 
input matrix 𝐼 whose value is exactly reconstructed by the first factor. The comparison of the number of black values (i.e. values 1) 
in both cases is apparent from Fig. 8: Only the black entries of the biresidua matrices of the first factor computed by Asso𝐿 (left) and 
the first factor computed by the modified Asso𝐿 (right) are shown.

4.3. Real data

To demonstrate that flat factors appear on real data, we now present a part of our analysis of ordinal data coming from the 
examination tests used by universities in the United Kingdom. For brevity we only present the results for Asso𝐿. Each test consist 
of 6 questions, each of them assessed by examiners with regard to assessment objectives—the last four questions are assessed by 
objectives “knowledge and understanding”, “analysis and evaluations” and “communications,” while for the first two questions only 
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the objective “knowledge and understanding” is considered. As a result, every student examination is evaluated by 14 marks; each 
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Fig. 6. Input matrix (left) and the corresponding association matrix (right) for 𝐾 = {0.5,0.75,1}.
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Fig. 7. Biresidua matrices of the first factor: Asso𝐿 (left), modified Asso𝐿 (right).
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Fig. 8. Entries with value 1 in the biresidua matrices: Asso𝐿 (left), modified Asso𝐿 (right).

mark is represented by a value in the five-element scale {0, 1∕4, 1∕2, 3∕4, 1} with 1 indicating the best performance. Moreover, based 
on these particular marks a total mark A, B, C, D or E (with A being the best result) is assigned to every student by a particular 
procedure.

The examined data may therefore be described by a matrix 𝐼 with 2774 rows (representing students) and 14 columns (representing 
particular marks) and with degrees in the five-element scale 𝐿 = {0, 1∕4, 1∕2, 3∕4, 1}, i.e. 𝐼 ∈𝐿2774×14. For space reasons, we present only 
the portion of the data that includes students who obtained the total grade D. As a result, we perform our analysis on submatrix of 𝐼
with 100 rows and 14 columns depicted in Fig. 9.

Analogously to the previous section containing random data, we consider only the first factor produced by Asso𝐿. Fig. 10 presents 
the biresidua matrix corresponding to this factor. The matrix on the left was computed by the original Asso𝐿 algorithm, while the 
matrix on the right was computed by the modified Asso𝐿 with the function 𝑐 defined as in (15). Again, the left matrix of biresidua 
reveals flatness of the factor. In comparison, the matrix on the right is much more discriminating and hence less flat. The comparison 
of the number of black values, explaining the entries of 𝐼 precisely, is depicted in Fig. 11.

5. Future research

The problem and contributions presented in this paper open way to a diverse set of streams for future research. Some of them are 
outlined below.

– In a broader context of fuzzy sets, the problem of flat factors presented in this paper may be rephrased in terms of cardinalities 
of fuzzy sets. In this perspective, our considerations reveal a significant challenge regarding the concept of cardinality that has 
apparently not yet been addressed.

In more detail, consider the fuzzy relation 𝑅 between the set of objects and the set of attributes defined by 𝑅(𝑖, 𝑗) = 𝐼𝑖𝑗 ↔ (𝐴◦𝐵)𝑖𝑗 , 
which corresponds to the matrix of biresidua considered above. One may observe that the approximate equality 𝑆(𝐼, 𝐴◦𝐵) of 
matrices 𝐼 and 𝐴◦𝐵 equals the sigma-count |𝑅| of 𝑅,

𝑆(𝐼,𝐴◦𝐵) = |𝑅|.
Recall that the sigma-count |𝑄| of a fuzzy set 𝑄 in a finite universe 𝑈 = {𝑢1, … , 𝑢𝑘} is defined by |𝑄| =𝑄(𝑢1) +⋯ +𝑄(𝑢𝑘). The 
concept of sigma-count (also termed scalar cardinality) has been proposed under the name a power of a fuzzy set in [8] as a 
straightforward generalization of cardinality of finite sets (see e.g. [19] for a comprehensive treatment on cardinalities).

In terms of cardinalities, preference of factors with large 𝑆(𝐼, 𝐴◦𝐵) hence translates to preference of factors for which 𝑅 is large. 
Our objection to using 𝑆(𝐼, 𝐴◦𝐵) due to the effect of possible accumulation of a large number of small values hence translates 
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to the following objection: The sigma-count cardinality of fuzzy sets may not be appropriate in certain situations because 



Information Sciences 629 (2023) 471–487E. Bartl and R. Belohlavek

Fig. 9. Input data (students with grade D) and corresponding association matrix for 𝐾 = {0.5,0.75,1}.

accumulation of small membership degrees renders as large those fuzzy sets which are intuitively not large. Our solution above 
may be rephrased as follows: We suggest to replace the sigma count |𝑄| by its variant |𝑄|𝑐 , defined by |𝑄|𝑐 = 𝑐(𝑄(𝑢1)) +⋯ +
𝑐(𝑄(𝑢𝑘)).
Apparently, cardinalities of fuzzy sets alleviating the effect of accumulation of small membership degrees have not been studied 
in the literature. The paper [17] seems to be an exception. In this paper, Ralescu mentions the undesirable effect of accumulation 
as one of his motivations. Nevertheless, the solution proposed in [17] do not alleviate this undesirable effect. Note also that 
a formula for scalar cardinality that yields an appropriate notion of cardinality from our viewpoint is presented in [19, p. 
36], namely |𝑄| =∑

𝑢∈𝑈 𝑄(𝑢)𝑝 for 𝑝 > 0; it was introduced in [12] as a mathematical generalization of basic scalar cardinality 
without apparent practical motivations. Exploration of novel concepts of cardinality taking into account the undesirable effect 
of accumulation of small membership degrees hence seems to present a significant direction to be pursued.

– In a sense, our solution to the problem of flat factors consists in replacing the approximate equality 𝑆(𝐼, 𝐽 ) of matrices with 
degrees (or, equivalently, fuzzy relations) 𝐼 and 𝐽 by 𝑆𝑐(𝐼, 𝐽 ). While 𝑆 has thoroughly been examined in the literature, 𝑆𝑐

represents a new concept of approximate equality, which needs further exploration in the context of research in similarities and 
generalized metrics.

– The problem of flat factors may be regarded as pointing to a more general problem of semantics of factors extracted from 
ordinal data. We observed a particular significance of this problem when analyzing large data, in particular in our analysis of 
educational data [1]. In this study, it became obvious that certain issues, not apparent on small and middle-size data, become 
significant when dealing with large data. Except for flatness of factors, another topic observed was interpretability as related to 
the structure of the fuzzy set 𝐷 of a given factor ⟨𝐶, 𝐷⟩.

– We regard as important to be able to characterize the flatness of factors quantitatively. That is to say, to define a degree to which 
a factor is considered flat and, more generally, a degree to which a factorization is considered flat. This is a non-trivial question 
and needs to be explored in the future.

– Let us also mention the recent paper [9], in which a more general factorization model is proposed. The model seems interesting 
also from the viewpoint of factorization of Boolean matrices, since it is more general than the classical model not only because 
it involves intermediate degrees rather than 0 and 1 only, but also because even when restricting to the Boolean case, the model 
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in [9] is more general than the classical model of Boolean factor analysis as it involves more complex decompositions.



Information Sciences 629 (2023) 471–487E. Bartl and R. Belohlavek

Fig. 10. Biresidua matrices of the first factor: Asso𝐿 (left), modified Asso𝐿 (right).

For one, the authors in [9] point out a semantic problem regarding interpretability of factors, which is of a similar nature as 
the one examined in [1] mentioned in our previous point in this section. The problem is different from the one discussed in our 
paper, which pertains to the ability of factors to explain the input data. These observations point out the fact that in presence of 
intermediate degrees, new phenomena regarding factorization appear which are non-existent in the classical, binary case. These 
phenomena present non-trivial challenges and need to be studied further.

Secondly, it seems proper to develop a deeper insight into the factor model in [9] that may be utilized in the design of 
factorization algorithms. Namely, the present factorization methods for the Boolean data as well as for data involving degrees, 
which are based on the classical model utilized also in our paper, make use of a geometric insight according to which factorization 
may be looked at as a certain coverage problem using certain rectangular patterns in the factorized data. On the other hand, 
the factorization method in [9] proposed for the more complex model is a variant of the gradient descent method. As such, it 
does not make use of any significant insight into the decomposition. Development of a proper insight in this regard seems an 
interesting topic for future research, which is significant from a practical viewpoint.
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Fig. 11. Entries with value 1 in the biresidua matrices: Asso𝐿 (left), modified Asso𝐿 (right).
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