IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 32, NO. 6, JUNE 2024

3779

Cardinality of Fuzzy Sets and Accumulation of
Small Membership

Eduard Bartl

Abstract—We describe an intuitive and practically significant
empirical phenomenon that relates to the concept of cardinality
of a fuzzy set, namely, an excessive accumulation of small degrees
of membership. We argue and demonstrate by examples that the
present notions of cardinality do not take this phenomenon into
account properly and may thus prove insufficient in applications.
We propose a new concept of cardinality, generalizing the well-
known Zadeh’s sigma count, demonstrate using both intuitive and
technical examples that it alleviates the insufficiency of the existing
ones, and provide a theoretical analysis of this concept. We also
propose topics for future theoretical and empirical research.

Index Terms—Cardinality, fuzzy set, sigma count.

I. SiIGMA COUNT CARDINALITY OF FUZZY SETS

HE concept of cardinality of fuzzy sets has played an
T essential role since the early years of fuzzy sets. Among the
various approaches to cardinality, arguably the most significant
is the so-called scalar cardinality, and in particular, the so-called
sigma count of a fuzzy set due to its intuitive appeal and practical
relevance. Recall that for a fuzzy set A in a finite universe
U={u1,...,u}, ie., A:U — [0, 1], the sigma count cardi-
nality | A| of A is defined by

Al = A(ur) + -+ + Aus) (1)

i.e., as the sum of the membership degrees A(u;). This concept
was introduced under the term “power of fuzzy set” by De Luca
and Termini [9]. Since the early 1970s, the concept has played
a significant role in several of Zadeh’s key papers on fuzzy sets;
see, e.g., [3], [26, part IIL, p. 55], [28, p. 65], and [29, p. 31].! The
sigma count eventually became a standard concept of (scalar)
cardinality. It is widespread in textbooks on fuzzy logic as well
as in research papers.’
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!Interestingly, Zadeh [24, n. 3 on p. 7] defines the sigma count cardinality in
his 1971 report, i.e., before De Luca and Termini [9], with no reference to De
Luca and Termini. Since he attributes this concept to [9] in all of his subsequent
writings, itis likely that he obtained this notion from De Luca and Termini before
1972, as he served as editor of Information and Control in which De Luca and
Termini’s paper appeared (the paper was received by the journal in July 1970).

2For a comprehensive treatment of the notion of cardinality of fuzzy sets,
which includes both scalar and nonscalar cardinalities, we refer, e.g., to [16] and
[23]; see also [5].
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The aim of this article is to point out an intuitive phenomenon
that reveals a significant drawback of the standard sigma count.
We present examples demonstrating the phenomenon and pro-
pose a concept that alleviates the associated insufficiency of the
standard sigma count. We articulate the limitations of the stan-
dard sigma count, which result from the intuitive phenomenon
and which one must be aware of in applications of the cardinality
of fuzzy sets.

II. INSUFFICIENCY OF SIGMA COUNT

Consider a city population U of 100000 inhabitants and
suppose 5000 of them have a university diploma. Suppose
everyone in this population is rather slim, hence the concept
“obese” applies to degree, say, 0.1 to each member of U. One
may thus consider the crisp fuzzy set Diploma of people who
have a degree and a fuzzy set Obese in which the degree of
membership of each member of U equals 0.1.

Intuitively, there are more inhabitants with a diploma than
those who are obese. Namely, the reasoning behind may be de-
scribed as follows: “While there are 5000 persons with a degree,
there is almost no one who actually may be considered obese.
Hence the collection of people with a degree is larger than the
collection of obese people.”

However, using the sigma count cardinality (1), we obtain the
opposite conclusion. Namely

| Diploma| =1+ --- 4 1 = 5000
—_——

5000 times
and
|Obese| = 0.1+ ---4 0.1 = 10000
N——
100 000 times
whence

| Diploma| < |Obese|.

Such a conclusion contradicts intuition, and hence, presents
a problem for the sigma count cardinality.

It is evident that the reason for obtaining this counterintuitive
resultis the accumulation of a large number of very small degrees
of membership, which adds to the cardinality of the fuzzy set
Obese. This becomes even more visible in a modified scenario
with a larger population of inhabitants who are much slimmer.

We consider it important to demonstrate that the insufficiency
of the sigma count cardinality not only becomes apparent in
intuitive considerations, but also surfaces as a severe limita-
tion in natural applications of cardinality. For this purpose, we
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present two examples demonstrating that employment of the
sigma-count cardinality may lead to a wrong choice. While the
first one is an illustrative example, the second one comes from a
real-world study involving large-scale education data from the
United Kingdom.

In our illustrative example, a municipality with 1000 residents
needs to decide between two kinds of investment. The first
one consists in building a water supply pipeline for a part of
the town comprising 320 residents who still obtain water from
local wells. The second investment consists in building a town
cinema. To make a decision, a poll is organized in which each
resident expresses his preference for each of the two options
using a number from the interval [0, 1]. For the water pipeline
option, each of the 320 residents assigns 0.75 (high preference
yet smaller than 1 because water may presently be obtained from
wells and is hence free of charge), while the remaining residents
assign 0 (the remaining residents have no benefit from building
the pipeline). For the cinema option, each resident expresses his
preference by 0.25 (the residents have other options watching
movies, such as subscription streaming services). This way, the
two options are represented by the fuzzy sets P (pipeline) and C
(cinema). Thus, e.g., C'(u) = 0.25 for each respondent w. The
municipality agrees on selecting the option preferred by most
respondents. Now, since the number of residents preferring the
water pipeline and the cinema are represented by |P| and |C/,
respectively, employment of the sigma-count cardinality results
in selecting the cinema option because

|P| = 320-0.75 = 240 < 250 = 1000 - 0.25 = |C].

Yet, such a choice is counterintuitive because while there is a
substantial part of the residents who prefer the pipeline rather
strongly, there is no resident in the town who substantially
prefers building the cinema. Clearly, this the consequence of the
accumulation of a large number of small degrees of preference
for a cinema. As we demonstrate in Section III-C, the modified
concept of cardinality developed in this article results in the right
choice, i.e., the pipeline.

Our second example comes from data analysis of a large-scale
education data gathered by the United Kingdom’s governmental
organizations. In fact, we realized the need to reconsider scalar
cardinality when working on this project as the sigma count
cardinality resulted in computing nonintuitive, flat factors [1],
[2]. We now briefly describe the essence of the factor problem as
it illustrates practical significance of the phenomenon involved.
More on this problem can be found in the Appendix.

The problem relates to matrix distance, or dually, similarity of
matrices. Consider two matrices, I and J, of dimension n X m
with entries in the real unit interval [0, 1]. For instance, I and
J may be regarded as representing two binary fuzzy relations
between n elements (rows) and m fuzzy attributes (columns),
i.e., the values I;; and .J;; represent the truth degrees to which
¢ and j are related by I and J, respectively. A natural way to
measure the similarity S(I, J) of I and J is via

n,m

S(I,J) = Z (Lij < Jiz), (2)

ij=1
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in which I;; <+ J;; is the biresiduum of I;; and J;;, and may
hence be interpreted as a degree in [0, 1] representing a proximity
(similarity) of I;; and J;; [13], [14]. If < is, for instance, the
Pukasiewicz equivalence, then I;; <> J;; =1 — |I;; — J;;|isa
natural proximity. Formula (2) and its variations have been used
in many situations [1], [4], [6], [7], [8], [10], [16]. Note that
this formula is related to a generalization of the classical matrix
Ly-norm (cf. Remark 1 below).

Consider now the universeset U = {1,...,n} x {1,...,m}
and the fuzzy set £ : U — [0, 1] representing a pair-by-pair
similarity of I and J, which is defined by

Eij = Iij <~ Jzy
Clearly,

i.e., the matrix similarity S(I,J) defined by (2) is the sigma
count cardinality of the fuzzy set E associated to [ and J.

To illustrate the problem of the sigma count, consider the
matrices I, J, K € [0,1]°%Y depicted in Figs. 1-3, along with
their graphical representation (shades of gray represent member-
ship degrees; the darker the shade, the higher the membership
degree).

Consider the similarities S(I,J) of I to J and S(I, K) of I
to K. It is a matter of simple calculation to verify that S(I, J)
is larger than S(I, K), i.e., I is more similar to J than to K

9,9

i,7=1
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9,9
S(IL,K) =Y (Lj ¢ Kij) = 38.4.

i,7=1

This result is a direct consequence of an accumulation of a large
number of small similarity values I;; <> J;;, especially those
with I;; = 0.6 (dark gray entries in I) and J;; = 0.2 0or J;; = 1
(light gray or black entries in .J), for which I;; <+ J;; = 0.4.
An intuitive view, however, is different: / seems more similar
to K than to .J because there is a fair number of entries (those
grouped in the L-shaped pattern) in which both I and K have
exactly the same values.’ As we demonstrate in Section III-C,
this right conclusion is obtained when the modified concept of
cardinality developed in this article is employed.

Remark 1: The relationship of matrix similarity to cardinality
is not surprising in view of the well-known matrix metric that is
based on the L;-norm, which assigns to two real-valued matrices
I'and J the distance d(I, J) = > """ |I;; — Ji;|. Namely, for
binary matrices I,.JJ € {0,1}™*"™, this d(I, J) is the so-called
Hamming distance (or simple matching distance), and equals
the number of matrix entries for which I and .J differ, i.e.,

(I, J) = {{i.4); Lij # Jiz}|.

It is hence clear that S(I, J) may be regarded as a dual (in the
sense of similarity versus distance) to d(I, .J), since for binary
matrices S(I,J) =n-m —d(I,J).

To sum up, the phenomenon of a possible accumulation of
a large number of small membership degrees, which presents
the problem in our intuitive example as well as the matrix simi-
larity example, seems to point out a serious insufficiency of the
sigma count cardinality. Needless to say, this phenomenon may
impair applications of the sigma count cardinality in a variety
of domains if ignored.

Yet, browsing the literature on cardinality of fuzzy sets, we
found only one paper that explicitly discusses this phenomenon,
namely by Ralescu [20]. In his interesting paper, Ralescu [20,
p.- 361 ff.] mentions—among several issues he examines—the
undesirable effect of accumulation and claims that one of his
propositions properly alleviates this effect. This is, however, not
entirely the case as we show in the Appendix. In addition to [20],
a comment can be found in Zadeh'’s first papers mentioning the
sigma count. For example, in [28] and [29], Zadeh notes: “For
some applications, it is necessary to eliminate from the count
those elements of F' whose grade of membership falls below a
specified threshold. This is equivalent to replacing F' in (4.70)
with F' N T, where I is a fuzzy or nonfuzzy set, which induces
the desired threshold” (here, F' is the fuzzy set of which the
sigma count is computed).*

3This intuitive view of matrix similarity, in which a considerable number of
highly similar entries are needed to make two matrices similar, is derived from
factor analysis of data with fuzzy attributes; see Appendix. Clearly, for other
applications, different notions of matrix similarity may be preferable.

4As is easily seen, using F' N T is, in fact, more general than eliminating the
elements with membership below a given threshold.
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III. NEW APPROACH TO CARDINALITY OF FuzzyY SETS
A. Definition

A natural way to alleviate the undesirable effect of accumu-
lation of small degrees of membership by the standard sigma
count (1) is to deemphasize the small degrees. A simple idea
would be to disregard small degrees completely by selecting a
threshold degree 0, such as § = 0.2, in order to take into account
only the elements with degree of membership not lower than 6, as
proposed by Zadeh (see above). That is, to define the cardinality

|Alp of a fuzzy set A by
> A “

uelU,A(u)>0

|Alp =

However, this imposes an artificial sharp boundary: While the
membership degree 0.2 is counted, 0.2 — € is not, even though
e is arbitrarily small.

We hence propose to suppress small membership degrees, and
also possibly emphasize large membership degrees, in a gradual
manner using a modifying function c. We assume that the set L
of truth degrees is the real unit interval [0, 1]g or, more generally,
asubsetof [0, 1]g with0, 1 € L (e.g., a finite subchain of [0, 1],
such as the five-element chain {0, 0.25,0.5,0.75,1}).

Given such a scale L and its two elements a < b, we denote
by [a, b] the closed interval in L bounded by a and b, i.e.,

[a,b) ={x € L|a<z<b}.

For this kind of scales L, we shall consider functions ¢ : L — L
modifying degrees of membership for which there exists 6 €
(0, 1] such that

c(a) < afora < 6and
c(a) > afora >4, 5)
¢ is convex on [0, 8] and

concave on [0, 1]. (6)

Remark 2: To apply appropriately to the general case of L,
e.g., a finite chain, we consider the following formulation of
convexity, which yields ordinary convexity for L being the real
unit interval, in (6): ¢ is convex on the interval [d, e] C L if for
every a,b, x € [d, e] with a < x < b one has

c(z) < (1_ ”b:‘“) c(a) +

—a

r—a
b—a

The meaning of this inequality is based on the following geo-
metric view (see Fig. 4): for every a,b,z € [d,e], a < z <),
the value ¢(z) lies below the value

s(z) = (1 - fg:;‘) c(a) +

of the secant line of the function ¢ connecting the points (a, ¢(a))
and (b, ¢(b)). The concept of concavity is approached analo-
gously.

Note that if one wishes that only truth degrees from L appear
in (7), one may replace the right-hand side by

Kui‘j)daw

c(b). 7

Tr—a

o)

Tr—a

=t
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Fig. 4. Geometric interpretation of (7).

i.e., to round it down to the closest value that belongs to L. An
inequality modified this way is equivalent with (7) and may be
considered conceptually cleaner.

We now present a modification of the concept of sigma
count cardinality, which alleviates the phenomenon addressed
in Section II.

Definition 1: Let ¢ : L — L be a function satisfying (5) and
(6), and let U = {uyq, ..., u;}. The cardinality |A|. of a fuzzy
set A: U — L is defined by

|Ale = c(A(ur)) + - - + c(A(ug)). 8)

Remark 3: Let us comment on the meaning of conditions (5)
and (6) imposed on the degree-modifying function c.

1) The conditions c¢(a) < a (subdiagonality) and c(a) > a
(supradiagonality) express the basic requirement for c to
suppress membership degrees smaller than the threshold
# and possibly emphasize those above the threshold.

2) The convexity on [0, 0] reflects the intuition regarding the
intensity of suppression of membership degrees below
the threshold: Around the threshold 6, a change in the
membership degree A(u) in general results in a more
considerable difference in the perception of size of a given
fuzzy set; as A(u) moves toward 0, the same change in
A(u) results in a smaller difference in size of A.

3) Ajustification of the concavity requirement of c on [, 1] is
symmetric to that of convexity in (2). Notice that concavity
allows c¢(a) = a for a > 6, which—as we hypothesize—
would be a possible intuitive choice.

Remark 4:

1) The idea to modify the membership degrees A(u;) in the
sigma count formula (1) is not new. The authors of these
approaches seem to have been motivated by formal reasons
only, namely, by the fact that the modification provides a
generalization of the basic sigma count.

It appeared for the first time in Kaufmann’s remarkable

monograph [17, p. 43]. Kaufmann proposed to use the

formula

[Alp = [A(u)]P + - - + [Aur)]

for a positive integer p (in fact, he considered p = 1 and
p = 2 only; the case of general p had then soon been
adopted in [11]). Later on, a proposal to consider the mod-
ified sigma count using (8) was put forward in [22]; see
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also [23]. Wygralak [22] provides an axiomatic character-
ization of cardinalities and considers rather general func-
tions ¢, namely those satisfying the boundary conditions
¢(0) =0 and ¢(1) = 1 plus monotony. Our motivation
leads to stronger requirements for ¢, and both the boundary
conditions and monotony turn out to be consequences of
our requirements; see Theorem 1.

2) Despite a thorough search of the literature, we have not
found any considerations regarding applicational moti-
vations for using Kaufmann’s or the general Wygralak’s
modification of the basic sigma count.

3) As mentioned at the end of Section II, the undesirable
accumulation of small membership degrees is discussed
by Ralescu [20]. Ralescu’s proposal to aleviate this effect
is analyzed in the Appendix of our paper.

4) Very likely, the undesirable accumulation led Zadeh to his
remark in [28] and [29], which we mention at the end of
Section II. Observe that Zadeh’s proposal to replace A by
A NT for a suitable fuzzy set I" may be considered in the
perspective of using a modifying function c. Namely, one
may consider a modifying function ¢(A(u)) = A(u) A
I'(u), which, however, would be a concept of modification
considerably more general than the one put forward in
this article, because such a modification of A(u) depends
on wu. That is, the consideration we describe would re-
quire a modifying functionc : U x L — L rather than just
c: L — L.

B. Examples of Modifying Function

We propose a sigmoid-shape function as a basic function
that reflects our intuitive idea of suppressing small membership
degrees and emphasizing large membership degrees. There is
a variety of ways to define sigmoid-shape functions satisfying
requirements (5) and (6). A straightforward one is based on
the following concatenation of two complementary power func-
tions:

fora < 6

fora > 0, ®)

01=P . qP,

)=\ 1- (=9 (1—ap,
with p > 1 being a parameter determining the degree of non-
linearity of ¢; see Fig. 5. Clearly, 6 is a fixpoint of ¢, i.e.,
¢(0) = 6. Note also that for p > 1 and 6 = 0.5, one obtains the
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Fig. 7. Two variants of threshold functions.

contrast enhancement function proposed by Wygralak [22]; see
Remark 4(1).%

Formula (9) defines a broad class of functions that may be used
in various applications of cardinality. This class is convenient
from a computational point of view because evaluating power
functions on a computer is efficient.

Other examples of functions c satisfying conditions (5) and
(6) are shown in Figs. 6 and 7.

1) The identity in Fig. 6 does not change membership de-
grees. Obviously, such function results in the ordinary
sigma count cardinality, i.e., [A|c = > .y A(u).

2) The subdiagonal function in Fig. 6 suppresses all degrees
except 0 and 1, which remain unchanged. This function
is an example of a truth-stressing linguistic hedge; see
Section IV for further discussion.

3) The classic threshold function in the left part of Fig. 7
represents a simple way to modify membership degrees,
albeit perhaps somewhat simplistic with respect to the aim
to yield an appropriate concept of cardinality. Namely, the
cardinality |A|. based on this threshold function yields

|Ale =74l = [{u € U A(u) > 6},

i.e., the ordinary cardinality (number of elements) of the
O-cut of A.

4) The right part of Fig. 7 depicts another variant of a thresh-
old function, one for which the values greater than or equal
to # are not modified. This function yields formula (4) sum-
ming the membership degrees greater than or equal to 6.

>The importance of contrast enhancement functions for applications of fuzzy
sets is mentioned already in [27].
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Fig. 8.  Inappropriately selected function, which does not meet second part of
(6).

Note that all of the aforementioned modifying functions are
instances of a general class of functions c defined by

fora < 60

B 01=P . qP, 10
A)=1_(-opr.(1—ay, fora>0 1O

where p > 1 and r > 1 are parameters determining the degree
of nonlinearity in the subdiagonal and supradiagonal parts of ¢,
respectively. In particular, we obtain the sigmoid-shape function
(9) for p = r; the identity function for p = r = 1; the subdiag-
onal function for p > 1 and # = 1; the threshold function in the
left part of Fig. 7 for p,r — o0; and the threshold function in
the right part of Fig. 7 for p — oo and r = 1.

Fig. 8 presents a function c that suppresses small member-
ship degrees and emphasizes large ones but does not meet the
intuitive requirements discussed previously. Namely, the rates of
modification of membership degrees below the threshold 6 are
arbitrary and do not conform to the requirement of convexity
on [0,0). Note that this function still satisfies all conditions
presented in [23, Th. 3.2].

C. Solutions to the Problems in Section Il

Consider again the examples in Section II demonstrating
the inadequacy of the sigma count cardinality. The proposed
modified concept of cardinality naturally solves the problems in
these examples. For the first example, consider, for instance, the
sigmoid-shape function (9) for ¢ with = 0.5 and p = 4. One
then easily verifies that

| Diplomal. =1+ ---4+ 1 = 5000,
—_—
5000 times
and

|Obesel. = 0.008 + - - - + 0.008 = 80.
100 000 times

As a result, one obtains
| Diplomal. > | Obese],

which meets the intuitive requirement.

In the municipal voting example, consider the sigmoid-shape
function ¢ with 8 = 0.5 and p = 2. For such a function, it holds
¢(0.25) = 0.125 and ¢(0.75) = 0.875, therefore

|P|. = 320 - 0.875 = 280 > 125 = 1000 - 0.125 = |C|.,
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which again agrees with the intuition.

For the matrix similarity example, consider again the sigmoid-
shape function (9), now with # = 0.75 and p = 9. Due to the
relatively large p, the modifying function c is steeply increasing
around €, which results in a significant suppression of the
membership degrees that lead to the undesired accumulation
with the standard sigma count. As a result, one obtains

9,9
SC(I, J) = Z C(Iij 4 ng) =6.3, and
ij=1
9,9
Se(I,K) =Y e(lij ¢ Kij) =102,

ij=1

i.e., I and K appear more similar than I and J when using our
modified concept of cardinality.

D. Properties of the Modifying Function

As the following theorem shows, our requirements of the
modifying functions c entail two elementary conditions for c,
the boundary conditions and monotony. The boundary condition
¢(0) = 0 expresses that the membership degree 0 does not
contribute to cardinality at all, while ¢(1) = 1 implies that 1
contributes to the largest extent possible. The monotony con-
dition expresses the basic requirement that larger membership
degrees contribute more than smaller ones. Both the entailed
conditions may hence be regarded as necessary ones that must
be satisfied by every c for the modified sigma count to represent
a reasonable approach to cardinality at all.

Theorem 1: Let ¢ : L — L satisfy (5) and (6). Then

1) c satisfies the boundary conditions

¢(0) =0and ¢(1) = 1 (11)

2) cis monotone, i.e.,
a < bimplies c¢(a) < ¢(b).

Proof:

1) Since 0 < 6, the condition ¢(0) = 0 follows from the sub-
diagonality, c¢(a) < a, for a < 6, while ¢(1) = 1 follows
from the supradiagonality of c.

2) Let us check that the monotony of ¢ on [0, 0] follows
from the convexity of ¢ on [0, ]. Suppose, by contra-
diction, that ¢ not monotone, i.e., ¢(by) > c(bz) for some
0 < by < by < 0. Since %C(bg) is the vertical coordinate
of the point with the horizontal coordinate b; on the line
connecting the points (0,0) and (bs, ¢(b2)), we clearly
have 0 < %C(bg) < ¢(be) < ¢(by), which contradicts the
convexity of ¢ on [0, 6], since for a =0, x = by, and
b = bs, (7) yields

c(by) < <1 - z; —~ 8) (0) +

In a similar manner, one proves that the monotony of ¢ on

[0, 1] follows from the concavity of ¢ on [6, 1]. O

A natural condition for the threshold # is arguably to be

a fixpoint of ¢, i.e., ¢(#) = 6, which means that the membership

b1 =0
ba — 0

C(bg) = Ec(bQ)

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 32, NO. 6, JUNE 2024

degree 0 contributes by 6 to the cardinality of the given fuzzy
set. If this is the case, the subdiagonality and supradiagonality
conditions appear redundant, and may hence be omitted from
our requirements on c.

Theorem 2: If 0 is a fixpoint of ¢, i.e., ¢(0) = 6, then the
subdiagonality and supradiagonality conditions (5) follow from
the convexity and concavity conditions (6).

Proof: The convexity of ¢ on [0, 6], i.e., (7) for a = 0 and
b =0, yields

o) < <1_ Z_8>c(0)+

for every € [0, 6], i.e., the subdiagonality of ¢ on [0, §].
Analogously, the concavity of ¢ on [0, 1], i.e., condition (7)
with > replacing < and with @ = 6 and b = 1, yields

c(z) > (1—f:2) o)+ 2=2

r—0 r—0
_<1—1_0)9+1_01

-0
:9+f_0(1—9):e+x—9:x,
for every [0, 1], i.e., the supradiagonality of c. O

‘We now provide an axiomatic characterization of cardinalities
defined by (8) in the style of Wygralak [22]. Below, {%/u}
denotes the fuzzy set A for which A(v) = a for v = u and
A(v) = 0 for v # u.

Theorem 3: Let U be a finite universe and L C [0, 1] contain
0 and 1. A function card : LY — [0, |U|] satisfies

card(A) = |A|.

for every fuzzy set A : U — L, where | A|.. is defined by (8) for
some function ¢ : L — L satisfying (5) and (6), if and only if
card satisfies the following conditions:

1) Foreachu € U:

card {Y/u} = 1.

2) There exists 6 > 0 in L such that
2.1) foreachu € U,

card{%u} < afora < 6 and
card{%u} > afora > 6;

2.2) foreachu,v € Uandevery0 <a<zx<b<¥0

card{” /u} < (1 — i_z> card{%v}
rT—a b
+ b_acard{ /v}7 (12)

and for each u,v € U andevery ) <a <x <b<1

card{® Ju} > (1 - ”g“) card{%v},

a

T—a b
+7 card {"/v}. (13)
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3) For any n > 1 and a collection of mutually disjoint
Ay, ... An € LY e, min(4;(u), Aj(u)) = 0fori # j
and each u € U, one has

card(Ay U---UA,) = card(A;) + - - - + card(4,,).

Proof: If ¢ satisfies (5) and (6), then | - | defined by (8) satis-
fies the conditions 1)-3) of the theorem. Indeed, 1) follows from
(11) in Theorem 1, and 2.1) and 2.2) are direct consequences of
(5) and (6), respectively. As for 3), the assumption of disjointness
implies that for each v € U there is at most one ¢ such that
A;(u) > 0. Hence if (41 U---U A,)(u) > 0, then there is a
unique ¢ such that

(AyU---UA,)(u) = A;(u) > 0.

This property along with ¢(0) =0, which holds due to
Theorem 1, now easily entails 3).

Conversely, we prove that for the function ¢ : L. — L defined
by

c(a) = card{Yu}

for any u € U, one obtains card(A) = |A|. for each A € LY.
We first show that ¢(a) is defined correctly, i.e., that ¢(a) does
not depend on v« and that ¢(a) € L for each a € L.
Observe first that since 0 < 6 < 1, 2.1) implies card{%u} =
0 and card{'/u} = 1 for each u € U. Next, we show that
card{u} = card{?/v} (15)

for every u,v € U. Let first 0 < b; < by < 6. Putting a = 0,
x = by, and b = bo, inequality (12) yields

card{"/u} < (1 - Ib’; — 8) card {%v}

card { b2/ }

(14)

by —0

by — 0

= b . by ba
_<1 b2) O+bcard{ /v}

2

+

- z—lcard {¥/v} < card {*/v}.
2

Since a < a for each a € L, the inequality we just proved im-
plies that card{*/u} < card{% v}. Analogously, from inequality
(13), we obtain card{%u} > card{%v}, verifying (15).

Next, in view of (15), ¢(a) in (14) does not depend on . Since
a < 1 for each a € L, we obtain

c(a) = card{%u} < card{Yu} =1,

proving that ¢(a) € L for each a € L. Put together, (14) indeed
provides a correct definition of a function ¢ : L — L.

Consider now an arbitrary fuzzy set A € LY and let U =
{u1,...,uy}. Since

A= {A(ul)/ul} U--- U {A) ),
3) implies
card(A) = card {A(“l)/ul} + -+ 4 card {A(“k)/uk}

=c(A(u1)) + - + c(Aug))
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finishing the proof. ]
Remark 5: Alternatively, the following variants of conditions
1)-3) of Theorem 3 may be used.

1) Instead of 1), one may use the following requirement: For
each crisp fuzzy set A in U, the value card(A) equals the
classical cardinality of the ordinary set corresponding to
A, i.e., card(A) is the number of u € U for which A(u) =
1. It is easy to see that due to 3), condition 1) is equivalent
to the new requirement.

2) Instead of 2.2), one may use the corresponding weaker
inequalities resulting from those in 2.2) for u = v, along
with a new condition requiring that for each v, v € U and
a € L, one has card{%/u} = card{%/v}.

IV. CONCLUSION AND FUTURE RESEARCH

This article aims to point out a significant drawback of the
standard sigma-count cardinality of fuzzy sets and propose a
modification that alleviates this drawback. The drawback is sub-
stantial from an applicational viewpoint, which we demonstrate
by intuitive examples and examples from factor analysis of data
with fuzzy attributes. The essence of the drawback consists in
a possible accumulation of small membership degrees, making
the size of a given fuzzy set large even though the fuzzy set
appears intuitively small. As a result, employment of the stan-
dard sigma-count cardinality may lead to wrong conclusions if
decisions involve the size of fuzzy sets.

We propose a new concept of cardinality that naturally sup-
presses the contribution of small membership degrees via a
modifying function whose properties reflect intuitive require-
ments regarding the size of a fuzzy set. We demonstrate using
examples that the thus modified concept of cardinality alleviates
the drawback of the classic sigma-count cardinality and leads
to correct results. Furthermore, we propose examples and a
parameterized family of the modifying functions, and study the
properties of the modified concept.

Even though the concept of sigma-count cardinality is one of
the textbook concepts in the fuzzy set theory, the undesirable
effect of accumulating small membership degrees and its practi-
cal ramifications are virtually not discussed in the literature. An
exception to this situation is Ralescu’s paper [21] that presents
a solution different from our proposition that we critically ex-
amine.

While this article focuses on identifying the drawback of the
standard sigma count and our modified concept of cardinality,
along with illustrative examples and basic theoretical analysis,
several questions remain for future exploration. These include
the following.

1) Selection of a concrete modifying function: Our conditions
for the modifying functions c, presented in Section III-A,
reflect the intuition regarding a proper measurement of the
size of fuzzy sets and delineate a large class of reasonable
functions; cf. Section III-B. In a particular application of
cardinality, however, one needs to select a single function
cfrom this class. That is, to select a function c representing
an intuitively reasonable concept of cardinality | - |.. The

— c
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2)

difficulty of this task consists in that being intuitively rea-
sonable is subjective and may also depend on the context.
Apart from certain situations, in which the cardinality | - |,
is employed in a problem to which a certain criterion is
associated, and hence, the choice of ¢ may correspond to
maximization or minimization of the criterion, selection of
cneeds to be based on intuitively sound and possibly also
psychologically justified rules. Exploration of such rules
presents an important practical problem. The problem,
though, is of a foundational nature because its essence
is directly related to the fundamental question of how
do people assess the size of a collection with a graded
membership?

Given our approach to cardinality, it seems natural to base
the choice of ¢ on questions of the following kind: How
many elements with membership degree 0.1 needs a fuzzy
set contain in order to have the size equal to 1, i.e., the size
of a singleton. That is, what is the & for which

{0, Y} e = | (Y}, 2

One may explore similar questions for other truth degrees,
e.g., what k satisfies [{Yu1,...,Yug}. = [{Yu}|. for
other @ > 0? Such questions seem to be amenable to
human judgment and provide concrete information about
the values of c. Namely, due to the definition of | - |, the
number k clearly implies c(a) = 7.

Modifying functions as linguistic hedges: The modifying
functions ¢ we employ in our concept shall be examined in
the context of linguistic hedges. In fuzzy logic, linguistic
hedges are understood as expressions “very” or “roughly,”
which modify the meaning of fuzzy sets representing nat-
ural language expressions such as “very cold” [18], [25].
From a logical viewpoint, hedges are commonly regarded
as unary connectives interpreted by functions ¢ : L — L
transforming truth degrees to (modified) truth degrees sat-
isfying appropriate conditions, usually including ¢(0) = 0
and ¢(1) = 1. Two basic types of hedges are distinguished:
Truth-stressing (or intensifying), such as “very,” and truth-
depressing (or relaxing), such as “roughly.” The functions
c interpreting these two types of hedges are required to be
subdiagonal and supradiagonal, i.e., satisfy ¢(a) < a and
¢(a) > a, respectively, for each a € L.

From this viewpoint, the functions c interpreting the
truth-stressing hedges as well as those interpreting the
truth-depressing hedges are particular instances of the
modifying functions we consider; see Section III-B and
Fig. 6 (right) for the truth-stressing case. Since our pro-
posal’s basic idea is to modify the membership degrees
by an appropriate function c, it is only natural to regard
our modifying functions as linguistic hedges and consider
them within this context.

The nature of such rather general hedges from the logical
and linguistic viewpoints then needs to be explored, as well

“In principle, this task is similar to the need to select particular membership
functions of fuzzy sets representing the meaning of linguistic terms such as “high
temperature,” which occurs in many applications of fuzzy sets.

3)

4)
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as their further algebraic and logical properties. For one, an
axiomatization of such hedges seems to present a nontriv-
ial problem; see, e.g., [15] and [21] for axiomatizations of
particular classes of truth-stressing and truth-depressing
hedges, and [12] for an approach covering a considerably
more extensive class of these two types of hedges.
Second, we contend that our modifying functions might
provide a more proper meaning certain hedges, such as
“more or less,” compared to the commonly employed
truth-depressing functions. Therefore, considerations re-
garding this kind of hedge should be looked at from the
presented perspective.

The very concept of cardinality of fuzzy sets: Our pro-
posal of | - | is to be regarded as a straightforward way
to alleviate the drawback of the standard sigma-count
cardinality. Other possible approaches should result from
further exploring the question of how people assess the
size of collections with a graded membership. In this
regard, several ideas seem worth to be considered. One,
implicitly present in Zadeh’s early note (cf. Remark 4(4)),
is to consider modifying functions ¢ dependent on the
elements u € U, i.e., to consider them as functions

c:UxL—L

rather than c¢: L — L. Another idea, which actually
proved useful in our experiments with factor analysis
of data with fuzzy attributes [1], [2], is to consider ¢
dependent on the number of elements in the universe U.
Intuitively, the larger the universe, the more suppression
by c of the membership degrees is needed to obtain an
intuitive notion of size. Last but not least, the phenomenon
of undesirable accumulation of small membership degrees
shall be taken into account in studies of the so-called
nonscalar cardinalities of fuzzy sets.

Psychological considerations: During our work on the
present topic, we talked to anumber of people with varying
degrees of mathematical training. We found that particu-
larly people with no experience with the concept of a fuzzy
set had difficulties understanding questions about the size
of fuzzy sets, such as “How many of the thirty people in the
class are obese?” in particular if the membership degrees
in the fuzzy set are low. In this particular case, it came out
of the ensuing discussions that perhaps a different term,
such as “size (measure) of obesity in the class,” could turn
out as more appropriate than “number of obese people.”
In general, the discussions revealed that the concept of a
size of a vaguely delineated collection of objects is not
as straightforward as it might seem. As a consequence,
the concept itself demands a careful psychological ex-
ploration. While psychology, and in particular, the psy-
chology of concepts, includes substantial work on human
categories in which membership is a matter of degree [19],
the concept of size has not been explored yet to the best
of our knowledge. In addition to help us understand how
humans perceive the size of vaguely delineated groupings,
such explorations are also likely to put on firmer ground
the various intuitive requirements on which the properties
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of the concept of cardinality of fuzzy sets are based; cf.
1) in this section.

5) Reconsideration of past studies and applications of car-

dinality: The observations put forward in this article ask
for a reconsideration of some previous studies involving
the concept of cardinality of fuzzy sets. For one, it seems
logical to revisit previous applications of the standard
sigma-count cardinality from the present perspective. As
mentioned in Section II, our motivation to propose a
new concept of cardinality came from difficulties we
encountered when applying the standard sigma-count car-
dinality. Employment of the modified concept delivered
considerably better results and a similar improvement is
to be expected in other applications involving the standard
cardinality.
In addition, since the concept of cardinality of fuzzy sets
explicitly or implicitly appears in several notions of the
fuzzy set theory that are frequently used in applications,
reconsidering these notions also appears as a natural step.
As an example, various notions of similarity of fuzzy sets
are based on the sigma-count cardinality [8], such as the
basic one defined for fuzzy sets A, B : U — [0, 1] by

Sim(4, B) = ¥, 1 |Aw) — B(u)|

or its normalized version

2uev 1 = [A(u) = B(u)|
Ul '

With the Lukasiewicz logical connectives, the similarity
of matrices used previously, cf. (2), derives as a particular
case of this basic similarity. It is apparent that sim(A, B)
is but the standard sigma-count cardinality |E| of the
fuzzy set E(u) = 1 — |A(u) — B(u)|. As such, this con-
cept may be regarded as inadequate due to the effect of
accumulation of a small degrees. In particular, it may yield
a reasonably high value of similarity to fuzzy sets A and
B for which A(u) is rather different from B(u) for each

uelU.
APPENDIX A
AVOIDING FLAT FACTORS VIA THE PROPOSED CONCEPT OF
CARDINALITY

We now illustrate the undesired effect of the standard sigma
count using an example in factor analysis of data with fuzzy
attributes, which actually led us to realize the problem discussed
in this article and which we mentioned in Section II. The
example comes from a large-scale factor analysis of educational
data gathered by the United Kingdom’s governmental organiza-
tions [1].7

Put briefly, the essence of factor analysis of an n x m data
matrix I, for which each entry I;; is interpreted as the truth
degree to which the object ¢ has the attribute j, is to find a
small number k of factors explaining the data represented by I.

"The factor analysis study was initiated by a leading expert in analyzing
educational data, Alex Scharaschkin. For concepts and technical details involved
as well as for further references regarding factor analysis we refer to [1].
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Fig. 9  First 80 rows of input data matrix /.

This is accomplished by computing a decomposition I ~ A o
B into an n x k object-factor matrix A and a k x m factor-
attribute matrix B. In this decomposition, the [th factor (I =
1,..., k) is represented by the /th column A ; of A and the /th
row B; of B. The cross products F; = A ; o B; , called factors
in the following, are matrices that enable to reconstruct the input
matrix [. In particular, the biresiduum I,; <> (F});; represents
the degree to which the relationship between the object ¢ and
the attribute j is explained by the factor F;. The factorization
algorithms compute the factors in the decomposition one by one
according to their explanatory power, which is defined as the
sum S(I, F}), defined by (2), of the values I;; <+ (F});;, i.e.,
according to (3) as the sigma-count cardinality.

Now, as we observed in [2] in factor analysis study of ed-
ucational data involving extensive examination tests used in
the United Kingdom, using this approach may produce “flat”
factors that do not have the desired ability to explain the input
data. Namely, it may happen that of two possible factors, say
F and G, the factor F' is selected because S(I, F) > S(I, Q)
even though intuitively, GG is regarded as having a considerably
higher explanatory power. This often occurs due to the undesir-
able accumulation of small degrees I;; <> (F);;, which results
in S(I,F) > S(I,G). Since S(-,-) is in fact the sigma-count
cardinality, cf. (3), the selection of the undesirable factor is a
consequence of using the sigma-count cardinality.

To see a concrete example, consider Fig. 9, which displays
the first 80 rows of a 607 x 14 matrix [ representing 607 best
students (with a total mark A) and their 14 marks on a five-
element scale L, evaluating the students’ performance in six
subject areas with regard to certain assessment objectives. The
GreConD factorization algorithm produces several factors for
this matrix I, two of which, F' and G, are depicted in Fig. 10.
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Fig. 11

First 80 rows of the biresidua matrices I <+ F'(left)and I <+ F'(right).

The corresponding matrices of biresidua, I <+ F and I < G,
are shown in Fig. 11. The algorithm prefers F' over G since

S(I,F) = |Ep| = 4400 > 4372 = |Eg| = S(I,G),

where |Er| and |E¢| are the sigma-count cardinalities of the
fuzzy sets defined by (Ep)ij = Iij — Fij and (EG)ij = Iij —
Gj; cf. (3). However, the biresidua matrices in Fig. 11 clearly
reveal that G has intuitively a considerably higher explanatory
power. Namely, most entries of the input matrix I are explained
by F'to a lower extent only, i.e., quite poorly, since the entries of
I + F are mostly gray. Only a few entries of I are explained to a
high degree by . On the other hand, GG explains a considerable

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 32, NO. 6, JUNE 2024

part of [ to a high degree (the dark rectangular area of I <> G).
In this sense, while G is good, focused factor, F is flat.
Replacing the standard sigma-count |- | by our modified
cardinality | - |., in which ¢ is defined by (10) with § = 0.75,
p = 5,and q¢ = 1, resolves the problem because one then obtains

Se(I,F) = |Epl. = 2563 < 2651 = |Eg|. = S.(I, Q).

That is, with the modified concept of cardinality, a proper factor
gets selected by the algorithm.

APPENDIX B
ON RALESCU’S PAPER “CARDINALITY, QUANTIFIERS, AND THE
AGGREGATION OF Fuzzy CRITERIA”

The insufficiency of the sigma count is mentioned by
Ralescu [20]. In particular, Ralescu argues that the sigma count
“may be a relatively large number due to the cumulative effect of
adding a large number of small quantities. In those cases o-count
A gives a counter-intuitive answer to the question ‘how many
elements are in A’?” Although this approach to cardinalities of
fuzzy sets resolves some problems with the sigma count, it does
notdo soin a fully satisfactory manner, as we demonstrate below.

Recall first the concept of cardinality of fuzzy set presented
in [20]. Ralescu defines a fuzzy cardinality of a fuzzy set A :
U— LU= {uy,...,u,} as the fuzzy set | A|gs assigning to a
nonnegative integer £ = 0, 1, ..., n, the degree

|Alge(k) = min {a), 1 — ag1)}

where  a(yy,...,a¢,) are the membership degrees
A(uq), ..., A(uy,) ordered in a nonincreasing manner, and
aq) =1, a@4+1) = 0. The scalar cardinality |A|gs of a fuzzy
set A is then defined as follows:

0, it A=0,
|A|Rs = j, if a(J) > 05,
Jj—1, if ag <0.5,

where j = max{l <k <n|ag_1)+ ag) > 1}. Ralescu then
claims that |A|gs equals one of the integer k at which | A|rs
reaches its maximum, i.e.,

(Al Alrs) = mas {| (1)}

On the one hand, Ralescu’s approach leads to the intu-
itively correct conclusion as regards the cardinality of the
fuzzy sets Obese and Diploma presented in Section II. Indeed,
| Diplomalgs = 5000, |Obese|rs = 0, hence |Diplomalgs >
| Obese|gs.

On the other hand, consider the fuzzy set A with the degree of
membership of each element of U equal to, say, 0.49. Intuitively,
the cardinality of this fuzzy set is larger than the cardinality of
Obese, as

A= {0'49/U1, ey 0'49/’(,&100 000} and
Obese = {*/u1,...,°ui00000} -
Contrary to this intuition, Ralescu’s approach renders

|Alrs = |Obese|rs = 0.
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A
1 ‘
| B
| 0.5001 ‘
0 Ugoo 11,000 0 Ugoo 1,000

Fig. 12 Fuzzy sets A and B with cardinalities | A|gs = 600 and | B|gs = 600.

c D
0.5001 — 0.5 ‘
0 lu100 %1,000 0 U1,000

Fig. 13 Fuzzy sets C' and D with cardinalities |C|gs = 100 and |D|gs = 1.

To make the situation more explicit, consider the fuzzy sets
A,B, O, D:U— [O, 1], U= {Ul, ey ulooo}, defined by

1, fori=1,...,600,
Alui) = {0, otherwise,

0.5001, for i=1,...,600,
B(ui) = {O, otherwise,

Cluy) = {0.5001, for i=1,...,100,

0, otherwise,
D(u;) = 0.5, fori =1,...,1000.

These fuzzy sets are depicted in Figs. 12 and 13. Clearly, the
cardinality of A should be larger than the cardinality of B,
and the cardinality of C' should be noticeably smaller than the
cardinality of D. However, based on Ralescu’s approach, we
obtain |A|gs = 600, |B|rs = 600, |C|gs = 100, and |D|gs = 1,
contradicting the intuitive expectations.

To conclude, Ralescu’s concept of cardinality is able to
alleviate the cumulative effect of small membership degrees.
However, it does not distinguish properly between fuzzy sets
belonging to certain classes as follows:

1) fuzzy sets with all nonzero degrees greater than 0.5 have

the cardinality equal to the number of these degrees;

2) fuzzy sets with all degrees smaller than or equal to 0.5 have

cardinality O or 1, irrespective of the size of the universe
U.
As a result, Ralescu’s approach does not treat the degrees of
membership in accordance with intuition. As is easily seen, our
approach to cardinality does not suffer from this problem.

[1]
[2]
[3]

[4

=

[5

—_

[6

=

[7]

[8]

[9]
[10]
(1]
[12]
[13]
[14]
[15]
[16]

[17]

(18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]

[27]

[28]

[29]

3789

REFERENCES

E. Bartl and R. Belohlavek, “Avoiding flatness in factoring ordinal data,”
Inf. Sci., vol. 629, pp. 471-487, 2023.

E. Bartl, R. Belohlavek, and A. Scharaschkin, “Toward factor analysis of
educational data,” in Proc. CLA, 2018, pp. 191-206.

R. E. Bellman and L. A. Zadeh, “Local and fuzzy logics,” in Modern Uses
of Multiple-Valued Logic, J. M. Dunn and G. Epstein Eds. Dordrecht,
Netherlands: Springer, 1977.

R. Belohlavek, Fuzzy Relational Systems: Foundations and Principles.
New York, NY, USA: Kluwer, 2002.

R. Belohlavek, J. W. Dauben, and G. J. Klir, Fuzzy Logic and Mathematics:
A Historical Perspective. New York, NY, USA: Oxford Univ. Press, 2017.
R. Belohlavek and M. Krmelova, “Factor analysis of ordinal data via
decomposition of matrices with grades,” Ann. Math. Artif. Intell., vol. 72,
no. 1, pp. 2344, 2014.

R. Belohlavek and M. Trneckova, “The discrete basis problem and Asso
algorithm for fuzzy attributes,” IEEE Trans. Fuzzy Syst., vol. 27, no. 7,
pp. 1417-1427, Jul. 2019.

V. V. Cross and T. A. Sudkamp, Similarity and Compatibility in Fuzzy
Set Theory: Assessment and Applications. Heidelberg, Germany: Physica-
Verlag, 2002.

A. De Luca and S. Termini, “A definition of a nonprobabilistic entropy in
the setting of fuzzy sets theory,” Inf. Control, vol. 20, pp. 301-312, 1972.
D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Applications.
New York, NY, USA: Academic, 1980.

D. Dubois and H. Prade, “Fuzzy cardinality and the modeling of imprecise
quantification,” Fuzzy Sets Syst., vol. 16, pp. 199-230, 1985.

F. Esteva, L. Godo, and C. Noguera, “A logical approach to fuzzy truth
hedges,” Inf. Sci., vol. 232, pp. 366385, 2013.

J. A. Goguen, “The logic of inexact concepts,” Synthese, vol. 18,
pp. 325-373, 1969.

P. Hajek, Metamathematics of Fuzzy Logic. Dordrecht, Netherlands:
Kluwer, 1998.

P. Hijek, “On very true,” Fuzzy Sets Syst., vol. 124, pp. 329-333, 2001.
M. Holcapek, “Cardinalities of fuzzy sets and fuzzy quantifiers over
residuated lattices,” M.S. thesis, Dept. of Math., Faculty of Sci., Univ.
of Ostrava, Moravska Ostrava a Pfivoz, Czechia, 2005.

A. Kaufmann, Introduction a la Théorie des Sous-Ensembles Flous Tome
4: Compléments et Nouvelles Applications. Paris, France: Elsevier Mas-
son, 1977.

G. Lakoff, “Hedges: A study in meaning criteria and the logic of fuzzy
concepts,” J. Philos. Log., vol. 2, no. 4, pp. 458-508, 1973.

G. L. Murphy, The Big Book of Concepts. Cambridge, MA, USA: MIT
Press, 2004.

D. Ralescu, “Cardinality, quantifiers, and the aggregation of fuzzy criteria,”
Fuzzy Sets Syst., vol. 69, no. 3, pp. 355-365, 1995.

V. Vychodil, “Truth-depressing hedges and BL-logic,” Fuzzy Sets Syst.,
vol. 157, no. 15, pp. 2074-2090, 2006.

M. Wygralak, “An axiomatic approach to scalar cardinalities of fuzzy sets,”
Fuzzy sets Syst., vol. 110, no. 2, pp. 175-179, 2000.

M. Wygralak, Cardinalities of Fuzzy Sets. Berlin, Germany: Springer,
2003.

L. A. Zadeh, “Fuzzy languages and their relation to human and machine
intelligence,” in Proc. Int. Conf. Man, Comput., 1972, pp. 130-165.

L. A. Zadeh, “A fuzzy-set-theoretic interpretation of linguistic hedges,” J.
Cybern., vol. 2, no. 3, pp. 4-34, 1972.

L. A. Zadeh, “The concept of a linguistic variable and its application to
approximate reasoning—I, II, and IIL,” Inf. Sci., vol. 8, pp. 199-249, 1975.
L. A.Zadeh, “Outline of a new approach to the analysis of complex systems
and decision processes,” IEEE Trans. Sys., Man Cybern., vol. SMC-3,
no. 1, pp. 28-44, Jan. 1973.

L. A. Zadeh, “PRUF-A Meaning representation language for natural
languages,” Int. J. Man-Mach. Stud., vol. 10, no. 4, pp. 395-460, 1978.
L. A. Zadeh, “A theory of approximate reasoning,” in Machine Intelli-
gence, J. E. Hayes, D. Michie, and L. I. Mikulich, Eds. New York, NY,
USA: Halstead Press, 1979, pp. 149-194.

Authorized licensed use limited to: Radim Belohlavek. Downloaded on June 06,2024 at 12:32:31 UTC from |IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


