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We study interior operators from the point of view of fuzzy set theory. The present approach generalizes the
particular cases studied previously in the literature in two aspects. First, we use complete residuated lattices as
structures of truth values generalizing thus several important cases like the classical Boolean case, (left-)continuous
t-norms, MV-algebras, BL-algebras, etc. Second, and more importantly, we pay attention to graded subsethood of
fuzzy sets, which turns out to play an important role. In the first part, we define, illustrate by examples and study
general fuzzy interior operators. The second part is devoted to fuzzy interior operators induced by fuzzy equivalence
relations (similarities).
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1. INTRODUCTION AND PRELIMINARIES

Closure and interior operators on ordinary sets belong to the very fundamental mathematical

structures with direct applications, both mathematical (topology, logic, for instance) and

extramathematical (e.g. data mining, knowledge representation). In fuzzy set theory, several

particular cases as well as general theory of closure operators which operate with fuzzy sets

(so called fuzzy closure operators) are studied (Mashour and Ghanim, 1985; Bandler and

Kohout, 1988; Bělohlávek, 2001; 2002a,b; Gerla, 2001). Interior operators, however, have

appeared in a few studies only (Bandler and Kohout, 1988; Dubois and Prade, 1991;

Bodenhofer et al., 2003), and it seems that no general theory of interior operators appeared

so far. In ordinary set theory, closure and interior operators on a set are in a

bijective correspondence. Namely, recall that a mapping I : 2X ! 2X is called an interior

operator on X if (1) IðAÞ # A; (2) A # B implies IðAÞ # IðBÞ; (3) IðAÞ ¼ IðIðAÞÞ for any

subsets A and B of X. A closure operator on X is a mapping C : 2X ! 2X satisfying (10)

A # CðAÞ; (20) A # B implies CðAÞ # CðBÞ; (30) CðAÞ ¼ CðCðAÞÞ for any subsets A and B of

X. It is a well known fact that given an interior operator I and a closure operator C, putting

CIðAÞ ¼ �IðAÞ and ICðAÞ ¼ �CðAÞ; CI is a closure operator and IC is an interior operator.

Moreover, the thus defined mappings are bijective. That is, having developed the theory of
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closure operators, one can automatically obtain the theory of interior operators with

corresponding “translation rules” transforming true statements about closure operators to true

statements about interior operators and vice versa. This is possible, as an easy observation

shows, due to the law of double negation (which says that for each set A we have
¼
A ¼ A with

B denoting the complement of B) which is true in ordinary set theory. In general, however,

the law of double negation does not hold in fuzzy set theory. This means that the easy one-to-

one way between closure and interior operator is no more at our disposal in fuzzy set theory

and that unless developing other (possibly partial) translation rules, one has to develop an

appropriate theory of fuzzy interior operators from scratch.

The development of a general theory of fuzzy interior operators is the main purpose of the

present paper. Our formal setting is given by complete residuated lattices which we take for

the structures of truth values and which represent general structures of which many particular

structures discussed in the literature are particular cases. An important aspect of our

treatment is that we take into account, in a parametrized manner, graded subsethood of fuzzy

sets that is required to be preserved by interior operators. In second section, we study general

fuzzy interior operators. Third section is devoted to fuzzy interior operators induced by fuzzy

equivalence relations. In the rest of this section, we recall the necessary notions.

Recall that a complete residuated lattice is an algebra L ¼ kL;^;_; ^ ;!; 0; 1l such that

(1) kL, ^ , _, 0,1l is a complete lattice with the least element 0 and the greatest element 1;

(2) kL,^ ,1l is a commutative monoid, i.e. ^ is commutative, associative, and x^ 1 ¼ x

holds for each x [ L;

(3) ^ ;! form an adjoint pair, i.e.

x^ y # z iff x # y ! z ð1Þ

holds for all x; y; z [ L:

We say that L satisfies the law of double negation iff x ¼:: x is true in L where : is

defined by : x ¼ x ! 0 for any x [ L:
Residuated lattices play the role of structures of truth values in fuzzy logic. Introduced

originally in the study of ideal systems of rings (Ward and Dilworth, 1939), residuated

lattices have been introduced into the context of fuzzy logic by Goguen (1967). For logical

calculi with truth values in residuated lattices (and special types of residuated lattices),

basic properties of residuated lattices, and further references we refer to Höhle (1996),

Hájek (1998) and Bělohlávek (2002a,b).

We only recall that the most studied and applied residuated lattices are those defined on the real

interval [0,1] (residuated lattices on [0,1] uniquely correspond to left-continuous t-norms). Three

most important structures pairs of adjoint operations are the following: the Łukasiewicz one

ða^ b ¼ maxða þ b 2 1; 0Þ; a ! b ¼ minð1 2 a þ b; 1ÞÞ; Gödel one ða^ b ¼ minða; bÞ;
a ! b ¼ 1 if a # b and ¼ b else), and product one ða^ b ¼ a · b; a ! b ¼ 1 if a # b and

¼ b=a else). More generally, k½0; 1�;min;max; ^ ;!; 0; 1l is a complete residuated lattice

iff ^ is a left-continuous t-norm and a ! b ¼
W

{zja^ z # b}:An example of left-continuous

t-norm which is not continuous is the so-called nilpotent minimum defined by x^ y ¼ minðx; yÞ

if x þ y . 1; x^ y ¼ 0 if x þ y # 1: Another important set of truth values is the set

{a0 ¼ 0; a1; . . .; an ¼ 1} ða0 , · · · , anÞ with ^ given by ak ^ al ¼ amaxðkþl2n;0Þ and the

corresponding ! given by ak ! al ¼ aminðn2kþl;nÞ: A special case of the latter algebras is the

Boolean algebra 2 of classical logic with the support 2 ¼ {0; 1}.

A nonempty subset K # L is called an # -filter if for every a; b [ L such that a # b it

holds that b [ K whenever a [ K: An # -filter K is called a filter if a; b [ K implies

a^ b [ K: Unless otherwise stated, in what follows we denote by L a complete residuated

lattice and by K an # -filter in L (both L and K possibly with indices).
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An L-set (fuzzy set), see (Zadeh, 1965; Goguen, 1967), A in a universe set X is any map

A : X ! L: By L X, we denote the set of all L-sets in X. The concept of an L-relation is

defined obviously. Operations on L extend pointwise to L X, e.g. ðA _ BÞðxÞ ¼ AðxÞ _ BðxÞ for

A;B [ LX: Following common usage, we write A < B instead of A _ B; etc. The complement

of an L-set A is a fuzzy set : A defined by ð: AÞðxÞ ¼ AðxÞ! 0: Given A, B [ L X,

the subsethood degree (Goguen, 1967) S (A,B) of A in B is defined by

S ðA;BÞ ¼
V

x[X AðxÞ! BðxÞ: We write A # B if S ðA;BÞ ¼ 1: Analogously, the equality

degree E(A,B) of A and B is defined by EðA;BÞ ¼
V

x[XðAðxÞ $ BðxÞÞ: It is immediate that

EðA;BÞ ¼ S ðA;BÞ ^ SðB;AÞ: By {a1=x1; · · ·; an=xn} we denote an L-set A for which AðxÞ ¼

ai if x ¼ xi ði ¼ 1; . . .; nÞ and AðxÞ ¼ 0 otherwise. By Y and X we denote the empty and full

L-set in X, i.e. YðxÞ ¼ 0 and XðxÞ ¼ 1 for each x [ X:
A binary fuzzy relation R on X is called reflexive if Rðx; xÞ ¼ 1; symmetric if

Rðx; yÞ ¼ Rð y; xÞ; transitive if Rðx; yÞ^Rð y; zÞ # Rðx; zÞ; for all x; y; z [ X: An L-equivalence

(fuzzy equivalence) is a fuzzy relation which is reflexive, symmetric and transitive.

2. FUZZY INTERIOR OPERATORS

First, we show some natural examples of fuzzy interior operators (and subsequently,

we discuss these examples from the point of view of Definition 1 presented below).

Example 1 A fuzzy topology, see Chang (1968) or Liu (1999) for a recent survey on fuzzy

topology, in X is a collection T # ½0; 1�X of fuzzy sets in X (i.e. mappings A : X ! ½0; 1�Þ

satisfying (i) Y;X [ T ; (ii) A > B [ T for any A;B [ T ; (iii) <iAi [ T for any Ai [ T
ði [ IÞ: Fuzzy sets A [ T are called open in the topology T. To each fuzzy set A : X ! ½0; 1�;
one can assign the greatest fuzzy set IT ðAÞ which is contained in A (i.e. IT ðAÞ # A). Remark 3

places IT into the context of fuzzy interior operators defined below.

Example 2 R be a binary relation on X, consider an arbitrary left-continuous t-norm ^

and the corresponding residuum ! . Let us consider the operator IR : ½0; 1�X ! ½0; 1�X

defined by

ðIRðAÞÞðxÞ ¼
^
y[X

Rðx; yÞ! Að yÞ:

That is, the degree to which x belongs to IR(A) equals the degree to which it is true that for

each y we have that if x and y are in R then y belongs to A. Two particular cases of IR are important.

First, if R is a fuzzy equivalence relation (this case will be examined in section

“Interior induced by fuzzy equivalences”), then IR(A) is the so-called lower approximation of

A with respect to R in terms of rough set theory of Pawlak when modified to fuzzy setting, see

Dubois and Prade (1991) and Pawlak (1991). If R is interpreted as representing some intrinsic

indiscernibility on the universe X (which may be due to various limitations), then IR(A) is

the greatest fuzzy set in X which is included in AðIRðAÞ # AÞ and compatible with the

indiscernibility represented by R (in that IRðAÞðxÞ^Rðx; yÞ # IRðAÞð yÞ; i.e. if x belongs to

IR(A) and x and y are indiscernible then y belongs to IR(A) as well).

Second, if R is reflexive and transitive then IR is the operator studied in Bodenhofer et al.

(2003) where it is called an opening operator induced by R. Several properties of interior and

closure operators are shown and applications of these operators to so-called ordering-based

modifiers are demonstrated in Bodenhofer et al. (2003). Remark 5 places IR into the context

of fuzzy interior operators defined below.

In the following, we are going to present the concept of a fuzzy interior operator. We denote

by L an arbitrary complete residuated lattice and by K an # -filter in L. Moreover, by X we

denote some fixed nonempty set.
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Definition 1 An LK -interior operator (fuzzy interior operator) on X is a mapping

I : LX ! LX satisfying

IðAÞ # A ð2Þ

S ðA1;A2Þ # SðIðA1Þ; IðA2ÞÞ whenever S ðA1;A2Þ [ K ð3Þ

IðAÞ ¼ IðIðAÞÞ ð4Þ

for every A, A1, A2 [ LX:

Remark 1

(1) If K and L are obvious, we speak of a fuzzy interior operator. If K ¼ L; we omit the

subscript K and call I an L-interior operator. The set K plays the role of the set of designated

truth values, condition (3) says that the interior preserves also partial subsethood whenever

the subsethood degree is designated. Since K is an #-filter in L, the designated

truth values represent, in a sense, sufficiently high truth values. In this view, Eq. (3) reads

“if A1 is almost included in A2 then I(A1) is almost included in I(A2)”. It is easily seen

that each LK -interior operator on X is an interior operator on the complete lattice kLX ;# l
(recall that an interior operator on an ordered set kV ;# l is a map i : V 7! V satisfying

iðvÞ # v; if u # v then iðuÞ # iðvÞ; and iðiðuÞÞ ¼ iðuÞ for each u; v [ V).

(2) One easily verifies that for L ¼ {0; 1}; LK -interior operators are precisely the ordinary

interior operators (no matter what K). Clearly, if K1 # K2 then each LK2
-interior operator is

an LK1
-interior operator. As we will see, the converse is not true. Note also that for

L ¼ {0; 1}; L{1}-interior operators are what is usually known as fuzzy interior operators,

see, e.g. Bodenhofer et al., (2003).

(3) We show that for residuated lattices L where L ¼ ½0; 1� with Łukasiewicz, Gödel, and

product structures, K is relevant: Take X ¼ {x1; x2}; and define I by IðAÞðx1Þ ¼ 0:5;
IðAÞðx2Þ ¼ 1 for Aðx1Þ $ 0:5; Aðx2Þ ¼ 1; and IðAÞðx1Þ ¼ IðAÞðx2Þ ¼ 0 otherwise. An easy

inspection shows that I is an L{1}-interior operator. However, for A1, A2 given by A1ðx1Þ ¼

A2ðx1Þ ¼ 0:5; A1ðx2Þ ¼ 1; A2ðx2Þ ¼ 0:5 it holds S (A1, A2) ¼ 0.5 . 0 ¼ S(I(A1), I(A2))

(for all of the three above-mentioned structures). Thus I is not an L[0.5,1]-interior operator.

We define SI ¼ {AjA ¼ IðAÞ}: Note that it follows from Eq. (4) that SI ¼ {IðAÞjA [ LX}:
Indeed Eq. (4) implies that IðAÞ [ SI for each A [ LX : On the other hand, if A [ SI ; then

A ¼ IðAÞ by definition of SI :
Unless otherwise stated, I denotes an LK -interior operator.

Lemma 2 For Ai [ SI ; i [ I; we have
S

i[I Ai ¼ Ið
S

i[I AiÞ; i.e. SI is closed under union.

Proof For each i [ I we have

IðAiÞ #
[
i[I

IðAiÞ;

and so

IðAiÞ ¼ IðIðAiÞÞ # I

�[
i[I

IðAiÞ

�

from which we get [
i[I

ðIðAiÞÞ # I

�[
i[I

IðAiÞ

�
:

The converse inequality follows from Eq. (2). A

GGEN 41007—17/3/2004—ADMINISTRATOR—97872
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Lemma 3 For A [ SI and a [ K we have

Iða^AÞ ¼ a^A ð5Þ

Proof For A [ SI we have A ¼ IðAÞ: Therefore, we have to show Iða^ IðAÞÞ ¼ a^ IðAÞ:
Iða^ IðAÞÞ # a^ IðAÞ follows from Eq. (2).

Conversely we have Iða^ IðAÞÞ $ a^ IðAÞ iff for any x [ X we have

a^ IðAÞðxÞ # Iða^ IðAÞÞðxÞ

iff
a # IðAÞðxÞ! Iða^ IðAÞÞðxÞ

iff
a # SðIðAÞ; Iða^ IðAÞÞÞ

which is true. Indeed, it is easily seen that a # SðIðAÞ, a^ I(A)) and since a [ K; the # -filter

property of K yields SðIðAÞ; a^ IðAÞÞ [ K: By Eq. (3) we thus have

a # SðIðAÞ; a^ IðAÞÞ # SðIðIðAÞÞ; Iða^ IðAÞÞÞ ¼ SðIðAÞ; Iða^ IðAÞÞÞ

completing the proof. A

Theorem 4 I:L X ! L X is an LK -interior operator on X iff it satisfies Eq. (2) and the

following condition:

SðIðA1Þ;A2Þ # SðIðA1Þ; IðA2ÞÞ whenever SðIðA1Þ;A2Þ [ K: ð6Þ

Proof Suppose Eqs. (2)–(4) hold. If SðIðA1Þ;A2Þ [ K then by Eqs. (3) and (4) we have

SðIðA1Þ;A2Þ # SðIðIðA1ÞÞ; IðA2ÞÞ¼ SðIðA1Þ; IðA2ÞÞ; i.e. Eq. (6) holds.

Conversely, let Eqs. (2) and (6) hold. Suppose S ðA1;A2Þ [ K: By Eq. (2), IðA1Þ # A1;
whence S ðA1;A2Þ # SðIðA1Þ;A2Þ # SðIðA1Þ; IðA2ÞÞ; proving Eq. (3). Since 1 [ K; Eq. (6)

yields 1 ¼ SðIðAÞ; IðAÞÞ # SðIðAÞ; IðIðAÞÞÞ; and so IðAÞ # IðIðAÞÞ: Since the converse

inclusion holds by Eq. (2), we conclude Eq. (4). A

Definition 5 A system S ¼ {AI [ LXji [ I} is called closed under SK -unions iff for each

A [ LX it holds that [
i[I; S ðAi;AÞ[K

S ðAi;AÞ^Ai [ S

where

[
i[I; S ðAi;AÞ[K

S ðAi;AÞ^Ai

 !
ðxÞ ¼

_
i[I; S ðAi;AÞ[K

S ðAi;AÞ^AiðxÞ

for each x [ X: A system closed under SK -unions will be called an LK-interior system.

Loosely speaking, S is closed under SK -unions iff for each fuzzy set A in X, the union of all

Ai [ S which are almost included in A, belongs to S.

Remark 2

(1) We have [
i[I; S ðAi;AÞ[{1}

S ðAi;AÞ^Ai ¼
[

i[I;Ai#A

Ai:

Therefore, S is a 2-interior system iff for each A # X it holds
S

Ai#A Ai [ S: It is well

known that the last condition is equivalent to the fact thatS is closed under arbitrary unions.
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(2) In general, being closed under arbitrary unions is a weaker condition than being closed

under SK -unions. Indeed, let S be closed under SK -unions. To show that S is closed under

arbitrary unions, it suffices to show that_
j[J

AjðxÞ ¼
_

i[I;S Ai;
S

j[J
Aj

� �
[K

S Ai;
[
j[J

Aj

 !
^AiðxÞ

holds for any J # I: The inequality # is true since for each j0 [ J we have

S Aj0 ;
S

j[J Aj

� �
^Aj0 ðxÞ ¼ 1^Aj0 ðxÞ ¼ Aj0 ðxÞ: The converse inequality holds iff

_
j[J

AjðxÞ $ S Ai;
[
j[J

Aj

 !
^AiðxÞ

for each i [ I such that S ðAi;
S

j[J AjÞ [ K which is equivalent to

AiðxÞ^
^
y[X

Aið yÞ!
_
j[J

Ajð yÞ

 ! !
#
_
j[J

AjðxÞ

which is true because

AiðxÞ^
^
y[X

Aið yÞ!
_
j[J

Ajð yÞ

 ! !
# AiðxÞ^ AiðxÞ!

_
j[J

AjðxÞ

 ! !
#
_
j[J

AjðxÞ:

On the other hand, put X ¼ {x}; take the Łukasiewicz structure with L ¼ {0; 1=2; 1};
K ¼ L; S ¼ {{0=x}; {1=x}}; and A ¼ {(1/2)/x}. Then S is clearly closed under arbitrary

unions but not under SK -unions since
S

i[I;sðAi;AÞ[K S ðAi;AÞ^Ai ¼ A � S:
The next theorem shows that closedness under SK -unions is equivalent to closedness under

unions of “K-cut” L-sets of S.

Theorem 6 S ¼ {Ai [ LXji [ I} is an LK -interior system iff for any ai [ K; i [ I;
we have [

ai[K

ðai ^AiÞ [ S:

Proof Let
S

ai[Kðai ^AiÞ [ S; and put ai ¼ S ðAi;AÞ for S ðAi;AÞ [ K and ai ¼ 0

otherwise. Then
S

i[I;S ðAi;AÞ[K S ðAi;AÞ^Ai ¼
S

ai[K ai ^Ai [ S; showing that S is

an LK -interior system.

Conversely, let S be an LK -interior system. Take ai [ L and put A ¼
S

ai[K ai ^Ai:
We have to show that A [ S: It suffices to show

S
i[I;S ðAi;AÞ[KðS ðAi;AÞ^AiÞ ¼ A:

The fact [
i[I;S ðAi;AÞ[K

ðS ðAi;AÞ^AiÞ # A

is shown in Lemma 9. For the converse inclusion, observe first that if aj [ K then

S ðAj;AÞ [ K: Indeed, by # -filter property of K it suffices to show that aj # S ðAj;AÞ:
This holds iff for each x [ X we have

aj # AjðxÞ!
_

ai[K

ðai ^AiðxÞÞ

 !
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i.e. aj ^AjðxÞ # ð
W

ai[Kðai ^AiðxÞÞÞ which is clear. Now, the converse inclusion to be

proved holds true iff for each x [ X we have[
ai[K

ai ^AiðxÞ #
_

i[I; S ðAi;AÞ[K

S ðAi;AÞ^AiðxÞ

iff for each aj [ K it holds

aj # AjðxÞ!
_

i[I;S ðAi;AÞ[K

S ðAi;AÞ^AiðxÞ

which holds since by the above observation

aj # SðAj;AÞ#AjðxÞ!SðAj;AÞ^AjðxÞ#AjðxÞ!
_

i[I;S ðAi;AÞ[K

SðAi;AÞ^AiðxÞ: A

We have an immediate corollary.

Corollary 7 A system S which is closed under arbitrary unions is an LK -interior system

iff for each a [ K and A [ S it holds a^A [ S:

Remark 3 Consider now Example 1 from the point of view of Theorem 6 (and

Corollary 7). One can easily see that T is a fuzzy topology iff T is an L{1}-interior

system (for any structure L with L ¼ ½0; 1�) which is closed under finite intersections

and contains X. Moreover, it is worth mentioning that in Lowen (1976), a stronger

notion of fuzzy topology is studied in that instead of requiring Y, X [ T ; the author

requires that for each a [ ½0; 1�; T contains the constant fuzzy set ca defined by

caðxÞ ¼ a for each x [ X (note that c0 ¼ Y and c1 ¼ X). We can easily see that T is a

fuzzy topology in the above-mentioned stronger sense iff T is an LL-interior system for

L with L ¼ ½0; 1� and a^ b ¼ a ^ b; which is closed under finite intersections and

contains X. Indeed, if T is a fuzzy topology then for any A [ T and a [ L we have

ca [ T (by the stronger definition of fuzzy topology) and so a^A ¼ a ^ A [ T by

closedness of T under finite intersections. Corollary 7 then yields that T is an LL-

interior system which is closed under finite intersections and contains X. On the other

hand, if T is an LL-interior system which is closed under finite intersections and

contains X then since X [ T ; Corollary 7 yields ca ¼ a ^ X [ T for any a [ L; i.e. T
is a fuzzy topology.

The following theorem shows another way to obtain the interior in an LK -interior system.

Theorem 8 Let S ¼ {Ai [ LXji [ I} be an LK -interior system. Then for each A [ LX

we have [
i[I;S ðAi;AÞ[K

S ðAi;AÞ^Ai ¼
[

i[I;Ai#A

Ai:

Proof Clearly,[
i[I;S ðAi;AÞ[K

SðAi;AÞ^Ai $
[

i[I;S ðAi;AÞ¼1

S ðAi;AÞ^Ai ¼
[

i[I;Ai#A

Ai:

On the other hand, it is easy to check that
S

i[I;S ðAi;AÞ[K S ðAi;AÞ^Ai # A: Since S
is an LK -interior system, we have

S
i[I;S ðAi;AÞ[K S ðAi;AÞ^Ai [ S; which immediately gives

[
i[I;S ðAi;AÞ[K

S ðAi;AÞ^Ai #
[

i[I;Ai#A

Ai: A
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Lemma 9 Let S ¼ {Aiji [ I} be an LK -interior system, K be a filter in L. Then

IS : LX ! LX defined by

ISðAÞðxÞ ¼
_

i[I;S ðAi;AÞ[K

ðS ðAi;AÞ^AiðxÞÞ

is an LK -interior operator. Moreover, for A [ LX it holds A [ S iff A ¼ ISðAÞ:

Proof We check (2)–(4).

(2): We have to show ISðAÞðxÞ # AðxÞ for each x [ X which holds true iff for each i [ I

such that S (Ai, A) [ K we have S ðAi;AÞ^AiðxÞ # AðxÞ; i.e. AiðxÞ^
V

y[XðAið yÞ! Að yÞÞ #

AðxÞ; which holds because of

AiðxÞ^
^
y[X

ðAið yÞ! Að yÞÞ # AiðxÞ^ ðAiðxÞ! AðxÞÞ # AðxÞ:

(3): Suppose S ðA1;A2Þ [ K: We have to show

S ðA1;A2Þ # SðISðA1Þ; ISðA2ÞÞ

which is equivalent to the fact that for each x [ X we have S ðA1;A2Þ # ISðA1ÞðxÞ! ISðA2ÞðxÞ;
i.e. by adjointness,

ISðA1ÞðxÞ^ S ðA1;A2Þ # ISðA2ÞðxÞ

i.e. _
i[I;S ðAi;AÞ[K

SðAj;A1Þ^AjðxÞ

 !
^ S ðA1;A2Þ # ISðA2ÞðxÞ

which is true iff for each j [ I with S ðA1;AjÞ [ K we have

S ðAj;A1Þ^AjðxÞ^ S ðA1;A2Þ # ISðA2ÞðxÞ

which is true. Indeed, since

S ðAj;A1Þ^ S ðA1;A2Þ # S ðAj;A2Þ;

S ðAj;A1Þ [ K; S ðA1;A2Þ [ K; and the filter property of K yield S ðAj;A2Þ [ K; and we have

S ðAj;A1Þ^AjðxÞ^ S ðA1;A2Þ # S ðAj;A2Þ^AjðxÞ

#
_

i[I;S ðAi;AÞ[K

S ðAi;A2Þ^AiðxÞ ¼ ISðA2ÞðxÞ:

(4): Clearly, we only have to show ISðAÞ # ISðISðAÞÞ: Since ISðAÞ [ S; there is some

j [ I such that Aj ¼ ISðAÞ: We, therefore, have

ISðISðAÞÞðxÞ ¼
_

i[I;S ðAi;IS ðAÞÞ[K

ðS ðAi; ISðAÞÞ^AiðxÞÞ

$ SðISðAÞ; ISðAÞÞ^ ISðAÞðxÞ ¼ ISðAÞðxÞ:

We now show that A [ S iff A ¼ ISðAÞ: Indeed, if A ¼ Aj [ S then ISðAjÞ # Aj as

proved above.

Conversely,

ISðAjÞðxÞ ¼
_

i[I;S ðAi;AjÞ[K

ðS ðAi;AjÞ^AiðxÞÞ $ ðS ðAj;AjÞ^AjðxÞÞ ¼ AjðxÞ;

GGEN 41007—17/3/2004—ADMINISTRATOR—97872
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i.e. Aj # ISðAjÞ: If A ¼ ISðAÞ; then A [ S by the definition of the LK -interior system,

completing the proof. A

Lemma 10 Let I : LX ! LX be an LK -interior operator. Then SI ¼ {A [ LXjA ¼ IðAÞ} is

an LK -interior system.

Proof Let SI ¼ {Aiji [ I}: We have to show that for each A [ LX we haveW
i[I;S ðAi;AÞ[K S ðAi;AÞ^Ai [ SI : To this end it clearly suffices to show_

i[I;S ðAi;AÞ[K

SðAi;AÞ^Ai ¼ IðAÞ: ð7Þ

On the one hand, since SðIðAÞ;AÞ ¼ 1 [ K; we have_
i[I;S ðAi;AÞ[K

SðAi;AÞ^AiðxÞ $ SðIðAÞ;AÞ^ IðAÞðxÞ ¼ IðAÞðxÞ:

On the other hand _
i[I;S ðAi;AÞ[K

SðAi;AÞ^AiðxÞ # IðAÞðxÞ

iff for each i [ I such that S ðAi;AÞ [ K it holds S ðAi;AÞ^AiðxÞ # IðAÞðxÞ: This is, indeed,

true since

S ðAi;AÞ^AiðxÞ # SðIðAiÞ; IðAÞÞ^ IðAiÞðxÞ ¼ IðAiÞðxÞ^
^
y[X

IðAiÞð yÞ! IðAð yÞÞ

# IðAiÞðxÞ^ ðIðAiÞðxÞ! IðAðxÞÞÞ # IðAÞðxÞ:

To sum up, Eq. (7) is proved. A

Theorem 11 Let I be an LK -interior operator on X, S be an LK -interior system on X, K be a

filter in L. Then SI is an LK -interior system, IS is an LK -interior operator on X, and we have

I ¼ ISI
and S ¼ SIS ; i.e. the mappings I 7! SI and S 7! IS are mutually inverse.

Proof By Lemma 9 and Lemma 10 it remains to prove I ¼ ISI
; i.e. that for any A [ LX;

x [ X;

IðAÞðxÞ ¼
_

A0[L X ;A0¼IðA0Þ;S ðA0;AÞ[K

S ðA0;AÞ^A0ðxÞ:

The inequality $ holds iff for each A0 [ LX such that A0 ¼ IðA0Þ and S ðA0;AÞ [ K

we have S ðA0;AÞ^A0ðxÞ # IðAÞðxÞ which is true since S ðA0;AÞ^A0ðxÞ #

SðIðA0Þ; IðAÞÞ^ IðA0ÞðxÞ # IðAÞðxÞ:
Conversely, putting A0 ¼ IðAÞ we get

SðIðAÞ;AÞ^ IðAÞðxÞ ¼ 1^ IðAÞðxÞ ¼ IðAÞðxÞ;

verifying the # -part. A

3. INTERIOR INDUCED BY FUZZY EQUIVALENCES

For a fuzzy equivalence < on X denote by I< the operator I< : LX ! LX defined by

I<ðAÞðxÞ ¼
^
y[X

ðx < yÞ! Að yÞ ð8Þ
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Definition 12 Let I be an L-interior operator on X. By x I we denote the intersection of all

open L-sets A for which AðxÞ ¼ 1:

Lemma 13 For a fuzzy equivalence < , x I< is open and we have x I< ¼ ½x �<:

Proof First we show that I<ð½x �<Þ ¼ ½x �< :

I<ð½x �<Þð yÞ ¼
^
z[X

ð y < zÞ! ½x �<ðzÞ ¼
^
z[X

ð y < zÞ! ðx < zÞ:

It suffices to show that
V

z[Xð y < zÞ! ðx < zÞ ¼ ðx < yÞ: On the one hand,V
z[Xð y < zÞ! ðx < zÞ # ð y < yÞ! ðx < yÞ ¼ 1 ! ðx < yÞ ¼ ðx < yÞ: On the other hand,

ðx < yÞ #
V

z[Xð y < zÞ! ðx < zÞ iff for each z [ X we have ðx < yÞ # ð y < zÞ! ðx < zÞ

which is true due to adjointness and transitivity.

Furthermore, if A is another open L-set with AðxÞ ¼ 1 then 1 ¼ AðxÞ ¼ I<ðAðxÞÞ ¼V
y[Xðx < yÞ! Að yÞ; from which we get that for any y [ X we have ðx < yÞ # Að yÞ; i.e.

½x �< # A; completing the proof. A

Corollary 14 We have

ðx < yÞ ¼
^

A[SI< ;AðxÞ¼1

Að yÞ:

Remark 4 In general, it is not true that x I is open. For take X ¼ {x1; x2; x3}; L ¼ {0; 1}

and define I by IðAÞ ¼ A for A ¼ X; A ¼ {1=x1; 1=x2; 0=x3}; A ¼ {1=x1; 0=x2; 1=x3};
and IðAÞ ¼ Y otherwise. An easy inspection shows that xI

1 ¼ {1=x1; 0=x2; 0=x3}; but it is

not open.

Recall that an L-set is said to be compatible with < if for any x,y [ X it holds

AðxÞ^ ðx < yÞ # Að yÞ:

Lemma 15 A ¼ I<ðAÞ iff A is compatible with < . Thus SI< ¼ L kX;<l:

Proof Let A ¼ I<(A). Then AðxÞ^ðx < yÞ ¼ I<(A)^ðx < yÞ ¼ ð
V

z[Xðx < zÞ!AðzÞÞ^

ðx < yÞ #ðx < yÞ^ ((x < y) ! A(y)) # A(y).

Conversely, let A be compatible with < . Then AðxÞ # ðx < yÞ! Að yÞ for any y [ X; thus

AðxÞ #
V

y[Xðx < yÞ! Að yÞ ¼ I<ðAÞðxÞ: A

Lemma 16 Let < be an L-equivalence. Then the mapping I< defined by Eq. (8) is

an L-interior operator satisfying, moreover,

I<
\
i[I

Ai

 !
¼
\
i[I

I<ðAiÞ ð9Þ

I<ðx
I< Þð yÞ ¼ I<ð yI< ÞðxÞ ð10Þ

I<ðAÞðxÞ ¼
^
y[X

xI< ð yÞ! Að yÞ ð11Þ

for any Ai [ LX; i [ I; x; y; z [ X:

Proof We have I<ðAÞðxÞ ¼
V

y[Xðx < yÞ! Að yÞ # ðx < xÞ! AðxÞ ¼ 1 ! AðxÞ ¼ AðxÞ;
thus I<ðAÞ # A; proving Eq. (2).

Equation (3) is true iff for each x [ X and every A;B [ LX we have

S ðA;BÞ # I<ðAÞðxÞ! I<ðBÞðxÞ which is equivalent to I<ðAÞðxÞ^ S ðA;BÞ # I<ðBÞðxÞ:
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R. BĚLOHLÁVEK AND T. FUNIOKOVÁ10



The last inequality is true. Indeed,

I<ðAÞðxÞ^ S ðA;BÞ ¼
^
y[X

ðx < yÞ! Að yÞ

 !
^

^
y[X

Að yÞ! Bð yÞ

 !

#
^
y[X

ðx < yÞ! Bð yÞ

¼ I<ðBÞðxÞ;

using ða ! bÞ^ ðb ! cÞ # a ! c:
Equation (4) is true iff for any x [ X we have

I<ðAÞðxÞ # I<ðI<ðAÞÞðxÞ ¼
^
y[X

ðx < yÞ!
^
z[X

ðð y < zÞ! AðzÞÞ

 !

which holds iff for each u; v [ X we have

I<ðAÞðxÞ^ ðx < uÞ^ ðu < vÞ # AðvÞ:

The last inequality is true since

I<ðAÞðxÞ^ ðx < uÞ^ ðu < vÞ ¼ ðx < uÞ^ ðu < vÞ^
^
y[X

ðx < yÞ! Að yÞ

# ðx < vÞ^ ððx < vÞ! AðvÞÞ

# AðvÞ:

For Eq. (9) we have

I<
\
i[I

Ai

 !
ðxÞ ¼

^
y[X

ðx < yÞ!
^
i[I

Aið yÞ

 !

¼
^
y[X

^
i[I

ððx < yÞ! AiÞð yÞ

¼
\

I<ðAiÞ
� �

ðxÞ:

Using Lemma 13 and the fact, that < is symmetric we conclude Eq. (10). Equation (11)

follows directly from definition of I< and from Lemma 13.

Remark 5 Lemma 16 shows that for R being a fuzzy equivalence, IR from Example 2 is an

LK-interior operator satisfying, moreover, some natural additional conditions. An inspection

of the proof of Lemma 16 shows that if R is reflexive and transitive then except for Eq. (10),

all properties mentioned in Lemma 16 are valid as well.

Lemma 17 Let I be an L-interior operator on X that satisfies Eqs. (9)–(11). For x, y [ X put

x <I y ¼ IðxIÞð yÞ:

Then < I is an L-equivalence.

GGEN 41007—17/3/2004—ADMINISTRATOR—97872

FUZZY INTERIOR OPERATORS 11



Proof First let us show that for an L-interior operator I satisfying Eqs. (9)–(11), x I is open

for each x [ X: Putting I ¼ Y; Eq. (9) implies

IðXÞ ¼ I
\
i[I

Ai

 !
¼
\
i[I

IðAiÞ ¼ X:

That is, X is open. Since XðxÞ ¼ 1 and, due to Eq. (9), any intersection of open L-sets is

again open, x I is open for each x [ X (it is the intersection of the non-empty collection of all

open A’s with AðxÞ ¼ 1).Therefore, x I is open and x <I y ¼ IðxIÞð yÞ ¼ xIð yÞ:
Now, ðx <I xÞ ¼ Iðx IÞðxÞ ¼ xIðxÞ ¼ 1; i.e. < I is reflexive.

Symmetry of < I follows from Eq. (10).

We prove transitivity of < I, using idempotency of I we get IðAÞ # IðIðAÞÞ; i.e.

IðAÞð yÞ # IðIðAÞÞð yÞ: Using Eq. (11) we get

IðAÞð yÞ #
^
z[X

yIðzÞ! IðAÞðzÞ;

i.e. for each z [ X we have

IðAÞð yÞ^ yIðzÞ # IðAÞðzÞ:

Putting A ¼ xI we obtain

IðxIÞð yÞ^ yIðzÞ # Iðx IÞðzÞ:

Since yI ¼ Ið y IÞ we have

IðxIÞð yÞ^ Ið y IÞðzÞ # IðxIÞðzÞ;

i.e.

ðx <I yÞ^ ð y <I zÞ # ðx <I zÞ;

showing that <I is transitive.

Theorem 18 The mappings sending < to I<, and I to < I, as defined in Lemmas 16 and 17,

are mutually inverse mappings between the set of all L-equivalences on X and the set of all

L-interior operators on X satisfying Eqs. (9)–(11).

Proof By Lemmas 16 and 17, we have to check that <¼<I< and I ¼ I<I
: We have to prove

ðx < yÞ ¼ ðx <I< yÞ; for any x; y [ X; which is true. Indeed using Lemma 13 we have

ðx <I< yÞ ¼ I<ðx
I< Þð yÞ ¼ ðx < yÞ: Using Eq. (11) we have IðAÞ ¼ I<I

ðAÞ: A

3.1. Law of Double Negation

As mentioned in “Introduction and preliminaries” section, there is a duality in the ordinary

case between the notion of closure operator and that of an interior operator. The duality can

be justified using the law of double negation (i.e. a rule :: a ¼ a valid in the structure of

truth values). We are going to show that providing the law of double negation, conditions

(9)–(11) characterizing fuzzy interior operator induced by fuzzy equivalences can be

obtained using conditions from Belohlávek (2003) characterizing fuzzy closure operators

induced by fuzzy equivalences.
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We need to recall the following definition (Belohlávek, 2001).

Definition 19 An LK-closure operator (fuzzy closure operator) on a set X is a mapping

C : LX ! LX satisfying

A # CðAÞ ð12Þ

S ðA1;A2Þ # SðCðA1Þ;CðA2ÞÞ whenever S ðA1;A2Þ [ K ð13Þ

CðAÞ ¼ CðCðAÞÞ ð14Þ

for every A;A1;A2 [ LX:
As in case of interior operators, we speak of L-closure operators if K ¼ L:
The following fact is well-known and easy to see Belohlávek (2002a,b).

Lemma 20 For any A;B [ LX we have S ðA;BÞ # Sð: B;: AÞ: Provided the law of double

negation, we have, moreover, S ðA;BÞ ¼ Sð: B;: AÞ:

Lemma 21 Let I be a an LK -interior operator on X. Then CI defined for any A [ LX by

CIðAÞ ¼ : Ið: AÞ is an LK -closure operator on X.

Proof In order to prove Eq. (12), i.e. A #: Ið: AÞ; we use Eq. (2) to obtain Ið: AÞ #: A

from which we get : Ið: AÞ $:: A $ A:
To prove Eq. (13), suppose S ðA;BÞ [ K: We have

SðCIðAÞ;CIðBÞÞ ¼ Sð: Ið: AÞ;: Ið: BÞÞ $ SðIð: BÞ; Ið: AÞÞ $ Sð: B;: AÞ $ S ðA;BÞ;

using Eq. (3) and Lemma 20, verifying Eq. (13).

Finally, we have to prove Eq. (14), i.e. : Ið:: Ið: AÞ ¼: Ið: AÞ; which is true.

Indeed, using ::: a ¼: a for any a [ L and Ið: AÞ #: A we have :: Ið: AÞ #: A:
Furthermore, using Eq. (3) we have Ið:: Ið: AÞÞ # Ið: AÞ which implies : Ið:: Ið: AÞÞ

$: Ið: AÞ:
Conversely, using a #:: a for any a [ L we have Ið: AÞ #:: Ið: AÞ; and by Eqs. (3)

and (4) we have Ið: AÞ # Ið:: Ið: AÞÞ which implies : Ið: AÞ $: Ið:: Ið: AÞÞ; i.e.

Eq. (14) holds.

Lemma 22 Let L satisfy the law of double negation. If C is an LK -closure operator on X,

then IC defined for any A [ LX by ICðAÞ ¼: Cð: AÞ is an LK -interior operator on X.

Proof The proof is analogous to proof of Lemma 21; one needs to use :: a # a: A

Remark 6 An inspection of the proof of Lemma 21 shows that in general, without the

assumption of the law of double negation, if C is an LK -closure operator then IC satisfies

Eq. (13) but does not have to satisfy Eqs. (12) and (14). To see an example, take L ¼ ½0; 1�;
with Gödel structure on [0,1] (i.e. a^ b ¼ minða; bÞÞ; X ¼ {x1; x2}, and define C by

CðAÞðx1Þ ¼ 0, CðAÞðx2Þ ¼ 0:5 for Aðx1Þ ¼ 0, A(x2) # 0.5, and CðAÞðx1Þ ¼ CðAÞðx2Þ ¼ 1

otherwise. Then L does not satisfy the law of double negation since for Gödel structure we

have : a ¼ 1 for a ¼ 0 and : a ¼ 0 for a . 0. Furthermore, C is an L{1}-closure operator,

which is not an L[0.5,1]-closure operator. Taking A ¼ {0:2=x1; 0:8=x2}; we have : A ¼

{0=x1; 0=x2}; Cð: AÞ ¼ {0=x1; 0:5=x2}; : Cð: AÞ ¼ {1=x1; 0=x2} ¼ ICðAÞ, but ICðICðAÞÞ ¼

ICð{1=x1; 0=x2}Þ ¼: Cð{0=x1; 1=x2}Þ ¼: {1=x1; 1=x2} ¼ {0=x1; 0=x2} – ICðAÞ:

Lemma 23 Let L satisfy the law of double negation. Then ICI
¼ I and CIC

¼ C:

Proof We have ICI
ðAÞ ¼: CIð: AÞ ¼:: Ið:: AÞ ¼ IðAÞ; verifying ICI

¼ I: The part for

CIC
is analogous. A
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We need the following theorem (Bělohlávek, 2002a,b).

Proposition 24 Let C be an L-closure operator on X that satisfies

C
[
i[I

Ai

 !
¼
[
i[I

CðAiÞ ð15Þ

Cð{a=x}Þ ¼ a^Cð{1=x}Þ ð16Þ

Cð{1=x}Þð yÞ ¼ Cð{1=y}ÞðxÞ: ð17Þ

For x; y [ X; put

ðx <C yÞ ¼ Cð{1=x}Þð yÞ:

Then <C is an L-equivalence on X.

Lemma 25 Let < be an L-equivalence. Then the mapping I< defined by Eq. (8) is an

L-interior operator satisfying, moreover, Eq. (9),

I<ð: {a=x}Þð yÞ ¼ a ! I<ð: {1=x}Þð yÞ ð18Þ

I<ð: {1=x}Þð yÞ ¼ I<ð: {1=y}ÞðxÞ ð19Þ

for any Ai [ L X, i [ I, x,y [ X, a [ L.

Proof From Lemma 16 we know that I< is an L-interior operator satisfying Eq. (9).Eq. (18)

is true since

I<ð: {a=x}Þð yÞ ¼
^
z[X

ð y < zÞ! ð: {a=x}ÞðzÞ

¼ ð y < xÞ! ða ! 0Þ

¼ a ! ðð y < xÞ! 0Þ

¼ a ! I<ð: {1=x}Þð yÞ

Finally Eq. (19) follows from symmetry of < since

I<ð: {1=x}Þð yÞ ¼ ð y < xÞ! 0 ¼ ðx < yÞ! 0 ¼ I<ð: {1=y}ÞðxÞ: A

Lemma 26 Let L satisfy the law of double negation. Let I be an L-interior operator on X that

satisfies Eqs. (9), (18) and (19). For x,y [ X put

ðx <I yÞ ¼: Ið: {1=x}Þð yÞ:

Then < I is an L-equivalence on X.

Proof We have

ðx <I yÞ ¼: Ið: {1=x}Þð yÞ ¼ CIð{1=x}Þð yÞ:

By Lemma 21 and Proposition 24, it suffices to show that CI satisfies Eqs. (15)–(17).

Notice that Eq. (9) is equivalent to : I< :
S

i[I Ai

� �� �
¼
S

i[Ið: I<ð: AiÞÞ: Indeed,

:
S

: Ai

� �
¼
T

Ai is always satisfied, and because L satisfy the property of double

negation, we have : ð
T

: AiÞ ¼
S

Ai: Therefore Eq. (15) holds.
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The law of double negation implies : ða ! bÞ ¼ a^ : b: Indeed, a ! b ¼ a ! ððb ! 0Þ

!0Þ ¼ ða^ ðb ! 0ÞÞ! 0: Therefore, Eq. (18) implies Eq. (16). Equation (17) follows

directly from Eq. (19). A

Theorem 27 Let L satisfy the law of double negation. The mappings sending < to I<,

and I to < I, as defined by Eq. (8) and Lemma 26, are mutually inverse mappings between

the set of all L-equivalences on X and the set of all L-interior operators on X satisfying

Eqs. (9), (18) and (19).

Proof By Lemmas 25 and 26, we have to check that <¼<I< and I ¼ I<I
:

First, we check <¼<I< , we have to prove ðx < yÞ ¼ ðx <I< yÞ for any x,y [ X.

Due to the law of double negation, it is sufficient to verify

ðx < yÞ! 0 ¼
^
z[X

ð y < zÞ! ð: {1=x}ÞðzÞ

which is true. Indeed,^
z[X

ð y < zÞ! ð: {1=x}ÞðzÞ # ð y < xÞ! ð: {1=x}ÞðxÞ ¼ ðx < yÞ! 0:

The converse inequality, i.e.^
z[X

ð y < zÞ! ð: {1=x}ÞðzÞ $ ðx < yÞ! 0

holds true iff for any z [ X we have

ð y < zÞ! ð: {1=x}ÞðzÞ $ ðx < yÞ! 0:

Using ð y<zÞ! ð:{1=x}ÞðzÞ ¼ ð y < zÞ! ðð{1=x}ÞðzÞ! 0Þ ¼ ðð y< zÞ^ ð{1=x}ÞðzÞÞ! 0;
it remains to check

ð y < zÞ^ ð{1=x}ÞðzÞ # ðx < yÞ

which is true. Indeed, for z ¼ x we obtain (x < y) # (x < y) and for z – x we obtain 0 # (x < y).

Second, we check I ¼ I<I
: Using AðxÞ ¼

S
y[X {Að yÞ=y}ðxÞ ¼:

T
y[X : {Að yÞ=y}ðxÞ;

we have

IðAÞðxÞ ¼
^
y[X

Ið: { : Að yÞ=y}ÞðxÞ

¼
^
y[X

: Að yÞ! Ið: {1=y}ðxÞÞ

¼
^
y[X

: Ið: {1=y}ðxÞÞ! Að yÞ

¼ I<I
ðAÞðxÞ

completing the proof. A

Remark 7 For the general case of a structure of truth values which does not satisfy the

law of double negation, we do not know if there are some conditions characterizing

fuzzy interior operator induced by fuzzy equivalences that can be derived from

Eqs. (15)–(17).
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