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 a b s t r a c t

We propose a simple idea that enables a speed-up of existing algorithms for Boolean matrix factorization. It 
consists in a straightforward redundancy-removing transformation of the input data and an appropriate modifi-
cation of the factorization algorithm. Examination of real-world data used for benchmarking reveals that most are 
amenable to such a transformation, rendering the idea practically significant. Experimental evaluation confirms 
that our approach results in a significant speed-up of factorization algorithms. We also discuss the implications 
of our findings for factorization of large Boolean data and outline topics for future research.

1.  Introduction

1.1.  Problem setting and our contribution

In the past fifteen years or so, research in Boolean matrix factoriza-
tion (BMF) has focused on developing new algorithms; see [1] for a re-
cent overview. Various approaches have been proposed that are able to 
compute precise or approximate factorizations of a given input Boolean 
matrix. To cope with the NP-hardness of the proposed variants of BMF, 
the existing algorithms make use of various heuristics and compute the 
factorizations directly from the input Boolean matrices.

In this paper, we propose to utilize a scheme, not employed in the 
previous studies on BMF, that consists in transforming the input data, 
factorizing the transformed data, and retrieving from the computed fac-
torization of the transformed data the resulting factorization of the orig-
inal data. While such a scheme may result in various particular factor-
ization methods depending on the kind of transformation of the input 
data and the particular factorization algorithm, we examine a particular 
transformation that removes a simple form of redundancy from the in-
put data, namely redundant rows and columns from the input Boolean 
matrix. To factorize the thus transformed data, we employ a natural 
modification of a given factorization algorithm, which we demonstrate 
on the widely known Asso and GreConD algorithms.

Our experimental evaluation confirms a practical relevance of the 
proposed approach. Namely, an examination of real Boolean data used 
in the literature on BMF reveals that most data is considerably redun-
dant in the above sense, which has not been observed in the previous 
studies on BMF. As a result, such data is amenable to the proposed ap-
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proach, which results in a remarkable speed-up in factorizing the data. 
The proposed approach is also relevant for the possibility of sampling 
the input data, whose particular instance appeared in the literature. In 
view of our findings and additional experimental observations, we point 
out shortcomings of this existing work. In addition, we propose topics 
for future research and support them with preliminary experimental re-
sults.

1.2.  Notation

Denote by {0, 1}𝑛×𝑚 the set of all 𝑛 × 𝑚 Boolean matrices, i.e., ma-
trices, denoted in our paper by 𝐼 , that have 𝑛 rows, 𝑚 columns, and 
whose entries 𝐼𝑖𝑗 equal 0 or 1. Furthermore, the 𝑖th row and the 𝑗th col-
umn of 𝐼 shall be denoted by 𝐼𝑖_ and 𝐼_𝑗 , respectively, for 𝑖 = 1,… , 𝑛 and 
𝑗 = 1,… , 𝑚. As a rule, the rows and the columns represent objects (ex-
emplars, items) and attributes (properties, features), respectively, and 
𝐼𝑖𝑗 = 1 indicates that the object represented by the row 𝑖, such as a par-
ticular organism or a particular product, has the attribute represented 
by the column 𝑗, such as “to breathe” or “to contain lithium.”

The basic problem in BMF consists in finding for a given object×at-
tribute matrix 𝐼 ∈ {0, 1}𝑛×𝑚 an object×factor matrix 𝐴 ∈ {0, 1}𝑛×𝑘 and a 
factor×attribute matrix 𝐵 ∈ {0, 1}𝑘×𝑚 such that
𝑘 is reasonably small and 𝐼 ≈ 𝐴◦𝐵,

i.e., 𝐼 approximately equals the well-known Boolean matrix product 
𝐴◦𝐵 defined by

(𝐴◦𝐵)𝑖𝑗 =
𝑘

max
𝑙=1

min(𝐴𝑖𝑙 , 𝐵𝑙𝑗 ).
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The approximate equality 𝐼 ≈ 𝐴◦𝐵 of 𝐼 and 𝐴◦𝐵 is assessed by the met-
ric 𝐸(⋅, ⋅) induced by the matrix 𝐿1-norm [2], which turns into

𝐸(𝐼, 𝐴◦𝐵) =
𝑛,𝑚
∑

𝑖,𝑗=1
|𝐼𝑖𝑗 − (𝐴◦𝐵)𝑖𝑗 | = |{⟨𝑖, 𝑗⟩; 𝐼𝑖𝑗 ≠ (𝐴◦𝐵)𝑖𝑗}|.

The value 𝐸(𝐼, 𝐴◦𝐵) gets split into two conceptually different types of 
error,

𝐸(𝐼, 𝐴◦𝐵) = 𝐸𝑢(𝐼, 𝐴◦𝐵) + 𝐸𝑜(𝐼, 𝐴◦𝐵),

where the 𝐸𝑢 and 𝐸𝑜 are the numbers of entries of 𝐼 that are uncovered 
by 𝐴 and 𝐵 and those that are overcovered, respectively, i.e.,
𝐸𝑢(𝐼, 𝐴◦𝐵) = |{⟨𝑖, 𝑗⟩; 𝐼𝑖𝑗 = 1, (𝐴◦𝐵)𝑖𝑗 = 0}|,

𝐸𝑜(𝐼, 𝐴◦𝐵) = |{⟨𝑖, 𝑗⟩; 𝐼𝑖𝑗 = 0, (𝐴◦𝐵)𝑖𝑗 = 1}|.

Both the exact and approximate factorization and the error of factoriza-
tion are found in the supplementary material [3, example 1].

Two particular optimization problems result from the above basic 
problem [4,5]: the approximate factorization problem (AFP), in which 
a threshold 𝜀 is prescribed and the smallest number 𝑘 of factors is sought 
for which 𝐸(𝐼, 𝐴◦𝐵) ≤ 𝜀, and the discrete basis problem (DBP) in which 
a number 𝑘 is prescribed and 𝑘 factors are sought for which 𝐸(𝐼, 𝐴◦𝐵)
is as small as possible. A number of BMF algorithms have been designed 
[1], of which we employ GreConD [6, Algorithm 2] and Asso [5], 
which are regarded as the representative algorithms for the AFP and 
DBP, respectively.

2.  Redundancy in real Boolean data

In the literature on BMF, a number of real datasets have been ex-
plored both for the purpose of factor-analyzing them and utilizing them 
for benchmarking the BMF algorithms. In this section, we present the 
most popular of these datasets and examine them for redundancy, which 
is the crucial property for our purpose. The datasets along with their 
relevant characteristics are provided in Table 1. Each dataset, i.e., a 
Boolean matrix 𝐼 , is represented by single table row, with the first four 
columns containing the name, the dimension dim(𝐼), the number ||𝐼||
of 1s, and the density of the matrix 𝐼 , respectively. The dimension 𝑛 × 𝑚
indicates that 𝐼 has 𝑛 rows and 𝑚 columns, and the density is the ratio 
||𝐼||
𝑛⋅𝑚 . The next two columns contain the dimension dim(Cla(𝐼)) of the 
modified matrix denoted Cla(𝐼), i.e., the one obtained from 𝐼 by the 
removal of redundant rows and columns as described in the next sec-
tion, and the redundancy defined as (1 − 𝑛𝑐 ⋅𝑚𝑐

𝑛⋅𝑚 ) ⋅ 100, where 𝑛𝑐 and 𝑚𝑐
are the number of rows and columns of Cla(𝐼). That is, a redundancy of 
70 means that the modified matrix Cla(𝐼) only contains 100 − 70 = 30%
of the entries of the original matrix 𝐼 , i.e., 70% of 𝐼 got removed.

We now provide a description of the involved datasets with details 
that are not commonly available in the literature.

• The Advertisement dataset [7], created in 1998 [8], comprises 3,279
internet images, each described by 1,555 binary attributes supple-
mented by three continuous ones (width, height and aspect ra-
tio) and one class variable distinguishing advertisements from non-
advertisements. Each of the binary attributes indicates the presence 
of keywords in text components of an advertisement such as URL.1

• Several datasets, including Americas Large/Small, APJ, Domino, 
Emea, Healthcare, and Customer, represent unspecified user-
permission relationships and were initially utilized for addressing 
the Role Mining Problem [9]. The Americas Large and Americas 
Small datasets, collected from Cisco firewalls, contains 3,485 and 
3,477 users, respectively, each described by 10,127 and 1,586 access 
rights to network services. The compact Healthcare dataset, obtained 
from the U.S. Veterans Administration, outlines 46 healthcare per-
missions that may be assigned to 46 certified providers.

1 The meaning of the two binary attributes (1,556th and 1,557th) is not clear.

• The Firewall 1 and Firewall 2 datasets [9] represent the outcomes of 
a checkpoint firewall analysis algorithm describing the reachability 
of specific service packets (such as http) from the source IP address 
range (row) to the destination range (column), with dimensions of 
365 × 709 and 325 × 590, respectively.

• The DBLP dataset comes from the widely used computer science bib-
liographic database.2 The dataset has been collected by Miettinen 
[10], and includes information about contributions to 19 selected 
premier conferences (columns) by 6,980 authors (rows) who con-
tributed at least two papers to the selected conferences.

• The Chess dataset [7], known also as KRKPA7, is a well-known 
dataset, used for a classification of chess endgame scenarios. It em-
ploys a binary class label to indicate whether white can secure a 
win. The 3,196 unique board positions are described by 76 attributes 
determining the pieces’ positions on the chessboard [11].

• The DNA dataset contains information about DNA copy number am-
plification profiles in human neoplasms extracted from a publicly 
accessible data collection [12]. It features a matrix with 4,590 tu-
mor cases, each characterized by 392 chromosomal loci indicating 
the presence of amplifications as hallmarks of advanced tumors.

• Mushroom [7] is a well-known example of a classification dataset 
which represents 22 physical traits of 8,124 hypothetical gilled mush-
room samples in the Agaricus and Lepiota families. These traits, such 
as size, color, or odor, are expressed by a total of 119 binary at-
tributes.

• The NSF dataset was collected in [10] from the data accessible from 
the National Science Foundation in the form of bags of words of the 
abstracts of projects submitted for funding. The dataset represents 
12,841 abstracts (rows) described by a set of 4,894 words (columns) 
resulting from a stemming process and excluding those appearing in 
more than 999 or fewer than 10 abstracts.

• Paleo3 contains information on 501 fossils discovered in various pa-
leontological sites across Europe. The data, collected in December 
2008, has been processed to highlight 139 distinct characteristics of 
these fossils [10].

• Post (Post-Operative Patient) [7] outlines the health status of pa-
tients after surgery, detailing their condition through categorically 
assessed factors such as temperature, oxygen saturation, and blood 
pressure stability. Altogether, eight categorical health measure-
ments, represented by 25 Boolean attributes, are used to evaluate 
the condition of 90 patients in a postoperative recovery area.

• Servo’s description [7] is somewhat ambiguous. The dataset is sup-
posed to represent a simulation involving four components of a servo 
system: An amplifier, a motor, a lead screw nut, and a sliding car-
riage. Each setup is characterized by a combination of two categor-
ical and two integer-valued attributes, along with the system’s rise 
time. Disregarding the final continuous attribute and converting the 
four attributes, which include three attributes with five unique val-
ues each and one with four unique values, results in a total of 19
Boolean attributes (columns) which represent 167 initial system con-
figurations (rows).

• Shuttle [7] (Shuttle Landing Control) features categorical data with 
15 rows corresponding to conditions under which autolanding would 
be preferable to manual control of a spacecraft. These are described 
by 7 numerical features with a total of 23 unique values represented 
by the columns of the corresponding Boolean matrix.

• The TicTacToe dataset captures 953 unique arrangements of cir-
cles and crosses on a 3 × 3 game board at the end of a tic-tac-toe 
game. Each configuration is detailed using 30 attributes, which spec-
ify whether a circle, cross, or blank space occupies each position on 
the board, along with a target variable indicating “secured win for 

2 http://www.informatik.uni-trier.de/∼ley/db/
3 NOW public release 030717, available from 

http://www.helsinki.fi/science/now/.
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Table 1 
Real Boolean data used in BMF.
 data dim(𝐼) ||𝐼||  density dim(Cla(𝐼))  redundancy
 Advertisement  3,279×1,557  45,139  0.009  1,989×763  70%
 Americas Large  3,485×10,127  185,294  0.005  432×1,354  98%
 Americas Small  3,477×1,586  105,205  0.019  259×349  98%
 APJ  2,044×1,164  6841  0.003  564×578  86%
 Customer  10,961×277  45,427  0.015  5,656×276  49%
 DBLP  6,980×19  17,173  0.130  890×19  87%
 DNA  4,590×392  26,527  0.015  1,316×371  73%
 Domino  79×231  739  0.040  23×38  95%
 Emea  35×3,046  7220  0.068  34×263  92%
 Firewall 1  365×709  31,951  0.124  90×86  97%
 Firewall 2  325×590  36,428  0.190  11×11  99%
 Healthcare  46×46  1486  0.702  18×19  84%
 Chess  3,196×76  118,252  0.487  3,196×76  0%
 Mushroom  8,124×119  186,852  0.193  8,124×113  5%
 NSF  12,841×4,894  564,462  0.009  12,658×4,893  1%
 Paleo  501×139  3537  0.051  471×139  6%
 Post  90×25  720  0.320  75×23  23%
 Servo  167×19  668  0.211  167×19  0%
 Shuttle  15×23  105  0.304  15×22  4%
 Tic Tac Toe  958×30  9580  0.333  958×30  0%
 Zoo  101×28  862  0.305  59×26  46%

cross.” The last attribute is empty (full of zeros) with an unclear 
meaning.

• Zoo [7] represents a Boolean dataset describing 101 animals char-
acterized by 14 Boolean and two numerical attributes. The Boolean 
attributes correspond to features such as presence of hair, presence 
of tail, or venomousness. The other attributes, describing a number 
of legs and representing animal classes such as mammals, birds or 
reptiles, have 14 unique values, resulting in 28 Boolean attributes in 
total.

3.  New scheme for factorization

3.1.  Clarification as the proposed reduction of input matrix

We employ a simple reduction which consists in removing duplicate 
rows and columns. This reduction is well known in formal concept anal-
ysis [13] where it is known as clarification, which term we use below. 
In particular, we employ a variant that clarifies an input Boolean matrix 
𝐼 ∈ {0, 1}𝑛×𝑚 by removing from 𝐼 all the duplicate rows and columns so 
that only the first occurrences are kept in the resulting matrix 𝐽 .

More precisely, duplicity obviously induces equivalence relations ≡𝑋
and ≡𝑌  on the sets
𝑋 = {1,… , 𝑛}  and 𝑌 = {1,… , 𝑚}

of row and column indices of 𝐼 , respectively, i.e.,
𝑖1 ≡𝑋 𝑖2 iff 𝐼𝑖1_ = 𝐼𝑖2_ and 𝑗1 ≡𝑌 𝑗2 iff 𝐼_𝑗1 = 𝐼_𝑗2 ,

for 𝑖1, 𝑖2 ∈ 𝑋 and 𝑗1, 𝑗2 ∈ 𝑌 . That is, 𝑖1 ≡𝑋 𝑖2 means that rows 𝑖1 and 
𝑖2 of 𝐼 are equal, the equivalence class [𝑖]≡𝑋

 consists of indices of all 
the rows equal to row 𝑖, and min[𝑖]≡𝑋

 is the index of first such row in 
𝐼 ; the same holds for the columns. The equivalence classes [𝑖]≡𝑋

 and 
[𝑗]≡𝑌

 hence correspond to the rows and the columns of the clarified 
matrix 𝐽 , respectively, and represent the rows and the columns of 𝐼 to 
be preserved: The numbers 𝑛𝑐 and 𝑚𝑐 of rows and columns of 𝐽 thus 
equal the numbers of equivalence classes of ≡𝑋 and ≡𝑌 , respectively, 
i.e.,

𝑛𝑐 = |𝑋∕ ≡𝑋 | and 𝑚𝑐 = |𝑌 ∕ ≡𝑌 |.

In addition, the ordering of rows and columns in 𝐽 coincides with the 
ordering of the first occurrences of their counterparts in 𝐼 : If the first 
occurrence of row 𝑖1 precedes the first occurrence of row 𝑖2 in 𝐼 , i.e., 
min[𝑖1]≡𝑋

< min[𝑖2]≡𝑋
, then the counterpart of 𝑖1 precedes the counter-

part of 𝑖2 in 𝐽 ; the same applies to the columns. Moreover, it turns out 

useful for our purpose to denote for each row index 𝑖 = 1,… , 𝑛𝑐 of 𝐽 by 
𝑟𝑝𝑜𝑠(𝑖) the index of the first occurrence of the counterpart of the row 𝐽𝑖_
in 𝐼 , i.e., the row position of 𝐼 from which the row 𝑖 of 𝐽 originates; 
similarly for the column indices 𝑗 = 1,… , 𝑚𝑐 and 𝑐𝑝𝑜𝑠(𝑗). Clarification 
is illustrated in the supplementary material [3, example 2].

Note that removing duplicate rows may be performed by a compo-
nentwise sorting of the rows followed by a single pass through the rows 
during which the duplicates are removed. The single pass may even be 
skipped when removing duplicity appropriately within the sorting pro-
cess. This is a standard procedure in matrix computations and database 
query processing with a time complexity in 𝑂(𝑚𝑛 log 𝑛); see [14] for de-
tails. Duplicate columns are treated dually.

3.2.  Factorizing the clarified matrix and the need to modify a factorization 
algorithm

If 𝐽 ∈ {0, 1}𝑛𝑐×𝑚𝑐  is the clarified version of an input matrix 𝐼 ∈
{0, 1}𝑛×𝑚, as described in the previous section, one may consider com-
puting first an exact or approximate factorization of the smaller matrix 
𝐽 , and “extend” it to obtain a factorization of the input matrix 𝐼 . That 
is, if 𝐽 ≈ 𝐶◦𝐷, where 𝐶 ∈ {0, 1}𝑛𝑐×𝑘 and 𝐷 ∈ {0, 1}𝑘×𝑚𝑐  are the object-
factor and factor-attribute matrices computed for 𝐽 , respectively, 1 aims 
to obtain from 𝐶 and 𝐷 matrices 𝐴 = ext(𝐶) and 𝐵 = ext(𝐷) satisfying 
𝐼 ≈ 𝐴◦𝐵.

While this procedure may be considered even for a more general 
kind of reduction of the input matrix, in the case of clarification, one 
may utilize straightforward extensions
𝐶 ∈ {0, 1}𝑛𝑐×𝑘 ↦ ext(𝐶) ∈ {0, 1}𝑛×𝑘 and

𝐷 ∈ {0, 1}𝑘×𝑚𝑐 ↦ ext(𝐷) ∈ {0, 1}𝑘×𝑚,

that consist in taking for each row ext(𝐶)𝑖_ of ext(𝐶) the corresponding 
row 𝐶𝑖∗_ of 𝐶, and for each column ext(𝐷)_𝑗 of ext(𝐷) the corresponding 
column 𝐷_𝑗∗  of 𝐷. That is, we consider the extensions defined for rows 
𝑖 = 1,… , 𝑛 and columns 𝑗 = 1,… , 𝑚 by
ext(𝐶)𝑖𝑙 = 𝐶𝑖∗𝑙 where 𝑖∗ = 𝑟𝑝𝑜𝑠−1(min[𝑖]≡𝑋

), (1)

ext(𝐷)𝑙𝑗 = 𝐷𝑙𝑗∗  where 𝑗∗ = 𝑐𝑝𝑜𝑠−1(min[𝑗]≡𝑌
), (2)

for every 𝑙 = 1,… , 𝑘. Note that the definition of 𝑖∗ in (1) says that 𝑖∗ is 
the index of the row of 𝐽 to which the row 𝑖 of 𝐼 (and all rows equivalent 
to row 𝑖) got reduced by the considered clarification; symmetrically, for 
𝑗∗ and the columns.

Since each factor 𝑙 = 1,… , 𝑘 behind the factorization 𝐽 ≈ 𝐶◦𝐷 may 
be identified with a pair consisting of the column 𝐶_𝑙 of 𝐶 and the row 
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𝐷𝑙_ of 𝐷 (Section 1.2), the extensions described in (1) and (2) may be 
understood as follows: Each factor of 𝐽 , i.e., column 𝐶_𝑙 and row 𝐷𝑙_, 
gets expanded to a possible factor of 𝐼 by copying each value 𝐶𝑖∗𝑙 to the 
corresponding positions in the column ext(𝐶)_𝑙, i.e., to the positions 𝑖 ∈
[𝑟𝑝𝑜𝑠(𝑖∗)] in ext(𝐶)_𝑙, and dually for 𝐷. For an example demonstrating the 
preceding extensions, see the supplementary material [3, example 3].

One can easily check that in the just mentioned example, 
ext(𝐶)◦ext(𝐷) is the exact decomposition of 𝐼 , i.e., ext(𝐶)◦ext(𝐷) = 𝐼 . 
This is always the case when 𝐽 = 𝐶◦𝐷, as shown below in corollary 1. 
This corollary follows from the next theorem in which the error of the 
resulting factorization of 𝐼 by ext(𝐶) and ext(𝐷) is derived in a general 
case:

Theorem 1. Let 𝐼 ∈ {0, 1}𝑛×𝑚 and consider the clarified matrix 𝐽 ∈
{0, 1}𝑛𝑐×𝑚𝑐  obtained from 𝐼 as described in Section 3.1. For any 𝐶 ∈
{0, 1}𝑛𝑐×𝑘 and 𝐷 ∈ {0, 1}𝑘×𝑚𝑐 , and the corresponding extended ext(𝐶) ∈
{0, 1}𝑛×𝑘 and ext(𝐷) ∈ {0, 1}𝑘×𝑚 we have

𝐸(𝐼, ext(𝐶)◦ext(𝐷)) =
𝑛𝑐 ,𝑚𝑐
∑

𝑖,𝑗=1;
𝐽𝑖𝑗≠(𝐶◦𝐷)𝑖𝑗

|[𝑟𝑝𝑜𝑠(𝑖)]≡𝑋
| ⋅ |[𝑐𝑝𝑜𝑠(𝑗)]≡𝑌

| (3)

Proof.  The proof is straightforward, the basic argument being that an 
error in 𝐸(𝐽 , 𝐶◦𝐷) caused by the entry ⟨𝑖, 𝑗⟩ in 𝐽 , i.e., 𝐽𝑖𝑗 ≠ (𝐶◦𝐷)𝑖𝑗 , gets 
multiplied by the factor |[𝑟𝑝𝑜𝑠(𝑖)]≡𝑋

| ⋅ |[𝑐𝑝𝑜𝑠(𝑗)]≡𝑌
| as regards the contri-

bution to the error 𝐸(𝐼, ext(𝐶)◦ext(𝐷)). Namely, due to the construction 
of ext(𝐶) and ext(𝐷), the same configuration at the entry ⟨𝑖, 𝑗⟩ in 𝐽 , i.e., 
𝐽𝑖𝑗 ≠ (𝐶◦𝐷)𝑖𝑗 , appears in all the entries of 𝐼 corresponding to the rows 
equivalent to 𝑟𝑝𝑜𝑠(𝑖) and the columns equivalent to 𝑐𝑝𝑜𝑠(𝑗). ∎
Corollary 1. With the same assumptions as in theorem 1,
𝐽 = 𝐶◦𝐷 implies 𝐼 = ext(𝐶)◦ext(𝐷).

Proof.  Immediate from theorem 1 since 𝐽 = 𝐶◦𝐷 and 𝐼 = ext(𝐶)◦ext(𝐷)
mean 𝐸(𝐽 , 𝐶◦𝐷) = 0 and 𝐸(𝐼, ext(𝐶)◦ext(𝐷)) = 0, and since 𝐸(𝐽 , 𝐶◦𝐷) =
0 implies that there is no summand in (3). ∎

Analogous relationships are easily obtained for 𝐸𝑢 and 𝐸𝑜; for in-
stance,

𝐸𝑜(𝐼, ext(𝐶)◦ext(𝐷)) =
𝑛𝑐 ,𝑚𝑐
∑

𝑖,𝑗=1;
𝐽𝑖𝑗<(𝐶◦𝐷)𝑖𝑗

|[𝑟𝑝𝑜𝑠(𝑖)]≡𝑋
| ⋅ |[𝑐𝑝𝑜𝑠(𝑗)]≡𝑌

|.

The meaning of the theorem 1 is illustrated in the supplementary ma-
terial [3, example 4]. Note also that it directly follows from corollary 1 
and the involved considerations that the Boolean ranks of the input ma-
trix 𝐼 and the reduced matrix 𝐽 are equal (recall that a Boolean rank of 
𝐼 is the smallest number 𝑘 of factors for which an exact decomposition 
𝐼 = 𝐴◦𝐵 exists for some 𝐴 ∈ {0, 1}𝑛×𝑘 and 𝐵 ∈ {0, 1}𝑘×𝑚).

The above discussion suggests the following procedure for factoriz-
ing a Boolean matrix 𝐼 :
1. Compute a clarified 𝐽 from 𝐼 as described in Section 3.1;
2. Compute an exact or approximate factorization of 𝐽 into 𝐶 and 𝐷
using an established BMF algorithm Alg;

3. Return ext(𝐶) and ext(𝐷) given by (1) and (2).
This procedure has two convenient properties: First, it is faster than 

a direct factorization of 𝐼 , if 𝐼 contains redundant rows and columns. 
Second, 𝐼 = ext(𝐶)◦ext(𝐷) whenever 𝐽 = 𝐶◦𝐷.

However, the procedure has a significant shortcoming: For one, it 
may deliver a factorization that is different from the one obtained by 
a direct factorization of 𝐼 by Alg, hence the procedure may not be re-
garded as speeding up Alg. In addition, and more importantly, it may 
deliver a factorization that is considerably worse in terms of coverage of 
data by factors compared to the factorization obtained by Alg. That the 
described shortcoming indeed materializes on real datasets is demon-
strated in detail in Section 4.3.1.

It nevertheless turns out that the shortcoming may be eliminated by 
employing a modified version of Alg in step 2 of the above scheme. This 

is worked out in Sections 3.3 and 3.4, in which we present the modified 
schemes for the two prototypical algorithms for the AFP and the DBP 
problems, namely GreConD and Asso.

3.3.  Extended GreConD

Since the original GreConD [6, Algorithm 2] utilizes formal con-
cepts associated to the input Boolean matrix 𝐼 , we need to recall the 
notions involved. Let 𝑋 = {1,… , 𝑛} and 𝑌 = {1,… , 𝑚} denote the set of 
objects and attributes, respectively. Each 𝑛 × 𝑚 Boolean matrix 𝐼 induces 
the so-called concept forming operators ↑𝐼 ∶ 2𝑋 → 2𝑌  and ↓𝐼 ∶ 2𝑌 → 2𝑋 , 
defined for 𝐴 ⊆ 𝑋 and 𝐵 ⊆ 𝑌  by
𝐴↑𝐼 = {𝑗 ∈ 𝑌 ∣ 𝐼𝑖𝑗 for each 𝑖 ∈ 𝐴} and 𝐵↓𝐼 = {𝑖 ∈ 𝑋 ∣ 𝐼𝑖𝑗 for each 𝑗 ∈ 𝐵}.

That is, 𝐴↑𝐼  is the set of all attributes shared by all the objects in 𝐴, and 
𝐵↓𝐼  consists of all objects sharing all the attributes in 𝐵. A pair ⟨𝐴,𝐵⟩ of 
𝐴 ⊆ 𝑋 and 𝐵 ⊆ 𝑌  satisfying 𝐴↑𝐼 = 𝐵 and 𝐵↓𝐼 = 𝐴 is called a formal con-
cept of 𝐼 , and the set of all formal concepts, denoted (𝑋, 𝑌 , 𝐼), is called 
the concept lattice of 𝐼 .4 Each set  = {⟨𝐶1, 𝐷1⟩,… , ⟨𝐶𝑘, 𝐷𝑘⟩} of formal 
concepts of 𝐼 (with a fixed ordering given by the indices 1,… , 𝑘) natu-
rally induces two Boolean matrices, 𝐴 ∈ {0, 1}𝑛×𝑘 and 𝐵 ∈ {0, 1}𝑘×𝑚: 
The columns of 𝐴  are the characteristic vectors of the sets 𝐶1,… , 𝐶𝑘, 
and the rows of 𝐵  are the characteristic vectors of 𝐷1,… , 𝐷𝑘. In the il-
lustrative example 1 in the supplementary material [3], the pair ⟨𝐶1, 𝐷1⟩

with 𝐶1 = {2, 3} and 𝐷1 = {1, 2, 3} is a formal concept of 𝐼 and so are the 
pairs ⟨𝐶2, 𝐷2⟩ = ⟨{3, 4}, {3, 4, 5}⟩ and ⟨𝐶3, 𝐷3⟩ = ⟨{1, 3, 4}, {4, 5}⟩. These 
are just the formal concepts corresponding to the three column-row pairs 
used in that example, and hence the matrices 𝐴  and 𝐵  induced by 
 = {⟨𝐶1, 𝐷1⟩, ⟨𝐶2, 𝐷2⟩, ⟨𝐶3, 𝐷3⟩} are just the matrices 𝐴 and 𝐵 of the 
example.

Now, the original GreConD algorithm computes for a given matrix 
𝐼 ∈ {0, 1}𝑛×𝑚 a set  of formal concepts of 𝐼 such that 𝐼 = 𝐴◦𝐵  using 
a particular greedy search method. Basically, our new algorithm, Algo-
rithm 1, extends the original GreConD as follows. First, the algorithm 
computes a clarified matrix 𝐽 = 𝖼𝗅𝖺(𝐼) from 𝐼 . Second, it computes a fac-
torization of 𝐽 , i.e., a set  of formal concepts of 𝐽 for which 𝐽 = 𝐴◦𝐵, 
in a way similar to that used by GreConD, but with a different approach 
to coverage as explained below. Third, a set  of formal concepts of 𝐼 is 
obtained from  such that 𝐼 = 𝐴◦𝐵 , i.e., the algorithm finishes with 
a factorization of 𝐼 .

In detail, ll. 1–4 initialize the variables used. In addition to  and , 
explained in the previous paragraph, these include 𝑛𝑐 , 𝑚𝑐 , 𝑟𝑝𝑜𝑠, and 𝑐𝑝𝑜𝑠
which are returned by the clarification procedure Cla; see Section 3.1. 
Moreover, the algorithm involves matrix 𝑈 of the same dimension as 𝐽
which contains information about the entries containing 1 that are not 
covered by the factors of  computed in the previous iterations. Unlike 
the original GreConD, which stores in 𝑈 the values 0 and 1 indicating 
“not covered” and “covered” by , 𝑈𝑖𝑗 is now a non-negative integer. 
While 𝑈𝑖𝑗 = 0 still indicates that the entry 𝐽𝑖𝑗 has been covered by the 
previously computed factors, 𝑈𝑖𝑗 > 0 means that 𝐽𝑖𝑗 = 1 and that if the 
entry 𝐽𝑖𝑗 gets covered by a formal concept ⟨𝐶,𝐷⟩ of 𝐽 , then its extension 
⟨𝐸, 𝐹 ⟩ computed in ll. 20–21 shall cover 𝑈𝑖𝑗 entries of the input matrix 
𝐼 that contain 1. The rationale behind l. 7 is explained in the proof of 
theorem 2. Next, the difference from GreConD in computing  from 𝐽 in 
ll. 8–18 consists in storing different information in matrix 𝑈 indicating 
which entries of 𝐽 have not been covered by the factors in  computed 
in the previous iterations. The loop in ll. 8–18 basically agrees with 
the original GreConD when applied to the clarified matrix 𝐽 , with the 

4 These are the basic notions of formal concept analysis (FCA) [13]. Note that 
FCA is based on a formalism of sets rather than Boolean matrices used in BMF. 
Thus, instead of a Boolean matrix 𝐼 , FCA assumes a binary relation between 𝑋
and 𝑌 , i.e. a subset of 𝑋 × 𝑌 . The correspondence of sets and relations used in 
FCA, on the one hand, and vectors and matrices used in BMF, is straightforward, 
and one can switch between the two formalisms: 𝐼𝑖𝑗 = 1 indicates that the pair 
⟨𝑖, 𝑗⟩ is in the corresponding relation.
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provision that the improvement in coverage in the extension of 𝐷 by the 
attribute 𝐽 is computed according to
𝐷⊕𝐽 𝑗 =

∑

𝑥∈(𝐷∪{𝑗})↓𝐽

∑

𝑦∈(𝐷∪{𝑗})↓𝐽 ↑𝐽

𝑈𝑥𝑦, (4)

i.e., taking into account the number of uncovered entries in 𝐼 . In 
ll. 19–22, the set  is computed from  by a simple extension: For each 
⟨𝐶,𝐷⟩ ∈ , one puts to  the pair ⟨𝐸, 𝐹 ⟩ in which 𝐸 contains along with 
each row index 𝑖 ∈ 𝐶 all the indices 𝑖′ ∈ 𝑋 of the rows ≡𝑋 -equivalent 
to 𝑖, and 𝐹  contains with each column index 𝑗 ∈ 𝐷 all the 𝑗′ ∈ 𝑌 ≡𝑌 -
equivalent to 𝑗.

Algorithm 1 Extended GreConD.
Input: 𝐼 ∈ {0, 1}𝑛×𝑚

Output: 

1:  ← ∅

2: 𝐽 , 𝑛𝑐 , 𝑚𝑐 , 𝑟𝑝𝑜𝑠, 𝑐𝑝𝑜𝑠 ← Cla(𝐼)

3:  ← ∅

4: 𝑈 ← 𝐽

5: for 𝑖 = 1,… , 𝑛𝑐 do
6:

 
for 𝑗 = 1,… , 𝑚𝑐 do

7:
 

𝑈𝑖𝑗 = 𝑈𝑖𝑗 ⋅ |[𝑟𝑝𝑜𝑠(𝑖)]≡𝑋
| ⋅ |[𝑐𝑝𝑜𝑠(𝑗)]≡𝑌

| 
8: while 𝑈 ≠ 0𝑛𝑐×𝑚𝑐  do
9:

 
𝐷 ← ∅

10:
 

𝑉 ← 0

11:
 

while there is 𝑗 ∉ 𝐷 such that (𝐷⊕𝐽 𝑗) > 𝑉  do
12:

 
select 𝑗 ∉ 𝐷 that maximizes 𝐷⊕𝐽 𝑗

13:
 

𝐷 ← (𝐷 ∪ {𝑗})↓𝐽 ↑𝐽

14:
 

𝑉 ← 𝐷⊕𝐽 𝑗

15:
 

𝐶 ← 𝐷↓𝐽

16:
 

add ⟨𝐶,𝐷⟩ to 
17:

 
for ⟨𝑖, 𝑗⟩ ∈ 𝐶 ×𝐷 do

18:
 

𝑈𝑖𝑗 ← 0 
19: for ⟨𝐶,𝐷⟩ ∈  do
20:

 
𝐸 ←

⋃

𝑖∈𝐶 [𝑟𝑝𝑜𝑠(𝑖)]≡𝑋

21:
 

𝐹 ←
⋃

𝑗∈𝐷[𝑐𝑝𝑜𝑠(𝑗)]≡𝑌

22:
 

add ⟨𝐸, 𝐹 ⟩ to 
23: return 

Theorem 2. Algorithm 1 computes the same formal concepts of 𝐼 in the 
same order as the original GreConD for any input matrix 𝐼 . In particular, 
it computes a set  of formal concepts of 𝐼 for which 𝐼 = 𝐴◦𝐵 .

Proof.  We verify that the extensions ⟨𝐸, 𝐹 ⟩ of the factors ⟨𝐶,𝐷⟩ coin-
cide and are being added to the output set  in the same order as the 
formal concepts produced by the original GreConD when applied to 
𝐼 . As mentioned in the description of the algorithm, ll. 8–18 perform 
the original GreConD on the clarified matrix 𝐽 , but using the modified 
matrix 𝑈 . That is, starting with 𝐷 = ∅, it constructs the formal concept 
⟨𝐶,𝐷⟩ to be added to  by an incremental extension by attributes 𝑗 until 
such an extension stops improving coverage of 1s. The attribute 𝑗 is the 
one corresponding to a best possible extension of 𝐷. Here, best” means 
with respect to the improvement in coverage by the constructed formal 
concept; see ll. 11–14. Now, due to (4) and the definition of 𝑈𝑖𝑗 , 𝐷⊕𝐽 𝑗
equals the improvement in the number of the 1s in 𝐼 uncovered so-far, 
i.e., uncovered by the extensions ⟨𝐸, 𝐹 ⟩ of the formal concepts ⟨𝐶,𝐷⟩

in  obtained in the previous iterations. A moment’s reflection reveals 
that since the orderings of rows and columns in 𝐽 respect those in 𝐼

(Section 3.1), the loop in ll. 11–14 results in a formal concept ⟨𝐶,𝐷⟩ to 
be added to  whose extension ⟨𝐸, 𝐹 ⟩, later computed in ll. 20–21, is 
just the formal concept selected in the corresponding step of the original
GreConD when run on the input matrix 𝐼 .

The second part follows the original GreConD’s output set  satisfies 
𝐼 = 𝐴◦𝐵 . ∎

A detailed demonstration of the extended GreConD algorithm is 
found in the supplementary material [3, example 5].

Remark 1. As with the original GreConD, algorithm 1 can easily be 
modified to compute approximate factorizations by changing the stop-
ping condition from 𝑈 ≠ 0𝑛𝑐×𝑚𝑐  to ∑𝑖,𝑗 𝑈𝑖𝑗 ≥ 𝜀. □

Remark 2. As we shall see in Section 4, the extended GreConD enjoys a 
considerable speed-up on real-world data compared to the original Gre-
ConD. Yet, its asymptotic worst-case time complexity remains the same 
as that of the original GreConD in most scenarios. Namely, recall first 
that the worst-case time complexity of GreConD is in 𝑂(||𝐼||𝑛𝑚3) [4] 
(this bound follows from loose estimations; a tighter bound is an open 
problem). In the worst case, i.e., with no duplicate rows and columns, 
the reduced matrix 𝐽 coincides with the input matrix 𝐼 . The extended 
algorithm first executes the reduction procedure on line 2, which runs 
in time 𝑂(𝑚𝑛 log 𝑛); see the end of Section 3.1. The algorithm then fol-
lows the logic of the original GreConD with modified updates of the 
auxiliary data structures which clearly do not affect the overall com-
plexity. Hence, the overall worst-case time complexity of the extended
GreConD is 𝑂(𝑚𝑛 log 𝑛 + ||𝐼||𝑛𝑚3). Now, if 𝑚𝑛 log 𝑛 ∈ 𝑂(||𝐼||𝑛𝑚3), which 
is true in realistic situations (notice that for this to be true, it suffices 
that 𝐼 contains at least log 𝑛∕𝑚2 entries containing 1), the overal com-
plexity of the extended algorithm is 𝑂(||𝐼||𝑛𝑚3), i.e., that of the original
GreConD.

3.4.  Extended Asso

The Asso algorithm [15] has been designed to solve the DBP by 
making use of the so-called association rules among the attributes, i.e., 
matrix columns. Since the description in [15] is somewhat incomplete 
as regards some details essential for our extension, we start by a de-
scription of the original algorithm suitable for our purpose. Let again 
𝑋 = {1,… , 𝑛} and 𝑌 = {1,… , 𝑚}. For an input matrix 𝐼 ∈ {0, 1}𝑛×𝑚 and 
a non-negative integer 𝑘 ≤ min(𝑚, 𝑛), Asso attempts to find matrices 
𝑆 ∈ {0, 1}𝑛×𝑘 and 𝐵 ∈ {0, 1}𝑘×𝑚 such that 𝐸(𝐼, 𝑆◦𝐵) is minimal. Asso
first computes the so-called association matrix 𝐴 ∈ {0, 1}𝑚×𝑚 from 𝐼 and 
a user-defined parameter 𝜏 ∈ [0, 1], which is defined by
𝐴𝑗1𝑗2 = 1 iff conf(𝑗1 ⇒ 𝑗2) ≥ 𝜏

where

conf(𝑗1 ⇒ 𝑗2) =
|{𝑖 ; 𝐼𝑖𝑗1 = 1 and 𝐼𝑖𝑗2 = 1}|

|{𝑖 ; 𝐼𝑖𝑗1 = 1}|
=

∑𝑛
𝑙=1 𝐼𝑙𝑗1 ⋅ 𝐼𝑙𝑗2
∑𝑛

𝑙=1 𝐼𝑙𝑗1
is the so-called confidence of the association rule 𝑗1 ⇒ 𝑗2 in the input 
matrix 𝐼 . Finally, the matrices 𝑆 and 𝐵 are computed in a greedy manner 
to minimize the error
𝐸(𝐼, 𝑆◦𝐵) = 𝐸𝑢(𝐼, 𝑆◦𝐵) + 𝐸𝑜(𝐼, 𝑆◦𝐵)

by maximizing the value of
cover(𝑆,𝐵, 𝐼,𝑤+, 𝑤−) = 𝑤+ ⋅ |{⟨𝑖, 𝑗⟩ ; 𝐼𝑖𝑗 = 1, (𝑆◦𝐵)𝑖𝑗 = 1}|−

𝑤− ⋅ |{⟨𝑖, 𝑗⟩ ; 𝐼𝑖𝑗 = 0, (𝑆◦𝐵)𝑖𝑗 = 1}|
(5)

where 𝑤+ and 𝑤− are user-defined non-negative weights to reward cov-
ering and penalize overcovering of 𝐼 , respectively. Note that value of
cover can be evaluated iteratively for each factor 𝑙 = 1,… , 𝑘 as

cover(𝑆,𝐵, 𝐼,𝑤+, 𝑤−) =
𝑘
∑

𝑙=1
cover𝑙(𝑆_𝑙 , 𝐵𝑙_, 𝑈 , 𝑂,𝑤+, 𝑤−), (6)
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where the matrices 𝑈 and 𝑂 maintain information about the current cov-
erage state by the factors 1,… , 𝑙 − 1. Both 𝑈 and 𝑂 need to be updated 
to avoid repeated rewarding/penalizing for covering the same entries 
𝐼𝑖𝑗 .

Our extension of Asso (Algorithm 2) aims to simulate the steps of 
the original Asso algorithm on a clarified matrix resulting from 𝐼 . First, 
one computes from 𝐼 the clarified matrix Cla(𝐼) = 𝐽 ∈ {0, 1}𝑛𝑐×𝑚𝑐 . Sec-
ond, an association matrix 𝐴𝐽  is computed from 𝐽 using slightly modi-
fied confidence rule conf(𝑗1 ⇒ 𝑗2) to take into account the rows removed 
within clarification. Third, the matrices 𝑈 and 𝑂 are identified as the es-
sential part for the accurate calculation of the modified cover function 
as explained below. Finally, an approximate factorization 𝐽 ≈ 𝑆𝐽◦𝐵𝐽

is iteratively computed and the factorization of 𝐼 ≈ 𝑆◦𝐵 is found by 
extending 𝑆𝐽  and 𝐵𝐽  as described by (1) and (2), respectively. The al-
gorithm finishes with the exactly same factorization of 𝐼 as the original
Asso.

In detail, matrix 𝐼 is clarified on line 1 along with the initialization 
of the other used variables on ll. 2–3. Note that Cla returns, in addition 
to 𝐽 , values 𝑛𝑐 , 𝑚𝑐 , 𝑟𝑝𝑜𝑠, and 𝑐𝑝𝑜𝑠 as described in Section 3.1. The as-
sociation matrix 𝐴𝐽 ∈ {0, 1}𝑚𝑐×𝑚𝑐  of 𝐽 is computed in ll. 4–6 utilizing a 
modified confidence function

conf(𝑗1 ⇒ 𝑗2) =
∑𝑛𝑐

𝑖=1 𝐽𝑖𝑗1 ⋅ 𝐽𝑖𝑗2 ⋅ |[𝑟𝑝𝑜𝑠(𝑖)]≡𝑋
|

∑𝑛𝑐
𝑖=1 𝐽𝑖𝑗1 ⋅ |[𝑟𝑝𝑜𝑠(𝑖)]≡𝑋

|

.

This modification includes information about the number of reduced 
rows. The following theorem shows, that conf(𝑗1 ⇒ 𝑗2) indeed reflects 
the degree of association between the corresponding columns 𝑐𝑝𝑜𝑠(𝑗1)
and 𝑐𝑝𝑜𝑠(𝑗2) in 𝐼 :
Theorem 3. Let 𝐼 ∈ {0, 1}𝑛×𝑚 be binary matrix and 𝐽 ∈ {0, 1}𝑛𝑐×𝑚𝑐  be the 
corresponding clarified matrix of 𝐼 . For each 𝑗1, 𝑗2 ∈ {1,… , 𝑚𝑐}, we have
conf(𝑗1 ⇒ 𝑗2) = conf(𝑐𝑝𝑜𝑠(𝑗1) ⇒ 𝑐𝑝𝑜𝑠(𝑗2)).

Proof. 
For each column 𝑗1 of 𝐽 and its corresponding column 𝑐𝑝𝑜𝑠(𝑗1) in 𝐼

we can compute the number of rows 𝑖 ∈ {1,… , 𝑛} such that 𝐼𝑖,𝑐𝑝𝑜𝑠(𝑗1) = 1
as
𝑛
∑

𝑖=1
𝐼𝑖,𝑐𝑝𝑜𝑠(𝑗1) =

∑

𝑆∈𝑋∕≡𝑋

𝐼𝑚𝑖𝑛(𝑆)𝑐𝑝𝑜𝑠(𝑗1) ⋅ |𝑆| =
𝑛𝑐
∑

𝑖=1
𝐽𝑖𝑗1 ⋅ |[𝑟𝑝𝑜𝑠(𝑖)]≡𝑋

|.

Indeed, since 𝑋∕ ≡𝑋 contains the sets 𝑆𝑖 of identical rows (see Sec-
tion 3.1), we can utilize them for the sum instead of adding each row 
separately. The first equality follows immediately. Additionaly, the clar-
ification procedure preserves only the index min(𝑆) of the first row for 
each 𝑆 ∈ 𝑋∕ ≡𝑋 and since for each 𝑖 ∈ {1,… , 𝑛𝑐} there is exactly one 
𝑆𝑖 ∈ 𝑋∕ ≡𝑋 such that 𝑟𝑝𝑜𝑠(𝑖) = min(𝑆𝑖) and |𝑆𝑖| = |[𝑟𝑝𝑜𝑠(𝑖)]≡𝑋

|, the sec-
ond equality follows.

Now, we can easily extend the expression by second attribute 𝑗2 to 
prove the equality
𝑛
∑

𝑖=1
𝐼𝑖𝑐𝑝𝑜𝑠(𝑗1) ⋅ 𝐼𝑖𝑐𝑝𝑜𝑠(𝑗2) =

𝑛𝑐
∑

𝑖=1
𝐽𝑖𝑗1 ⋅ 𝐽𝑖𝑗2 ⋅ |[𝑟𝑝𝑜𝑠(𝑖)]≡𝑋

|.

Finally, combining the first and the second equality, we obtain
∑𝑛

𝑖=1 𝐼𝑖𝑐𝑝𝑜𝑠(𝑗1) ⋅ 𝐼𝑖𝑐𝑝𝑜𝑠(𝑗2)
∑𝑛

𝑖=1 𝐼𝑖𝑐𝑝𝑜𝑠(𝑗1)
=

∑𝑛𝑐
𝑖=1 𝐽𝑖𝑗1 ⋅ 𝐽𝑖𝑗2 ⋅ |[𝑟𝑝𝑜𝑠(𝑖)]≡𝑋

|

∑𝑛𝑐
𝑖=1 𝐽𝑖𝑗1 ⋅ |[𝑟𝑝𝑜𝑠(𝑖)]≡𝑋

|

finishing the proof. ∎
Corollary 2. With the same assumptions as in theorem 3, for the confidence 
matrices 𝐴 of 𝐼 and 𝐴𝐽  of 𝐽 holds
Cla(𝐴) = Cla(𝐴𝐽 ).

Proof. Theorem 3 implies that for each 𝑗1, 𝑗2 ∈ {1,… , 𝑚𝑐} we have
𝐴𝐽
𝑗1𝑗2

= 𝐴𝑐𝑝𝑜𝑠(𝑗1)𝑐𝑝𝑜𝑠(𝑗2).

Algorithm 2 Extended Asso.
Input: 𝐼 ∈ {0, 1}𝑛×𝑚, 𝑘 < min(𝑚, 𝑛), 𝜏 ∈ [0, 1] and 𝑤+, 𝑤− ∈ ℝ
Output: 𝑆 ∈ {0, 1}𝑛×𝑘, 𝐵 ∈ {0, 1}𝑘×𝑚

1: 𝐽 , 𝑛𝑐 , 𝑚𝑐 , 𝑟𝑝𝑜𝑠, 𝑐𝑝𝑜𝑠 ← Cla(𝐼)

2: 𝑆𝐽 ← 0𝑛𝑐×𝑘, 𝐵𝐽 ← 0𝑘×𝑚𝑐

3: 𝐴𝐽 ← 0𝑚𝑐×𝑚𝑐

4: for ⟨𝑖, 𝑗⟩ ∈ {1,… , 𝑚𝑐} × {1,… , 𝑚𝑐} do
5:

 
if conf(𝑖 ⇒ 𝑗) ≥ 𝜏 then

6:
 

𝐴𝐽
𝑖𝑗 = 1 

7: 𝑈 ← 𝐽

8: for ⟨𝑖, 𝑗⟩ ∈ {1,… , 𝑛𝑐} × {1,… , 𝑚𝑐} do
9:

 
𝑈𝑖𝑗 = 𝑈𝑖𝑗 ⋅ |[𝑟𝑝𝑜𝑠(𝑖)]≡𝑋

| ⋅ |[𝑐𝑝𝑜𝑠(𝑗)]≡𝑌
|

10:
 

𝑂𝑖𝑗 = |𝐽𝑖𝑗 − 1| ⋅ |[𝑟𝑝𝑜𝑠(𝑖)]≡𝑋
| ⋅ |[𝑐𝑝𝑜𝑠(𝑗)]≡𝑌

|

11: for 𝑙 = 1,… , 𝑘 do
12:

 
select 𝑗 ∈ {1,… , 𝑚𝑐} maximizing cover(𝑠𝑗 , 𝐴𝑗_, 𝑈 , 𝑂,𝑤+, 𝑤−)

13:
 

𝐵𝐽
𝑙_ ← 𝐴𝐽

𝑗_ and 𝑆𝐽
_𝑙 ← generateS(𝐴𝐽

𝑗_, 𝑈 , 𝑂,𝑤+, 𝑤−)

14:
 

for ⟨𝑖, 𝑗⟩ ∈ {1,… , 𝑛𝑐} × {1,… , 𝑚𝑐} do
15:

 
𝑈𝑖𝑗 ← 𝑈𝑖𝑗 ⋅ |min(𝑆𝐽

𝑖𝑙 , 𝐵
𝐽
𝑙𝑗 ) − 1|

16:
 

𝑂𝑖𝑗 ← 𝑂𝑖𝑗 ⋅ |min(𝑆𝐽
𝑖𝑙 , 𝐵

𝐽
𝑙𝑗 ) − 1| 

17: 𝑆 = 0𝑛×𝑘, 𝐵 = 0𝑘×𝑚

18: for 𝑙 = 1,… , 𝑘 do
19:

 
for 𝑖 = 1,… , 𝑛 do

20:
 

𝑆𝑖𝑙 ← 𝑆𝐽
𝑟𝑝𝑜𝑠−1(min[𝑖]≡𝑋 ),𝑙

21:
 

for 𝑗 = 1,… , 𝑚 do
22:

 
𝐵𝑙𝑗 ← 𝐵𝐽

𝑙,𝑐𝑝𝑜𝑠−1(min[𝑗]≡𝑌 ) 
23: return 𝑆,𝐵

The matrix 𝐴𝐽  is then just a submatrix of 𝐴, such that the rows and 
columns of 𝐴𝐽  correspond to the columns left in 𝐽 after the clarification 
of 𝐼 . In the other words, since for each 𝑗1, 𝑗2 ∈ {1,… , 𝑚} we clearly have
if 𝐼_𝑗1 = 𝐼_𝑗2 then 𝐴𝑗1_ = 𝐴𝑗2_ and 𝐴_𝑗1 = 𝐴_𝑗2 ,

we have Cla(𝐴) = Cla(𝐴𝐽 ). Note that in general, Cla(𝐴) ≠ 𝐴𝐽 , because 
two non-identical columns 𝑗3, 𝑗4 ∈ {1,… , 𝑚𝑐} in 𝐽 , i.e., 𝐽_𝑗3 ≠ 𝐽_𝑗4 , can 
clearly have identical rows (and columns) 𝐴𝐽

𝑗3_
= 𝐴𝐽

𝑗4_
 in 𝐴𝐽  and then 

𝐴𝐽 ≠ Cla(𝐴𝐽 ); see example 6 in the supplementary material [3]. ∎
The search for a decomposition of 𝐽 is carried out with regard to 

the resulting decomposition 𝐼 , which requires a proper adjustment of 
the cover function. We introduce (ll. 7–10) the matrices 𝑈 ∈ ℕ𝑛𝑐×𝑚𝑐

0
(uncovered) and 𝑂 ∈ ℕ𝑛𝑐×𝑚𝑐

0  (overcovered), which maintain information 
about the number of as yet uncovered and non-overcovered elements in 
𝐼 , respectively. In particular, the meaning of 𝑈𝑖𝑗 > 0 is: If 𝐽𝑖𝑗 = 1 gets 
covered, then extending 𝑆𝐽◦𝐵𝐽  to 𝑆◦𝐵 results in covering a total of 𝑈𝑖𝑗
entries of 𝐼 that contain 1. Similarly, 𝑂𝑖𝑗 > 0 indicates that a decomposi-
tion of 𝐽 with (𝑆𝐽◦𝐵𝐽 )𝑖𝑗 = 1, followed by the extension to a decomposi-
ton 𝑆◦𝐵 of 𝐼 , would result in overcovering 𝑂𝑖𝑗 entries of 𝐼 that contain 
0. In each iteration 𝑙 (ll. 11–16), the algorithm selects a row 𝐴𝐽

𝑗_ and 
a vector 𝑠𝑗 described below, maximizing value of the revised cover𝑙
function

cover𝑙(𝑠𝑗 , 𝐴𝐽
𝑗_, 𝑈 , 𝑂,𝑤+, 𝑤−) =

𝑛𝑐
∑

𝑖=1

𝑚𝑐
∑

𝑘=1
𝑠𝑗𝑖 ⋅ 𝐴

𝐽
𝑗𝑘 ⋅ (𝑤

+ ⋅ 𝑈𝑖𝑘 −𝑤− ⋅ 𝑂𝑖𝑘);

and, in addition, the tuple ⟨𝐴𝐽
𝑗_, 𝑠

𝑗
⟩ with the highest score is selected as 

a new factor, i.e. 𝑆𝐽
_𝑙 = 𝑠𝑗 and 𝐵𝐽

𝑙_ = 𝐴𝐽
𝑗_. The value 𝑠

𝑗
𝑖 ⋅ 𝐴

𝐽
𝑗𝑘 = 1 indicates 

a coverage of 𝐽𝑖𝑘 entry by the current candidate tuple 𝑗 and the expres-
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sion in parentheses reflects the contribution to the overall score for the 
covering/overcovering of 𝐽𝑖𝑘. Note, that in each iteration at most one of 
the values 𝑈𝑖𝑘 or 𝑂𝑖𝑘 is nonzero.

Algorithm 3 generateS.
Input: 𝑎 ∈ {0, 1}𝑚𝑐 , 𝑈 ∈ ℕ𝑛𝑐×𝑚𝑐

0 , 𝑂 ∈ ℕ𝑛𝑐×𝑚𝑐
0 , and 𝑤+, 𝑤− ∈ ℝ

Output: 𝑠 ∈ {0, 1}𝑛𝑐

1: 𝑠 ← 0𝑛𝑐

2: for 𝑖 = 1,… , 𝑛𝑐 do
3:

 
𝑠𝑐𝑜𝑟𝑒𝑖 = 𝑤+ ⋅

∑𝑚𝑐
𝑗=1 𝑈𝑖𝑗 ⋅ 𝑎𝑗 −𝑤− ⋅

∑𝑚𝑐
𝑗=1 𝑂𝑖𝑗 ⋅ 𝑎𝑗

4:
 

if 𝑠𝑐𝑜𝑟𝑒𝑖 > 0 then
5:

 
𝑠𝑖 ← 1 

6: return 𝑠

Let us now describe the algorithm (Algorithm 3) for finding the vec-
tor 𝑠𝐽  that maximizes the cover𝑙 function. We have
𝑠𝐽 = generateS(𝐴𝐽

𝑗_, 𝑈 , 𝑂,𝑤+, 𝑤−)

as a greedy selection of vector 𝑠𝐽  for candidate 𝐴𝐽
𝑗_. Our implementation5 

initializes zero vector 𝑠𝐽 = 0𝑛𝑐 . Then, each 𝑠𝐽𝑖  is evaluated in a greedy 
manner to determine whether it is better to set 𝑠𝐽𝑖 = 0 or 𝑠𝐽𝑖 = 1, selecting 
the value resulting in the largest increase of cover𝑙. The selected pair 
of 𝐴𝐽

𝑗_ and 𝑠𝑗 is then stored as a new factor for 𝐽 (line 14) and the newly 
covered elements are updated accordingly in the matrix 𝑈 and 𝑂 (ll. 
14–16).

Finally, a decomposition of 𝐼 is obtained by extending the matrix 𝑆𝐽

to 𝑆 according to (1) and extending 𝐵𝐽  to 𝐵 according to (2).
Theorem 4. Algorithm 2 computes the same decomposition of 𝐼 as the 
original Asso for any input matrix 𝐼 . 
Proof. 

Denote the matrices returned by original Asso algorithm for input 𝐼
by 𝑆∗ and 𝐵∗. To prove our theorem, we verify that finding factors on 
ll. 11–16 copy the behaviour of original Asso, and thus for each factor 
𝑙 it holds
𝑆∗
_𝑙 = 𝑆_𝑙 and 𝐵∗

𝑙_ = 𝐵𝑙_

where 𝑆 and 𝐵 are the matrices returned by Algorithm 2.
The selection of 𝑆𝐽

_𝑙  and 𝐵𝐽
𝑙_ in iteration 𝑙 is based on the value of 

cover𝑙, and analogously for 𝑆∗
_𝑙, 𝐵∗

𝑙_, and cover𝑙. We have

cover𝑙(𝑆∗
_𝑙 , 𝐵

∗
𝑙_, 𝑈

∗, 𝑂∗, 𝑤+, 𝑤−) = 𝑤+
|{𝐼𝑖𝑗 ;𝑈∗

𝑖𝑗 = 1, (𝑆∗
_𝑙◦𝐵

∗
𝑙_)𝑖𝑗 = 1}|−

𝑤−
|{𝐼𝑖𝑗 ;𝑂∗

𝑖𝑗 = 1, (𝑆∗
_𝑙◦𝐵

∗
𝑙_)𝑖𝑗 = 1}|,

where 𝑈∗ and 𝑂∗ are the matrices representing the uncovered and non-
overcovered entries of 𝐼 by factors 1,… , 𝑙 − 1. Since 𝑠𝑗𝑖 ⋅ 𝐴𝐽

𝑗𝑘 = (𝑠𝑗◦𝐴𝐽
𝑗_)𝑖𝑘, 

we obtain

cover𝑙(𝑠𝑗 , 𝐴𝐽
𝑗_, 𝑈 , 𝑂,𝑤+, 𝑤−) =

𝑛𝑐
∑

𝑖=1

𝑚𝑐
∑

𝑘=1
𝑠𝑗𝑖 ⋅ 𝐴

𝐽
𝑗𝑘 ⋅ (𝑤

+ ⋅ 𝑈𝑖𝑘 −𝑤− ⋅ 𝑂𝑖𝑘)

=
𝑛𝑐
∑

𝑖=1

𝑚𝑐
∑

𝑘=1
𝑤+ ⋅ (𝑠𝑗◦𝐴𝐽

𝑗_)𝑖𝑘 ⋅ 𝑈𝑖𝑘 −𝑤− ⋅ (𝑠𝑗◦𝐴𝐽
𝑗_)𝑖𝑘 ⋅ 𝑂𝑖𝑘

= cover𝑙(ext(𝑠𝑗 ), ext(𝐴𝐽
𝑗_), 𝑈

∗, 𝑂∗, 𝑤+, 𝑤−),

for ext(𝑍) defined as in (1) and (2). Theorem 3 and corollary 2 yield that 
the matrices 𝐴 and 𝐴𝐽  maintain the same information. It is evident that 
if the extended algorithm chooses a tuple ⟨𝑠𝑗 , 𝐴𝐽

𝑗_⟩, with the maximal 
value of cover𝑙 as a new factor, then in the matrix 𝐴 there exists a 

5 Note that finding the vector 𝑠𝑗 is not detailed in the paper on the original
Asso algorithm [15], hence our description.

corresponding 𝑐𝑝𝑜𝑠(𝑗) with the same score cover𝑙, and vice versa. Both 
algorithms hence clearly select the same factor in each iteration 𝑙. ∎

A detailed demonstration of the extended Asso algorithm can be 
found in the supplementary material [3, example 6].
Remark 3. While the extended Asso algorithm achieves a considerable 
speed-up on real-world data (Section 4), its asymptotic worst-case time 
complexity is the same as that of the original Asso algorithm in realistic 
scenarios. In detail, note first that the time complexity of the original
Asso is 𝑂(𝑘𝑚2𝑛), computing the association matrix in time 𝑂(𝑚2𝑛) and 
each of the 𝑘 factors also in time 𝑂(𝑚2𝑛); see [5]. In the worst case, 
i.e., with no redundancy, the reduced matrix 𝐽 coincides with the in-
put matrix 𝐼 . The extended algorithm first runs the reduction procedure 
on line 1, which runs in time 𝑂(𝑚𝑛 log 𝑛); see Section 3.1. Then the ex-
tended algorithm follows the logic of the original Asso, extending it by 
bookkeeping steps to ensure correct updates of the auxiliary matrices. 
It is immediate to see that none of these bookkeeping steps negatively 
affects the overall complexity of 𝑂(𝑘𝑚2𝑛). Therefore, the overall worst-
case time complexity of the extended Asso is 𝑂(𝑚𝑛 log 𝑛 + 𝑘𝑚2𝑛). More-
over, if log 𝑛 ≤ 𝑚—which may be considered a rather realistic scenario—
the time complexity of the extended Asso remains in 𝑂(𝑘𝑚2𝑛).

4.  Experimental evaluation

In this section, we demonstrate that the reduction scheme proposed 
in our paper results in a significant speed-up of factorization algorithms. 
In doing so, we provide various results for GreConD and Asso, i.e., the 
two basic algorithms for the AFP and DBP problems whose extensions 
we developed in our paper. We focus on the aspects relevant to the 
purpose of the proposed extension and omit evaluation of other aspects, 
such as coverage graphs of the data by the computed factors or precision 
of the computed factorizations which are described in detail elsewhere 
in the literature on BMF. This is possible due to our main theorems 
according to which both the extended GreConD and the extended Asso
compute exactly the same factorizations as their well-known ordinary 
counterparts.

In particular, we focus on the dependence of the speed-up resulting 
from the proposed transformation of the input data and employment of 
the extended algorithms on the redundancy of the input data. We also 
explore other relevant questions such as the impact of row redundancy 
and column redundancy, and examine further relevant topics. For this 
purpose we utilize both the well-known real-world datasets (Section 4.1) 
and synthetic datasets (Section 4.2).

4.1.  Real-world data

We use the well-known, commonly used benchmark datasets de-
scribed in Section 2. Since all the presented algorithms are determin-
istic, the measured runtimes have a small standard deviation for each 
dataset. The experiments were hence repeated 10 times only to obtain 
average runtimes for both the original and modified versions of the
algorithms.

The results regarding the observed speed-up of a running time are 
summarized in Fig. 1. Note that the datasets with no redundancy as 
well as small datasets which get factorized in a fraction of a second, and 
hence with a speed-up possibly affected by other factors, are omitted. 
The bars on the left depict the redundancy of the dataset, as defined in 
section Section 2. The bars on the right present the measured speed-up, 
i.e., the ratio
runtime of the original algorithm
runtime of the extended algorithm ,

which is depicted on a logarithmic scale. Observe that the highest speed-
up occurs for the large datasets Americas Large and Americas Small 
with the redundancy around 98%. For instance, with Americas Large, 
the extended GreConD runs approximately 48 times faster, while Asso

Knowledge-Based Systems 335 (2026) 115190 

7 



R. Belohlavek and J. Juracka

Fig. 1. Comparison of a redundancy and speed-up on benchmark datasets.

Fig. 2. Comparison of the number of factors (vertical axes) computed over time (horizontal axes) between the original and extended GreConD and Asso. Both 
versions, the original and the extended, compute the same factorizations but their speeds clearly differ; the point where a line stops rising corresponds to the time 
when the respective algorithm finishes computation.

runs more than 245 times faster compared to the original algorithms. In 
practical terms, this means that the runtime dropped from hours to sec-
onds. One may also observe a phenomenon we examine in more detail 
in the next section, namely, a larger impact of column-redundancy com-
pared to row-redundancy on the speed-up. In particular, the Customer 
dataset with a considerable 49% redundancy has a very small column-
redundancy (see Table 1), which results in a very small speed-up for 
both GreConD and Asso, which also applies to the DNA dataset. We 
also include the considerably large NSF dataset with a rather small 1%
redundancy, resulting in a slow-down of the running time for both Gre-
ConD and Asso, which is expected because the extended algorithms 
naturally involve overhead.

In this context, let us also note that another factor affecting the 
speed-up consists in that while the original algorithms may use binary 
matrices to represent coverage information, the extended versions need 
to use integer matrices, which slows down particularly the repeatedly 
performed matrix summations. The overall results imply that this slow-
down is amply compensated by the overall speed-up. Further evalua-
tions of the speed-up is provided in the online supplementary data [3, 
S1].

Fig. 2 demonstrates in more detail a single computation of the indi-
vidual factors by the original vs the extended algorithms in dependence 
on the running time. As explained above, both versions, the original and 
the extended, compute the same factorizations but their speeds differ. 
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The points where the lines stop rising indicate when the respective al-
gorithm stops. Recall at this point that Asso rarely achieves an exact 
factorization and typically ends up with an approximate factorization; 
in contrast to that, GreConD always produces an exact factorization 
which sometimes results in a longer runtime. The Americas Large and 
Small, and the Advertisement datasets enhance the results presented 
in Fig. 1; the Mushroom dataset is an example of a zero-redundancy 
dataset and displays a slight slow-down caused by the factors explained 
in the previous paragraph. The detailed results provided in the online 
supplementary data [3, S1], as well as the results for synthetic data, 
presented in the following section, show that the slow-down is small in 
most cases, and thus does not significantly affect the overall runtime. 
Generally, data reduction appears to have a more significant impact on 
the speed of the Asso algorithm compared to GreConD.

4.2.  Synthetic data

To provide further experimental results, in particular to assess dif-
ference between the impacts of row- and column-redundancy on the 
runtime, a synthetic data generator has been designed to produce a sym-
metric square matrices to suppress a possible bias. As is clear from the 
description of both algorithms, they focus on columns when computing 
factorizations: GreConD constructs the factors from the best columns 
selected in a greedy manner; as for Asso, it constructs its association 
matrix from the columns. The column-redundancy is thus expected to 
have a larger impact on speed-up compared to row-redundancy.

To produce natural random matrices for factorization, we employed 
the following process. For a given dimension 𝑛 and a prescribed density 
𝑐 (see Section 2), matrices 𝐴 ∈ {0, 1}𝑛×1 and 𝐵 ∈ {0, 1}1×𝑛 are randomly 
initialized. Until the density of a matrix 𝐶 = 𝐴◦𝐵 reaches 𝑐, we add 
randomly generated vectors 𝐴𝑖, 𝐵𝑖 ∈ {0, 1}𝑛 as a new factor to 𝐴 and 𝐵, 
respectively. Finally, the square matrix 𝐶 ∈ {0, 1}𝑛×𝑛 is made symmetric 
by flipping the upper diagonal to the lower one.

In the experiments presented below, we used 𝑛 =
1000, 1500, 2000, 2500, 3000, and 𝑐 = 0.1, since 0.1 appears to rep-
resent a common density in the real-wold datasets. We then added 
redundancy of 𝑟 = 0, 0.05, 0.10, 0.25, 0.50, 0.75 by adding duplicit rows 
and columns in a way to maintain symmetry of the resulting matrix 
𝐶. For each 𝑛 and 𝑟, we generated 20 input matrices this way, and 
computed their factorizations via the original and the extended 
algorithms. Finally, a speed-up was computed for each run, and the 
average speed-up was stored.

The results are summarized in Table 2. For each redundancy level 
𝑟, the value dim in the second column stands for the average dimen-
sion of the input matrix after the addition of redundancy. For both 
the GreConD and Asso algorithms, the mean speed-up is presented 
in three columns corresponding to three kinds to redundancy removal: 
row-redundancy only (sp-up𝑅), column-redundancy only (sp-up𝐶 ), and 
both row- and column-redundancy (sp-up𝑅+𝐶 ) which is equivalent to 
our modification.

For data without redundancy, i.e., for 𝑟 = 0.0, the removal of redun-
dancy, i.e., clarification, does not do anything to the input data, hence 
the extended algorithms essentially proceeds as the original ones. In this 
case, only the most time-consuming experiment involving removal of re-
dundant rows and columns is reported in the table. Overall, the results 
suggest that even though the removal of column-redundancy does not 
achieve the effect of the row- and column-redundancy removal, i.e., the 
effect of clarification, it saves more time compared to row-redundancy 
removal (see also similar observations in Section 4.1 for the Customer 
and DNA datasets).

4.3.  Further topics

4.3.1.  The need to modify the original algorithms
In Section 3.2, we described a simple, alternative factorization ap-

proach that utilizes removal of duplicity but employs the unmodified 

Table 2 
Impact of removal of row-redundancy, column-redundancy, and both row- and 
column-redundancy on speed-up (sp-up).

 GreConD  Asso
𝑟 dim sp-up𝑅 sp-up𝐶 sp-up𝑅+𝐶 sp-up𝑅 sp-up𝐶 sp-up𝑅+𝐶

 0.0  1000  –  –  1.00  –  –  0.95
 1500  –  –  0.99  –  –  0.92
 2000  –  –  1.00  –  –  0.91
 2500  –  –  1.00  –  –  0.84
 3000  –  –  0.99  –  –  0.87

 0.05  1053  0.95  1.02  1.04  1.02  1.17  1.13
 1579  0.96  1.02  1.04  1.02  1.20  1.11
 2106  0.98  1.03  1.06  1.09  1.23  1.25
 2632  1.00  1.06  1.09  0.93  1.05  1.05
 3150  1.02  1.08  1.16  0.89  1.08  1.07

 0.10  1112  0.96  1.11  1.16  1.05  1.18  1.41
 1667  0.98  1.15  1.20  1.06  1.41  1.41
 2223  1.02  1.16  1.25  1.06  1.39  1.52
 2778  1.06  1.19  1.25  0.93  1.20  1.25
 3300  1.14  1.32  1.52  0.85  1.48  1.65

 0.25  1334  1.05  1.42  1.61  1.22  2.27  2.56
 2000  1.09  1.59  1.82  1.20  2.13  2.70
 2666  1.19  1.67  1.96  1.22  2.00  2.63
 3334  1.37  1.68  2.43  1.19  1.92  2.38
 4000  1.32  1.79  2.27  1.14  1.82  2.10

 0.50  2000  1.37  2.86  3.70  1.79  5.56  8.34
 3000  1.52  3.33  4.77  1.92  4.35  10.00
 4000  1.75  3.70  5.88  1.89  3.85  8.33
 5000  2.78  4.17  10.05  1.89  5.56  10.04
 6000  2.12  3.22  9.09  1.91  3.45  6.45

 0.75  4000  2.56  10.02  19.78  3.56  13.67  52.19
 6000  3.57  14.29  33.33  3.93  12.82  77.33
 8000  4.54  11.12  52.14  4.11  14.56  75.13
 10,000  6.09  14.53  78.52  5.20  17.41  70.41
 12,000  7.19  15.52  84.12  5.14  15.16  72.88

version of the given factorization algorithm, such as GreConD and
Asso, and described the shortcomings of this alternative approach. The 
purpose of this section is to demonstrate that these shortcomings indeed 
materialize.

The shortcomings are demonstrated in Fig. 3. The graphs, which dis-
play a typical behavior of both GreConD and Asso, represent the cov-
erage 𝑐(𝑙) of the input data by the first 𝑙 = 1, 2, 3,… computed factors for 
two selected datasets 𝐼 ∈ {0, 1}𝑛×𝑚. Note that 𝑐(𝑙) is defined [16] by
𝑐(𝑙) = 1 − 𝐸(𝐼, 𝐴(𝑙)◦𝐵(𝑙))∕||𝐼||,

where 𝐴(𝑙) and 𝐵(𝑙) denote the 𝑛 × 𝑙 and 𝑙 × 𝑚 matrices corresponding 
of the first 𝑙 of the computed factors. It is apparent that while the cov-
erage graphs of the modified algorithms display the desired shape, i.e., 
are steeply increasing for small 𝑙, the graphs corresponding to the al-
ternative approach involving the unmodified algorithms, both of which 
run on the clarified data, do not have this desired shape and display 
jumps. In particular, the graphs demonstrate that the unmodified algo-
rithms deliver different factorizations compared to those computed by 
the modified algorithms.

In addition, as is evident from the graph for Americas Small, the 
approach involving the unmodified Asso achieves smaller coverage, i.e., 
smaller precision, compared to the approach involving a modified Asso
as proposed in our paper. For the Advertisement dataset, the unmodified
Asso algorithm required 44 more factors to reach the coverage achieved 
by the modified Asso.

In conclusion, the approach based on the proposed transformation 
of input data and employment of the original, unmodified algorithms 
suffers from the discussed shortcomings. More results for the other real-
world datasets are found in the supplementary material [3, S2].

4.3.2.  Possible limitation
While our method proves useful in the scenario assumed in our study, 

its utilization may be limited in a scenario in which the analyzed data 
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Fig. 3. Shortcomings of the unmodified algorithms and comparison with their extended versions on representative datasets Advertisement and Americas Small. The 
graphs depict the coverage of input data by the first 𝑘 factors in the computed factorizations. Vertical lines indicate the final number of factors identified by each 
algorithm.

is subject to noise [17,18], i.e., a scenario in which “true data” gets 
distorted to some extent before it undergoes a Boolean matrix factoriza-
tion. It appears obvious that even a very small extent of noise (or error) 
in Boolean data reduces or even destroys the amount of redundancy 
of rows and columns that may naturally be present in noise-free data. A 
simple quantitative indication consists in realizing that if a noise of level 
𝑝% is applied to two equal rows of a Boolean matrix with 𝑚 columns,6 the 
probability that these rows remain equal is [(1 − 𝑝

100 )
2 + ( 𝑝

100 )
2]𝑚. This 

reveals that redundancy in the “true data” gets significantly reduced as 
the noise level and the matrix dimensions get larger. Consequently, the 
time efficiency of our method would be impaired.

An experimental evidence of the reduction of redundancy as a re-
sult of noise and growing matrix dimension is apparent from Table 3, 
whose entries display the redundancy of selected datasets introduced 
in Section 2 to which a random noise of level 𝑝 is added as explained 
above (the displayed redundancies represent average values over 20 rep-
etitions).

It needs to be emphasized that as demonstrated above, many real 
Boolean datasets are highly redundant (Table 1), and hence, do not pre-
sumably contain noise. Therefore, the possible limitations discussed in 
this section do not apply, which justifies the relevance of our method. 
Nevertheless, the present considerations regarding noise call for an ex-
tension of our method or for an alternative approach to handle redun-
dancy in situations with noise.

6 In the sense that each matrix entry is flipped with the probability of 𝑝
100
, 

independently of the other entries.

Table 3 
Reduction of redundancy in selected datasets of Table 1, displayed 
in percents as a result of added noise of level 𝑝 and matrix dimension 
dim(𝐼). 

 data dim(𝐼) 𝑝 = 0 𝑝 = .1 𝑝 = 1 𝑝 = 2

 Americas Small  3,477×1,586 98% 24% 0% 0%
 APJ  2,044×1,164 86% 18% 0% 0%
 Customer  10,961×277 49% 37% 2% 0%
 DBLP  6,980×19 87% 87% 82% 77%
 Zoo  101×28 46% 44% 30% 21%

5.  Conclusions

We observe that many of the benchmark datasets used in the litera-
ture on Boolean matrix factorization are redundant and propose a sim-
ple scheme that makes use of it. The scheme consists in transforming 
the input data to remove redundancy, applying an appropriately mod-
ified BMF algorithm, and use the computed, interim factors to restore 
from them the factors for the original input data. We developed an im-
plementation of our scheme for two basic BMF algorithms, GreConD
and Asso, and provided theorems justifying the proposed modifications 
of the original algorithms required by our scheme. Our experimental 
evaluation proves the new scheme efficient in terms of speed-up of the 
running time which is considerable as redundancy increases.

Reducing the size of an input Boolean matrix 𝐼 and subsequently 
factorizing the resulting smaller matrix to obtain a reasonable factoriza-
tion of the original matrix 𝐼 in a shorter time represents a broad research 
topic which may be approached from several perspectives and requires 
further research. We propose the following directions:
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Table 4 
Speed-up of modified Tiling in comparison to original
Tiling algorithm on selected datasets from Table 1.
 data dim(𝐼)  redundancy  speed-up
 Advertisement  3,279×1,557  70%  3.4
 Americas Large  3,485×10,127  98%  118.9
 Americas Small  3,477×1,586  98%  50.0
 APJ  2,044×1,164  86%  3.3
 Customer  10,961×277  49%  1.6
 DNA  4,590×392  73%  2.2
 Emea  35×3,046  92%  33.3
 Firewall 1  365×709  97%  12.5
 Mushroom  8,124×119  5%  1.0
 Paleo  501×139  6%  1.1
 Tic Tac Toe  958×30  0%  1.0

• In our paper, utilization of redundancy is illustrated on GreConD
and Asso, i.e., for two primary algorithms designed for the AFP and 
the DBP problems (Section 1.2), respectively. Explorations to utilize 
redundancy, including redundancy in a broader perspective as de-
scribed in this section below, for a number of other available BMF 
algorithms [1] remain a topic for future research.

As mentioned above, utilization of redundancy reduction to speed 
up factorization may be implemented either in the straightforward 
scenario described in steps 1.–3. at the end of Section 3.2, or in 
the improved scenario which alleviates a shortcoming of the first 
scenario. The improved scenario requires an appropriate modifica-
tion of the considered factorization algorithm, which we provided 
for GreConD and Asso in Sections 3.3 and 3.4 along with proofs 
of correctness of the proposed modifications. A correct modifica-
tion of a factorization algorithm is clearly a non-trivial step but ap-
pears feasible due to the kind of redundancy we explore. As a pre-
liminary step toward exploration of other algorithms, we examined 
such a modification for Tiling—another well-known factorization
algorithm [19].7 While Tiling uses a different strategy from that of
GreConD, it also employs as factors rectangular areas of an input 
matrix 𝐼 that are full of 1. Similar ideas to those on which our modifi-
cation of GreConD is based may hence be used to obtain a modified
Tiling and its proof of correctness. Table 4 presents the speed-up of 
the thus modified algorithm for selected benchmark datasets. While 
the modified Tiling does not slow down factorization of data with 
low redundancy, its speed-up is comparable and in most cases larger 
than that of GreConD on redundant data (cf. Fig. 1).

• In addition to removing duplicate rows and columns of the input 
matrix 𝐼 , one may utilize the so-called reduction of 𝐼—a different 
method of reducing the size of 𝐼 employed by formal concept anal-
ysis [13, pp. 24–34]. The basic idea consists in removing the rows 
and columns of 𝐼 that may be obtained as intersections of other rows 
and columns, respectively. The resulting reduced matrix 𝐽 preserves 
important structural information of the original matrix 𝐼 [13]. Most 
significantly, the concept lattice of 𝐽 is isomorphic to the concept 
lattice of 𝐼 , and the formal concepts of 𝐼 , i.e., the potential factors 
of 𝐼 , can be restored from those of 𝐽 . According to our preliminary 
results, factorizing reduced matrices and an appropriate extension of 
the factors of 𝐽 to obtain factors of 𝐼 results in factorizations whose 
quality in terms of the coverage of data by the computed factors 
is comparable to those obtained by factorizing clarified matrices in 
most cases. Note also that for most of the real-world datasets used 
in our study, reduction results in a removal of a much smaller num-
ber of rows compared to clarification, i.e., the real-world datasets 
seem not greatly amenable to reduction. In some cases, factorizing 
a reduced matrix lead to a larger number of computed factors com-

7 While Tiling is devised for the problem of tiling Boolean databases in [19], 
it essentially coincides with the GreCon algorithm; see also [20] for an efficient 
implementation of this algorithm.

pared to factorizing the original matrix. Also note that modifying a 
factorization algorithm so that it delivers a factorization of the re-
duced matrix that equals the factorization of the original data seems 
considerably more complex compared to clarification. Due to the sig-
nificance of reduction in processing Boolean data, questions related 
to utilizing reduction for the purpose of factorization need further 
exploration.

• A rather general approach to factorization via size reduction of the 
input matrix derives from the idea of sampling. In particular, one 
may attempt to select only a certain percentage of rows of 𝐼 (and 
possibly also columns) to get a smaller matrix 𝐽 , factorize 𝐽 , and 
extend the factors of 𝐽 to obtain a factorization of 𝐼 . From this per-
spective, both the approach studied in this paper and the approach 
described in the previous paragraph may be regarded as particular 
cases of sampling. In the first case, the non-selected rows are the du-
plicate ones; in the latter case, they are the reducible ones. In general, 
sampling requires a heuristic or theoretically justified method of row 
selection. This method is supposed to select rows that are represen-
tative of 𝐼 in that the factors computed form the sample obtained 
from 𝐼 , i.e., from the smaller matrix, provide a good factorization of 
𝐼 . In our preliminary exploration, we used a probability-based selec-
tion of rows with a uniform distribution of probability. Such a simple 
random sampling yields reasonable results for the datasets used in 
this paper in that selection of 20% of the rows results in a consider-
ably faster and still rather precise factorization of the input matrix. 
On the other hand, the simple random sampling does not utilize any 
insight into the factorization problem, and hence is likely to be out-
performed by better sampling methods that need to be explored.

Note in this context that while sampling methods for Boolean 
matrix factorization have not been studied in the past, a recent work 
published in this journal [21] is an exception. In this work, the au-
thors propose a method to select rows of the input matrix that is 
based on the so-called essential entries of the input matrix [4]. The 
basic idea is to select rows containing a large number of essential en-
tries. The authors demonstrate that the proposed way of reducing the 
input matrix leads to promising results. Nevertheless, our examina-
tion revealed a notable shortcoming of [21]. Namely, reversing the 
logic of row selection, i.e., preferring the rows with a small number of 
essential entries, results in a comparable performance. In addition, 
the simple random sampling described in the previous paragraph, 
which ignores the property of essentiality at all, leads to compara-
ble and mostly even better results. In fact, it turns out that rather 
than being justified by the preference of rows with a large number 
of essential entries, the seemingly promising experimental results in 
[21] are a consequence of the fact that the involved datasets contain 
a considerable duplicity of rows and the fact that the unintended 
consequence of the method in [21] is removal of duplicate rows—a 
phenomenon studied in our paper. An analysis of the method devised 
in [21] is a subject of our forthcoming note.

• The idea of removing duplicate, i.e., identical, rows and columns 
suggests a more general idea of considering an appropriately de-
fined similarity of rows and columns and collapsing highly similar 
rows and columns for the purpose of reducing the input data instead 
of collapsing identical rows and columns. Such an approach would 
likely result in the lost of the possibility to compute exact factoriza-
tions of the input data, but could lead to yet faster computation of 
approximate factorizations. Considering a more general kind of re-
dundancy is also relevant in scenarios in which the Boolean data is 
subject to noise (or error), mentioned in Section 4.3.2.
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