Knowledge-Based Systems 335 (2026) 115190

journal homepage: www.elsevier.com/locate/knosys

Contents lists available at ScienceDirect -

Knowledge-Based Systems

Reduce before you factorize: A simple scheme for Boolean matrix

factorization

Radim Belohlavek ® , Jakub Juracka ® *

Department of Computer Science, Palacky University Olomouc, Czech Republic

ARTICLE INFO ABSTRACT

Keywords:
Boolean data
Factorization
Redundancy
Reduction
Sampling

We propose a simple idea that enables a speed-up of existing algorithms for Boolean matrix factorization. It
consists in a straightforward redundancy-removing transformation of the input data and an appropriate modifi-
cation of the factorization algorithm. Examination of real-world data used for benchmarking reveals that most are
amenable to such a transformation, rendering the idea practically significant. Experimental evaluation confirms
that our approach results in a significant speed-up of factorization algorithms. We also discuss the implications

of our findings for factorization of large Boolean data and outline topics for future research.

1. Introduction
1.1. Problem setting and our contribution

In the past fifteen years or so, research in Boolean matrix factoriza-
tion (BMF) has focused on developing new algorithms; see [1] for a re-
cent overview. Various approaches have been proposed that are able to
compute precise or approximate factorizations of a given input Boolean
matrix. To cope with the NP-hardness of the proposed variants of BMF,
the existing algorithms make use of various heuristics and compute the
factorizations directly from the input Boolean matrices.

In this paper, we propose to utilize a scheme, not employed in the
previous studies on BMF, that consists in transforming the input data,
factorizing the transformed data, and retrieving from the computed fac-
torization of the transformed data the resulting factorization of the orig-
inal data. While such a scheme may result in various particular factor-
ization methods depending on the kind of transformation of the input
data and the particular factorization algorithm, we examine a particular
transformation that removes a simple form of redundancy from the in-
put data, namely redundant rows and columns from the input Boolean
matrix. To factorize the thus transformed data, we employ a natural
modification of a given factorization algorithm, which we demonstrate
on the widely known Asso and GRECOND algorithms.

Our experimental evaluation confirms a practical relevance of the
proposed approach. Namely, an examination of real Boolean data used
in the literature on BMF reveals that most data is considerably redun-
dant in the above sense, which has not been observed in the previous
studies on BMF. As a result, such data is amenable to the proposed ap-

* Corresponding author.

proach, which results in a remarkable speed-up in factorizing the data.
The proposed approach is also relevant for the possibility of sampling
the input data, whose particular instance appeared in the literature. In
view of our findings and additional experimental observations, we point
out shortcomings of this existing work. In addition, we propose topics
for future research and support them with preliminary experimental re-
sults.

1.2. Notation

Denote by {0, 1}™™ the set of all n x m Boolean matrices, i.e., ma-
trices, denoted in our paper by I, that have n rows, m columns, and
whose entries /;; equal 0 or 1. Furthermore, the ith row and the jth col-
umn of I shall be denoted by I, and I ;, respectively, fori = 1,...,n and
j=1,...,m. As a rule, the rows and the columns represent objects (ex-
emplars, items) and attributes (properties, features), respectively, and
I;; = 1 indicates that the object represented by the row i, such as a par-
ticular organism or a particular product, has the attribute represented
by the column j, such as “to breathe” or “to contain lithium.”

The basic problem in BMF consists in finding for a given objectxat-
tribute matrix I € {0, 1}"*" an objectxfactor matrix A € {0,1}"** and a
factorxattribute matrix B € {0, 1}**" such that

k is reasonably small and I ~ AoB,

i.e., I approximately equals the well-known Boolean matrix product
AoB defined by

k
max min(A;;, By;).

(AoB),.j = na

E-mail addresses: radim.belohlavek@acm.org (R. Belohlavek), jakub.juracka@upol.cz (J. Juracka).

https://doi.org/10.1016/j.knosys.2025.115190

Received 10 August 2024; Received in revised form 9 October 2025; Accepted 21 December 2025

Available online 26 December 2025

0950-7051/© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, Al training, and similar technologies.

https://www.elsevier.com/locate/knosys
https://www.elsevier.com/locate/knosys
https://orcid.org/ 0000-0003-4924-3233
https://orcid.org/0000-0003-2518-075X

$\{0,1\}^{n\times m}$

$n\times m$

I

n

m

I_{ij}

0

1

i

j

I

$I_{i_}$

$I_{_j}$

$i=1,\dots ,n$

$j=1,\dots ,m$

$I_{ij}=1$

i

j

$\times $

$I\in \{0,1\}^{n\times m}$

$\times $

$A\in \{0,1\}^{n\times k}$

$\times $

$B\in \{0,1\}^{k\times m}$

\begin {equation*}k \mbox { is reasonably small and } I\approx A\circ B,\end {equation*}

I

$A\circ B$

\begin {equation*}(A\circ B)_{ij} = \max _{l=1}^k \min (A_{il},B_{lj}).\end {equation*}

$I\approx A\circ B$

I

$A\circ B$

$E(\cdot ,\cdot)$

L_1

\begin {equation*}E(I,A\circ B) = \sum _{i,j=1}^{n,m} | I_{ij} - (A\circ B)_{ij} | = |\{\tu {i,j}; I_{ij} \not =(A\circ B)_{ij}\}|.\end {equation*}

$E(I,A\circ B)$

\begin {equation*}E(I,A\circ B) = E_u(I,A\circ B) + E_o(I,A\circ B),\end {equation*}

E_u

E_o

I

A

B

$\varepsilon $

k

$E(I,A\circ B)\leq \varepsilon $

k

k

$E(I,A\circ B)$

I

$\mathrm {dim}(I)$

$|| I ||$

1

I

$n\times m$

I

n

m

$\frac {|| I ||}{n\cdot m}$

$\mathrm {dim}(\text {\textsc {Cla}}(I))$

$\text {\textsc {Cla}}(I)$

I

$(1-\frac {n_c \cdot m_c}{n\cdot m})\cdot 100$

n_c

m_c

$\text {\textsc {Cla}}(I)$

70

$\text {\textsc {Cla}}(I)$

$100-70=30\%$

I

70%

I

$3{,}279$

$1{,}555$

$1{,}556$

$1{,}557$

$3{,}485$

$3{,}477$

$10{,}127$

$1{,}586$

46

46

365×709

325×590

${}^\sim $

19

$6{,}980$

$3{,}196$

76

$4{,}590$

392

22

$8{,}124$

119

$12{,}841$

$4{,}894$

999

10

501

139

25

90

19

167

15

7

23

953

3×3

30

101

14

14

28

$I\in \{0,1\}^{n\times m}$

I

J

$\equiv _X$

$\equiv _Y$

\begin {equation*}\text {$X=\{1,\dots ,n\}$ \quad and \quad $Y=\{1,\dots ,m\}$}\end {equation*}

I

\begin {equation*}i_1 \equiv _X i_2 \mbox { if{}f } I_{i_1_} = I_{i_2_} \quad \mbox {and}\quad j_1 \equiv _Y j_2 \mbox { if{}f } I_{_j_1} = I_{_ j_2},\end {equation*}

$i_1,i_2\in X$

$j_1,j_2\in Y$

$i_1 \equiv _X i_2$

i_1

i_2

I

$[i]_{\equiv _X}$

i

$\min [i]_{\equiv _X}$

I

$[i]_{\equiv _X}$

$[j]_{\equiv _Y}$

J

I

n_c

m_c

J

$\equiv _X$

$\equiv _Y$

\begin {equation*}\text {$n_c=| X/ \equiv _X |$ and $m_c=| Y/ \equiv _Y |$.}\end {equation*}

J

I

i_1

i_2

I

$\min [i_1]_{\equiv _X} < \min [i_2]_{\equiv _X}$

i_1

i_2

J

$i=1,\dots ,n_c$

J

$\mathit {rpos}(i)$

$J_{i_}$

I

I

i

J

$j=1,\dots ,m_c$

$\mathit {cpos}(j)$

$O(m n \log n)$

$J\in \{0,1\}^{n_c\times m_c}$

$I\in \{0,1\}^{n\times m}$

J

I

$J\approx C\circ D$

$C\in \{0,1\}^{n_c\times k}$

$D \in \{0,1\}^{k\times m_c}$

J

C

D

$A= \mathrm {ext}(C)$

$B=\mathrm {ext}(D)$

$I\approx A\circ B$

$\mathrm {ext}(C)_{i_}$

$\mathrm {ext}(C)$

$C_{i^*_}$

C

$\mathrm {ext}(D)_{_j}$

$\mathrm {ext}(D)$

$D_{_j^*}$

D

$i=1,\dots ,n$

$j=1,\dots ,m$

$l=1,\dots ,k$

i^*

i^*

J

i

I

i

j^*

$l=1,\dots ,k$

$J\approx C\circ D$

$C_{_ l}$

C

$D_{l_}$

D

J

$C_{_ l}$

$D_{l_}$

I

C_{i^*l}

$\mathrm {ext}(C)_{_ l}$

$i \in [\mathit {rpos}(i^*)]$

$\mathrm {ext}(C)_{_ l}$

D

$\mathrm {ext}(C) \circ \mathrm {ext}(D)$

I

$\mathrm {ext}(C) \circ \mathrm {ext}(D) = I$

$J=C\circ D$

I

$\mathrm {ext}(C)$

$\mathrm {ext}(D)$

$I\in \{0,1\}^{n\times m}$

$J\in \{0,1\}^{n_c\times m_c}$

I

$C\in \{0,1\}^{n_c\times k}$

$D \in \{0,1\}^{k\times m_c}$

$\mathrm {ext}(C) \in \{0,1\}^{n\times k}$

$\mathrm {ext}(D) \in \{0,1\}^{k\times m}$

\begin {equation}\label {eqn:EIAB} E(I,\mathrm {ext}(C) \circ \mathrm {ext}(D)) = \sum _{\substack {i,j=1; \\ J_{ij}\not =(C\circ D)_{ij} } }^{n_c,m_c} | [\mathit {rpos}(i)]_{\equiv _X} | \cdot | [\mathit {cpos}(j)]_{\equiv _Y} |\end {equation}

$E(J,C\circ D)$

$\tu {i,j}$

J

$J_{ij}\not =(C\circ D)_{ij}$

$| [\mathit {rpos}(i)]_{\equiv _X} | \cdot | [\mathit {cpos}(j)]_{\equiv _Y} |$

$E(I,\mathrm {ext}(C) \circ \mathrm {ext}(D))$

$\mathrm {ext}(C)$

$\mathrm {ext}(D)$

$\tu {i,j}$

J

$J_{ij}\not =(C\circ D)_{ij}$

I

$\mathit {rpos}(i)$

$\mathit {cpos}(j)$

\begin {equation*}J=C\circ D \text { implies } I=\mathrm {ext}(C) \circ \mathrm {ext}(D).\end {equation*}

$J=C\circ D$

$I=\mathrm {ext}(C) \circ \mathrm {ext}(D)$

$E(J,C\circ D)=0$

$E(I,\mathrm {ext}(C) \circ \mathrm {ext}(D))=0$

$E(J,C\circ D)=0$

E_u

E_o

\begin {equation}\nonumber E_o(I,\mathrm {ext}(C) \circ \mathrm {ext}(D)) = \sum _{\substack {i,j=1; \\ J_{ij}<(C\circ D)_{ij} } }^{n_c,m_c} | [\mathit {rpos}(i)]_{\equiv _X} | \cdot | [\mathit {cpos}(j)]_{\equiv _Y} |.\end {equation}

I

J

I

k

$I=A\circ B$

$A\in \{0,1\}^{n\times k}$

$B\in \{0,1\}^{k\times m}$

I

J

I

J

C

D

$\mathrm {ext}(C)$

$\mathrm {ext}(D)$

I

I

$I=\mathrm {ext}(C) \circ \mathrm {ext}(D)$

$J=C\circ D$

I

I

$X=\{1,\dots ,n\}$

$Y=\{1,\dots ,m\}$

$n\times m$

I

${}^{\up _I}:2^X\to 2^Y$

${}^{\down _I}:2^Y\to 2^X$

$A\subseteq X$

$B\subseteq Y$

\begin {equation*}A^{\up _I} =\{ j\in Y \mid I_{ij} \mbox { for each }i\in A \} \mbox { and } B^{\down _I} =\{ i\in X \mid I_{ij} \mbox { for each }j\in B \}.\end {equation*}

$A^{\up _I}$

A

$B^{\down _I}$

B

$\tu {A,B}$

$A\subseteq X$

$B\subseteq Y$

$A^{\up _I}=B$

$B^{\down _I}=A$

I

$\mathcal {B}(X,Y,I)$

I

I

X

Y

$X\times Y$

$I_{ij}=1$

$\tu {i,j}$

$\mathcal {F}=\{ \tu {C_1,D_1}, \dots , \tu {C_k,D_k} \}$

I

$1,\dots ,k$

$A_\mathcal {F}\in \{0,1\}^{n\times k}$

$B_\mathcal {F}\in \{0,1\}^{k\times m}$

$A_\mathcal {F}$

C_1,\dots ,C_k

$B_\mathcal {F}$

D_1,\dots ,D_k

$\tu {C_1,D_1}$

$C_1=\{2,3\}$

$D_1=\{1,2,3\}$

I

$\tu {C_2,D_2}=\tu {\{ 3,4\},\{3,4,5 \}}$

$\tu {C_3,D_3}=\tu {\{ 1,3,4\},\{4,5 \}}$

$A_\mathcal {F}$

$B_\mathcal {F}$

$\mathcal {F}=\{ \tu {C_1,D_1}, \tu {C_2,D_2}, \tu {C_3,D_3} \}$

A

B

$I\in \{0,1\}^{n\times m}$

$\mathcal {F}$

I

$I=A_\mathcal {F} \circ B_\mathcal {F}$

$J=\mathsf {cla}(I)$

I

J

$\mathcal {G}$

J

$J=A_\mathcal {G}\circ B_\mathcal {G}$

$\mathcal {F}$

I

$\mathcal {G}$

$I=A_\mathcal {F}\circ B_\mathcal {F}$

I

$\mathcal {F}$

$\mathcal {G}$

n_c

m_c

$\mathit {rpos}$

$\mathit {cpos}$

$\textsc {Cla}$

U

J

1

$\mathcal {G}$

U

0

1

$\mathcal {G}$

U_{ij}

$U_{ij}=0$

J_{ij}

$U_{ij}>0$

$J_{ij}=1$

J_{ij}

$\tu {C,D}$

J

$\tu {E,F}$

U_{ij}

I

1

$\mathcal {G}$

J

U

J

$\mathcal {G}$

J

D

J

\begin {equation}\label {eqn:Doplus} D \oplus ^J j = \sum _{x \in (D \cup \{j\})^{\downarrow _J}} \sum _{y \in (D \cup \{j\})^{\downarrow _J\uparrow _J}} U_{xy},\end {equation}

I

$\mathcal {F}$

$\mathcal {G}$

$\tu {C,D}\in \mathcal {G}$

$\mathcal {F}$

$\tu {E,F}$

E

$i\in C$

$i' \in X$

$\equiv _X$

i

F

$j\in D$

$j'\in Y$

$\equiv _Y$

j

I

I

$\mathcal {F}$

I

$I=A_\mathcal {F}\circ B_\mathcal {F}$

$\tu {E,F}$

$\tu {C,D}$

$\mathcal {F}$

I

J

U

$D=\emptyset $

$\tu {C,D}$

$\mathcal {G}$

j

1

j

D

U_{ij}

$D \oplus ^J j$

1

I

$\tu {E,F}$

$\tu {C,D}$

$\mathcal {G}$

J

I

$\tu {C,D}$

$\mathcal {G}$

$\tu {E,F}$

I

$\mathcal {F}$

$I=A_\mathcal {F}\circ B_\mathcal {F}$

$U\not =0^{n_c\times m_c}$

$\sum _{i,j} U_{ij} \geq \varepsilon $

$\Box $

$O(||I|| n m^3)$

J

I

$O(m n\log n)$

$O(m n\log n + ||I|| n m^3)$

$m n\log n \in O(||I|| n m^3)$

I

$\log n/m^2$

1

$O(||I|| n m^3)$

$X=\{1,\dots ,n\}$

$Y=\{1,\dots ,m\}$

$I \in \{0,1\}^{n \times m}$

$k \leq \min (m,n)$

$S \in \{0,1\}^{n \times k}$

$B \in \{0,1\}^{k \times m}$

$E(I,{S} \circ {B})$

$A\in \{0,1\}^{m\times m}$

I

$\tau \in [0,1]$

\begin {equation*}A_{j_1 j_2} = 1 \text { iff } \mathrm {conf}(j_1 \Rightarrow j_2) \geq \tau \end {equation*}

\begin {equation*}\mathrm {conf}(j_1 \Rightarrow j_2) =\frac { | \{ i \,;\, I_{i j_1}=1 \text { and } I_{i j_2}=1 \} | } {| \{ i \,;\, I_{i j_1}=1 \} | } = \frac {\sum _{l=1}^{n}I_{l j_1}\cdot I_{l j_2}}{\sum _{l=1}^{n}I_{l j_1}}\end {equation*}

$j_1 \Rightarrow j_2$

I

S

B

\begin {equation*}E(I,{S} \circ {B}) = E_u(I, {S} \circ {B}) + E_o(I, {S} \circ {B})\end {equation*}

\begin {equation}\label {eq:assoCover} \begin {aligned} \text {\textsc {cover}}({S},{B},I, w^+, w^-) =& \ w^+ \cdot | \{ \tu {i,j} \,;\, I_{ij} = 1, ({S} \circ {B})_{ij} = 1\} | -\\ & \ w^- \cdot | \{ \tu {i,j} \,;\, I_{ij} = 0, ({S} \circ {B})_{ij} = 1\} | \end {aligned}\end {equation}

w^+

w^-

I

$l = 1,\dots ,k$

\begin {equation}\label {eq:coverParts} \text {\textsc {cover}}({S},{B},I, w^+, w^-) = \sum _{l=1}^{k} \text {\textsc {cover}}^l({S}_{_l},{B}_{l_},U,O, w^+, w^-),\end {equation}

U

O

$1,\dots , l-1$

U

O

I_{ij}

I

I

$\textsc {Cla}(I) = J \in \{0,1\}^{n_c \times m_c}$

A^J

J

$\overline {\mathrm {conf}}(j_1 \Rightarrow j_2)$

U

O

$J \approx {S}^J \circ {B}^J$

$I \approx {S} \circ {B}$

${S}^J$

${B}^J$

I

I

1

$\textsc {Cla}$

J

n_c

m_c

$\mathit {rpos}$

$\mathit {cpos}$

$A^J \in \{0,1\}^{m_c \times m_c}$

J

\begin {equation*}\overline {\mathrm {conf}}(j_1 \Rightarrow j_2) = \frac {\sum _{i=1}^{n_c}J_{i j_1}\cdot J_{i j_2} \cdot | [\mathit {rpos}(i)]_{\equiv _X} | }{\sum _{i=1}^{n_c}J_{i j_1} \cdot | [\mathit {rpos}(i)]_{\equiv _X} |}.\end {equation*}

$\overline {\mathrm {conf}}(j_1 \Rightarrow j_2)$

$\mathit {cpos}(j_1)$

$\mathit {cpos}(j_2)$

I

$I \in \{0,1\}^{n \times m}$

$J \in \{0,1\}^{n_c \times m_c}$

I

$j_1, j_2 \in \{1,\dots ,m_c\}$

\begin {equation*}\overline {\mathrm {conf}}(j_1 \Rightarrow j_2) = \mathrm {conf}(\mathit {cpos}(j_1) \Rightarrow \mathit {cpos}(j_2)).\end {equation*}

j_1

J

$\mathit {cpos}(j_1)$

I

$i \in \{1,\dots ,n\}$

$I_{i, \mathit {cpos}(j_1)} = 1$

\begin {equation*}\sum _{i=1}^{n} I_{i,\mathit {cpos}(j_1)} = \sum _{S \in X/ \equiv _X} I_{min(S)\mathit {cpos}(j_1)} \cdot |S| = \sum _{i=1}^{n_c} J_{i j_1} \cdot | [\mathit {rpos}(i)]_{\equiv _X} |.\end {equation*}

$X/ \equiv _X$

S_i

$\min (S)$

$S \in X/ \equiv _X$

$i \in \{1,\dots ,n_c\}$

$S_i \in X/ \equiv _X$

$\mathit {rpos}(i) = \min (S_i)$

$|S_i| = | [\mathit {rpos}(i)]_{\equiv _X} |$

j_2

\begin {equation*}\sum _{i=1}^{n} I_{i\mathit {cpos}(j_1)} \cdot I_{i\mathit {cpos}(j_2)} = \sum _{i=1}^{n_c} J_{i j_1} \cdot J_{i j_2} \cdot | [\mathit {rpos}(i)]_{\equiv _X} | .\end {equation*}

\begin {equation*}\frac {\sum _{i=1}^{n}I_{i \mathit {cpos}(j_1)}\cdot I_{i \mathit {cpos}(j_2)}}{\sum _{i=1}^{n}I_{i \mathit {cpos}(j_1)}} = \frac {\sum _{i=1}^{n_c}J_{i j_1}\cdot J_{i j_2} \cdot | [\mathit {rpos}(i)]_{\equiv _X} | }{\sum _{i=1}^{n_c}J_{i j_1} \cdot | [\mathit {rpos}(i)]_{\equiv _X} |}\end {equation*}

A

I

A^J

J

\begin {equation*}\text {\textsc {Cla}}(A) = \text {\textsc {Cla}}(A^J).\end {equation*}

$j_1, j_2 \in \{1,\dots ,m_c\}$

\begin {equation*}A^J_{j_1 j_2} = A_{\mathit {cpos}(j_1) \mathit {cpos}(j_2)}.\end {equation*}

A^J

A

A^J

J

I

$j_1, j_2 \in \{1,\dots ,m\}$

\begin {equation*}\mbox {if} \quad I_{_ j_1} = I_{_ j_2} \quad \mbox {then} \quad A_{j_1 _} = A_{j_2 _} \text { and } A_{_ j_1} = A_{_ j_2},\end {equation*}

$\textsc {Cla}(A)$

$\textsc {Cla}(A^J)$

$\textsc {Cla}(A) \neq A^J$

$j_3, j_4 \in \{1,\dots , m_c\}$

J

$J_{_ j_3} \neq J_{_ j_4}$

$A^J_{j_3 _} = A^J_{j_4 _}$

A^J

$A^J \neq \textsc {Cla}(A^J)$

J

I

$U \in \mathbb {N}_0^{n_c \times m_c}$

$O \in \mathbb {N}_0^{n_c \times m_c}$

I

$U_{ij} > 0$

$J_{ij}=1$

${S}^J \circ {B}^J$

${S} \circ {B}$

U_{ij}

I

1

$O_{ij} > 0$

J

$({S}^J \circ {B}^J)_{ij} = 1$

${S} \circ {B}$

I

O_{ij}

I

0

l

$A^J_{j_}$

s^j

$\text {\textsc {cover}}^l$

\begin {equation*}\overline {\text {\textsc {cover}}}^l(s^j, A^J_{j_},U, O, w^+, w^-) = \sum _{i=1}^{n_c} \sum _{k=1}^{m_c} s^j_{i} \cdot A^J_{jk} \cdot (w^+ \cdot U_{ik} - w^- \cdot O_{ik});\end {equation*}

$\tu {A^J_{j_}, s^j}$

$S^J_{_l} = s^j$

$B^J_{l_} = A^J_{j_}$

$s^j_{i} \cdot A^J_{jk} = 1$

J_{ik}

j

J_{ik}

U_{ik}

O_{ik}

s^J

$\overline {\text {\textsc {cover}}}^l$

\begin {equation*}s^J = \textsc {generateS}(A^J_{j_},U,O,w^+,w^-)\end {equation*}

s^J

$A^J_{j_}$

s^j

$s^J = 0^{n_c}$

s^J_i

$s^J_i = 0$

$s^J_i = 1$

$\overline {\text {\textsc {cover}}}^l$

$A^J_{j_}$

s^j

J

U

O

I

${S}^J$

S

${B}^J$

B

I

I

I

${S}^*$

${B}^*$

l

\begin {equation*}{S}^*_{_l} = {S}_{_l} \text { and } {B}^*_{l_} = {B}_{l_}\end {equation*}

S

B

${S}^J_{_l}$

${B}^J_{l_}$

l

$\overline {\text {\textsc {cover}}}^l$

${S}^*_{_l}$

${B}^*_{l_}$

$\text {\textsc {cover}}^l$

\begin {equation*}\begin {aligned} \text {\textsc {cover}}^l({S}^*_{_l},{B}^*_{l_},U^*,O^*, w^+, w^-) =& \ w^+ | \{I_{ij}; U^*_{ij} = 1, ({S}^*_{_l} \circ {B}^*_{l_})_{ij} = 1\} | -\\ & \ w^- | \{I_{ij}; O^*_{ij} = 1, ({S}^*_{_l} \circ {B}^*_{l_})_{ij} = 1\} |, \end {aligned}\end {equation*}

U^*

O^*

I

$1,\dots ,l-1$

$s^j_{i} \cdot A^J_{jk} = (s^j \circ A^J_{j_})_{ik}$

\begin {equation*}\begin {aligned} \overline {\text {\textsc {cover}}}^l(s^j, A^J_{j_}, U, O, w^+, w^-) &= \sum _{i=1}^{n_c} \sum _{k=1}^{m_c} s^j_{i} \cdot A^J_{jk} \cdot (w^+ \cdot U_{ik} - w^- \cdot O_{ik}) \\ &= \sum _{i=1}^{n_c} \sum _{k=1}^{m_c} w^+ \cdot (s^j \circ A^J_{j_})_{ik} \cdot U_{ik} - w^- \cdot (s^j \circ A^J_{j_})_{ik} \cdot O_{ik} \\ &= \text {\textsc {cover}}^l(\mathrm {ext}(s^j), \mathrm {ext}(A^J_{j_}), U^*,O^*, w^+, w^-), \end {aligned}\end {equation*}

$\mathrm {ext}(Z)$

A

A^J

$\tu {s^j, A^J_{j_}}$

$\overline {\text {\textsc {cover}}}^l$

A

$cpos(j)$

$\text {\textsc {cover}}^l$

l

$O(k m^2 n)$

$O(m^2 n)$

k

$O(m^2 n)$

J

I

$O(m n\log n)$

$O(k m^2 n)$

$O(mn\log n + k m^2 n)$

$\log n\leq m$

$O(k m^2 n)$

10

\begin {equation*}\frac {\text {runtime of the original algorithm}}{\text {runtime of the extended algorithm}},\end {equation*}

98%

48

245

49%

1%

n

c

$A \in \{0,1\}^{n\times 1}$

$B \in \{0,1\}^{1 \times n}$

$C = A \circ B$

c

$A_i, B_i \in \{0,1\}^n$

A

B

$C \in \{0,1\}^{n \times n}$

$n = 1000, 1500, 2000, 2500, 3000$

$c = 0.1$

0.1

$r= 0,0.05,0.10,0.25,0.50,0.75$

C

n

r

20

r

$\mathrm {dim}$

$\textrm {sp-up}^R$

$\textrm {sp-up}^C$

$\textrm {sp-up}^{R+C}$

$r=0.0$

k

$c(l)$

$l=1,2,3,\dots $

$I\in \{0,1\}^{n\times m}$

$c(l)$

\begin {equation*}c(l) = 1 - E(I, A(l)\circ B(l))/ || I ||,\end {equation*}

$A(l)$

$B(l)$

$n\times l$

$l\times m$

l

l

44

$p\%$

m

$\frac {p}{100}$

$[(1-\frac {p}{100})^2 + (\frac {p}{100})^2]^m$

p

$\mathrm {dim}(I)$

p

20

I

I

I

1

I

I

I

I

J

I

J

I

I

I

J

J

I

I

J

J

J

I

I

I

I

20%

mailto:radim.belohlavek@acm.org
mailto:jakub.juracka@upol.cz
https://doi.org/10.1016/j.knosys.2025.115190
https://doi.org/10.1016/j.knosys.2025.115190

R. Belohlavek and J. Juracka

The approximate equality I ~ AoB of I and AoB is assessed by the met-
ric E(-,-) induced by the matrix L;-norm [2], which turns into

nm
E(I,AoB)= Y |I;; = (AoB),;| = |{(i,j): I; # (AoB),;}I.

ij=1
The value E(I, AoB) gets split into two conceptually different types of
error,

E(I, AoB) = E (I, AoB) + E,(I, AoB),

where the E, and E, are the numbers of entries of I that are uncovered
by A and B and those that are overcovered, respectively, i.e.,

E,(I.AoB) = |{{i.j): I;; = 1.(AoB);; = 0},
E,(I. AoB) = |{{i.j):I;; = 0.(AoB);; = 1}].

Both the exact and approximate factorization and the error of factoriza-
tion are found in the supplementary material [3, example 1].

Two particular optimization problems result from the above basic
problem [4,5]: the approximate factorization problem (AFP), in which
a threshold ¢ is prescribed and the smallest number k of factors is sought
for which E(I, AoB) < ¢, and the discrete basis problem (DBP) in which
a number k is prescribed and k factors are sought for which E(I, AoB)
is as small as possible. A number of BMF algorithms have been designed
[1], of which we employ GRECOND [6, Algorithm 2] and Asso [5],
which are regarded as the representative algorithms for the AFP and
DBP, respectively.

2. Redundancy in real Boolean data

In the literature on BMF, a number of real datasets have been ex-
plored both for the purpose of factor-analyzing them and utilizing them
for benchmarking the BMF algorithms. In this section, we present the
most popular of these datasets and examine them for redundancy, which
is the crucial property for our purpose. The datasets along with their
relevant characteristics are provided in Table 1. Each dataset, i.e., a
Boolean matrix I, is represented by single table row, with the first four
columns containing the name, the dimension dim([), the number ||7]|
of 1s, and the density of the matrix I, respectively. The dimension n x m
indicates that I has n rows and m columns, and the density is the ratio
%. The next two columns contain the dimension dim(CLA(I)) of the
modified matrix denoted CLA([), i.e., the one obtained from I by the
removal of redundant rows and columns as described in the next sec-
tion, and the redundancy defined as (1 — %) - 100, where n, and m,
are the number of rows and columns of CLA(J). That is, a redundancy of
70 means that the modified matrix CLA(J) only contains 100 — 70 = 30%
of the entries of the original matrix I, i.e., 70% of I got removed.

We now provide a description of the involved datasets with details
that are not commonly available in the literature.

e The Advertisement dataset [7], created in 1998 [8], comprises 3,279
internet images, each described by 1,555 binary attributes supple-
mented by three continuous ones (width, height and aspect ra-
tio) and one class variable distinguishing advertisements from non-
advertisements. Each of the binary attributes indicates the presence
of keywords in text components of an advertisement such as URL."

e Several datasets, including Americas Large/Small, APJ, Domino,
Emea, Healthcare, and Customer, represent unspecified user-
permission relationships and were initially utilized for addressing
the Role Mining Problem [9]. The Americas Large and Americas
Small datasets, collected from Cisco firewalls, contains 3,485 and
3,477 users, respectively, each described by 10,127 and 1,586 access
rights to network services. The compact Healthcare dataset, obtained
from the U.S. Veterans Administration, outlines 46 healthcare per-
missions that may be assigned to 46 certified providers.

1 The meaning of the two binary attributes (1,556th and 1,557th) is not clear.

Knowledge-Based Systems 335 (2026) 115190

e The Firewall 1 and Firewall 2 datasets [9] represent the outcomes of
a checkpoint firewall analysis algorithm describing the reachability
of specific service packets (such as http) from the source IP address
range (row) to the destination range (column), with dimensions of
365 x 709 and 325 x 590, respectively.

e The DBLP dataset comes from the widely used computer science bib-
liographic database.? The dataset has been collected by Miettinen
[10], and includes information about contributions to 19 selected
premier conferences (columns) by 6,980 authors (rows) who con-
tributed at least two papers to the selected conferences.

e The Chess dataset [7], known also as KRKPA7, is a well-known
dataset, used for a classification of chess endgame scenarios. It em-
ploys a binary class label to indicate whether white can secure a
win. The 3,196 unique board positions are described by 76 attributes
determining the pieces’ positions on the chessboard [11].

o The DNA dataset contains information about DNA copy number am-
plification profiles in human neoplasms extracted from a publicly
accessible data collection [12]. It features a matrix with 4,590 tu-
mor cases, each characterized by 392 chromosomal loci indicating
the presence of amplifications as hallmarks of advanced tumors.

e Mushroom [7] is a well-known example of a classification dataset
which represents 22 physical traits of 8,124 hypothetical gilled mush-
room samples in the Agaricus and Lepiota families. These traits, such
as size, color, or odor, are expressed by a total of 119 binary at-
tributes.

e The NSF dataset was collected in [10] from the data accessible from
the National Science Foundation in the form of bags of words of the
abstracts of projects submitted for funding. The dataset represents
12,841 abstracts (rows) described by a set of 4,894 words (columns)
resulting from a stemming process and excluding those appearing in
more than 999 or fewer than 10 abstracts.

e Paleo® contains information on 501 fossils discovered in various pa-
leontological sites across Europe. The data, collected in December
2008, has been processed to highlight 139 distinct characteristics of
these fossils [10].

e Post (Post-Operative Patient) [7] outlines the health status of pa-
tients after surgery, detailing their condition through categorically
assessed factors such as temperature, oxygen saturation, and blood
pressure stability. Altogether, eight categorical health measure-
ments, represented by 25 Boolean attributes, are used to evaluate
the condition of 90 patients in a postoperative recovery area.

e Servo’s description [7] is somewhat ambiguous. The dataset is sup-
posed to represent a simulation involving four components of a servo
system: An amplifier, a motor, a lead screw nut, and a sliding car-
riage. Each setup is characterized by a combination of two categor-
ical and two integer-valued attributes, along with the system’s rise
time. Disregarding the final continuous attribute and converting the
four attributes, which include three attributes with five unique val-
ues each and one with four unique values, results in a total of 19
Boolean attributes (columns) which represent 167 initial system con-
figurations (rows).

o Shuttle [7] (Shuttle Landing Control) features categorical data with
15 rows corresponding to conditions under which autolanding would
be preferable to manual control of a spacecraft. These are described
by 7 numerical features with a total of 23 unique values represented
by the columns of the corresponding Boolean matrix.

e The TicTacToe dataset captures 953 unique arrangements of cir-
cles and crosses on a 3 x 3 game board at the end of a tic-tac-toe
game. Each configuration is detailed using 30 attributes, which spec-
ify whether a circle, cross, or blank space occupies each position on
the board, along with a target variable indicating “secured win for

2 http://www.informatik.uni-trier.de/~ley/db/
3 NOW public release 030717,
http://www.helsinki.fi/science/now/.

available from

R. Belohlavek and J. Juracka

Knowledge-Based Systems 335 (2026) 115190

Table 1
Real Boolean data used in BMF.

data dim(7) 11| density dim(CLA(])) redundancy
Advertisement 3,279x1,557 45,139 0.009 1,989x 763 70%
Americas Large 3,485x%x10,127 185,294 0.005 432x1,354 98%
Americas Small 3,477 x 1,586 105,205 0.019 259 x 349 98%
APJ 2,044 x1,164 6841 0.003 564 x 578 86%
Customer 10,961 x 277 45,427 0.015 5,656 X 276 49%
DBLP 6,980x 19 17,173 0.130 890x 19 87%
DNA 4,590 x 392 26,527 0.015 1,316 x 371 73%
Domino 79%x231 739 0.040 23x38 95%
Emea 35x% 3,046 7220 0.068 34x263 92%
Firewall 1 365x709 31,951 0.124 90 x 86 97%
Firewall 2 325x590 36,428 0.190 11x11 99%
Healthcare 46 x 46 1486 0.702 18x19 84%
Chess 3,196 x76 118,252 0.487 3,196 x76 0%
Mushroom 8,124x119 186,852 0.193 8,124 %113 5%
NSF 12,841 x 4,894 564,462 0.009 12,658 x 4,893 1%
Paleo 501x139 3537 0.051 471x139 6%
Post 90 x 25 720 0.320 75%x23 23%
Servo 167 x19 668 0.211 167 x19 0%
Shuttle 15x23 105 0.304 15x22 4%
Tic Tac Toe 958 x 30 9580 0.333 958 x 30 0%
Zoo 101 x28 862 0.305 59 %26 46%

cross.” The last attribute is empty (full of zeros) with an unclear
meaning.

e Zoo [7] represents a Boolean dataset describing 101 animals char-
acterized by 14 Boolean and two numerical attributes. The Boolean
attributes correspond to features such as presence of hair, presence
of tail, or venomousness. The other attributes, describing a number
of legs and representing animal classes such as mammals, birds or
reptiles, have 14 unique values, resulting in 28 Boolean attributes in
total.

3. New scheme for factorization
3.1. Clarification as the proposed reduction of input matrix

We employ a simple reduction which consists in removing duplicate
rows and columns. This reduction is well known in formal concept anal-
ysis [13] where it is known as clarification, which term we use below.
In particular, we employ a variant that clarifies an input Boolean matrix
I € {0, 1}™™ by removing from I all the duplicate rows and columns so
that only the first occurrences are kept in the resulting matrix J.

More precisely, duplicity obviously induces equivalence relations =
and =y on the sets

X={l,...,n} and Y ={1,...,m}

of row and column indices of I, respectively, i.e.,
i\ =x piffl; =1, and ji=y jpiffl; =1,
for ij,i, € X and j,,j, € Y. That is, i; =y i, means that rows i; and
ip of I are equal, the equivalence class [i]-, consists of indices of all
the rows equal to row i, and min[i]_, is the index of first such row in
I; the same holds for the columns. The equivalence classes [i]-, and
[jl=, hence correspond to the rows and the columns of the clarified
matrix J, respectively, and represent the rows and the columns of I to
be preserved: The numbers n, and m, of rows and columns of J thus
equal the numbers of equivalence classes of =y and =y, respectively,
ie.,

n.=|X/=x|andm, =Y/ =y |.

In addition, the ordering of rows and columns in J coincides with the
ordering of the first occurrences of their counterparts in I: If the first
occurrence of row i; precedes the first occurrence of row i, in I, i.e.,
min[i;]-, <minli,]_ , then the counterpart of /| precedes the counter-
part of i, in J; the same applies to the columns. Moreover, it turns out

useful for our purpose to denote for each row index i =1,...,n, of J by
rpos(i) the index of the first occurrence of the counterpart of the row J;
in I, i.e., the row position of I from which the row i of J originates}
similarly for the column indices j = 1,...,m, and cpos(j). Clarification
is illustrated in the supplementary material [3, example 2].

Note that removing duplicate rows may be performed by a compo-
nentwise sorting of the rows followed by a single pass through the rows
during which the duplicates are removed. The single pass may even be
skipped when removing duplicity appropriately within the sorting pro-
cess. This is a standard procedure in matrix computations and database
query processing with a time complexity in O(mnlogn); see [14] for de-
tails. Duplicate columns are treated dually.

3.2. Factorizing the clarified matrix and the need to modify a factorization
algorithm

If J €{0,1}"*" is the clarified version of an input matrix I €
{0, 1}™mas described in the previous section, one may consider com-
puting first an exact or approximate factorization of the smaller matrix
J, and “extend” it to obtain a factorization of the input matrix 7. That
is, if J ~ CoD, where C € {0,1}"*k and D € {0, 1} are the object-
factor and factor-attribute matrices computed for J, respectively, 1 aims
to obtain from C and D matrices A = ext(C) and B = ext(D) satisfying
I ~ AoB.

While this procedure may be considered even for a more general
kind of reduction of the input matrix, in the case of clarification, one
may utilize straightforward extensions

C € {0,1}"% 5 ext(C) € {0,1}™F
D € {0,1}" 1 ext(D) € {0, 1},

and

that consist in taking for each row ext(C); of ext(C) the corresponding
row C;» of C, and for each column ext(D) z of ext(D) the corresponding
column D ;. of D. That is, we consider the extensions defined for rows
i=1,...,nand columns j = 1,...,m by

ext(C); = Cpy Where i* = rpos™ (min[il_,), @
ext(D);; = Dy where j* = cpos’l(min[j]zy), 2

for every | = 1, ..., k. Note that the definition of i* in (1) says that i* is
the index of the row of J to which the row i of I (and all rows equivalent
to row i) got reduced by the considered clarification; symmetrically, for
j* and the columns.

Since each factor / = 1, ..., k behind the factorization J ~ CoD may
be identified with a pair consisting of the column C; of C and the row

R. Belohlavek and J. Juracka

D, of D (Section 1.2), the extensions described in (1) and (2) may be
understood as follows: Each factor of J , i.e., column C; and row D, ,
gets expanded to a possible factor of I by copying each value C;«; to the
corresponding positions in the column ext(C) , i.e., to the positions i €
[rpos(i*)] in ext(C) ;, and dually for D. For an example demonstrating the
preceding extensions, see the supplementary material [3, example 3].

One can easily check that in the just mentioned example,
ext(C)oext(D) is the exact decomposition of I, i.e., ext(C)oext(D) = I.
This is always the case when J = CoD, as shown below in corollary 1.
This corollary follows from the next theorem in which the error of the
resulting factorization of I by ext(C) and ext(D) is derived in a general
case:

Theorem 1. Let I € {0,1}™™ and consider the clarified matrix J €
{0, 1}"*™Me obtained from I as described in Section 3.1. For any C €
{0,1}7%*k and D € (0,1}, and the corresponding extended ext(C) €
{0,1}™* and ext(D) € {0, 1}**" we have

ne,mg
E(Iext(Cloext(D) = Y

ij=1;
J;j#(CoD);;

[lrpos(D]= | - Ilepos(ilz, | 3

Proof. The proof is straightforward, the basic argument being that an
error in E(J, CoD) caused by the entry (i, j) in J, i.e., J;; # (CoD),;, gets
multiplied by the factor [lrpos()]z | - lepos(]z, | as regards the contri-
bution to the error E(I, ext(C)oext(D)). Namely, due to the construction
of ext(C) and ext(D), the same configuration at the entry (i, j) in J, i.e.,
Ji; # (CoD),;, appears in all the entries of I corresponding to the rows
equivalent to rpos(i) and the columns equivalent to cpos(j). O

Corollary 1. With the same assumptions as in theorem 1,
J = CoD implies I = ext(C)oext(D).
Proof. Immediate from theorem 1 since J = CoD and I = ext(C)oext(D)

mean E(J,CoD) = 0and E(I, ext(C)oext(D)) = 0, and since E(J,CoD) =
0 implies that there is no summand in (3). O

Analogous relationships are easily obtained for E, and E,; for in-
stance,

Ilc,m‘.

E, (I, ext(C)oext(D)) = Z

Lj=1
J;;<(CoD);;

[[rpos()]= | - llepos(D]z, |-

The meaning of the theorem 1 is illustrated in the supplementary ma-
terial [3, example 4]. Note also that it directly follows from corollary 1
and the involved considerations that the Boolean ranks of the input ma-
trix I and the reduced matrix J are equal (recall that a Boolean rank of
I is the smallest number k of factors for which an exact decomposition
I = AoB exists for some A € {0,1}"k and B € {0, 1}<m),

The above discussion suggests the following procedure for factoriz-
ing a Boolean matrix I:

1. Compute a clarified J from I as described in Section 3.1;

2. Compute an exact or approximate factorization of J into C and D
using an established BMF algorithm ALG;

3. Return ext(C) and ext(D) given by (1) and (2).

This procedure has two convenient properties: First, it is faster than
a direct factorization of I, if I contains redundant rows and columns.
Second, I = ext(C)oext(D) whenever J = CoD.

However, the procedure has a significant shortcoming: For one, it
may deliver a factorization that is different from the one obtained by
a direct factorization of I by ALG, hence the procedure may not be re-
garded as speeding up ALG. In addition, and more importantly, it may
deliver a factorization that is considerably worse in terms of coverage of
data by factors compared to the factorization obtained by ALG. That the
described shortcoming indeed materializes on real datasets is demon-
strated in detail in Section 4.3.1.

It nevertheless turns out that the shortcoming may be eliminated by
employing a modified version of ALG in step 2 of the above scheme. This

Knowledge-Based Systems 335 (2026) 115190

is worked out in Sections 3.3 and 3.4, in which we present the modified
schemes for the two prototypical algorithms for the AFP and the DBP
problems, namely GRECOND and ASSO.

3.3. Extended GRECOND

Since the original GRECOND [6, Algorithm 2] utilizes formal con-
cepts associated to the input Boolean matrix I, we need to recall the
notions involved. Let X = {1,...,n} and Y = {1, ..., m} denote the set of
objects and attributes, respectively. Each n x m Boolean matrix I induces
the so-called concept forming operators '7 : 2X — 2¥ and V1 : 2V — 2X,
defined for A C X and B C Y by

Al ={jeY |1, foreachi € A} and B' = {i € X | I;; for each j € B).

That is, A'1 is the set of all attributes shared by all the objects in A, and
B'1 consists of all objects sharing all the attributes in B. A pair (A, B) of
AC X and B C Y satisfying A"/ = B and B' = A is called a formal con-
cept of I, and the set of all formal concepts, denoted B(X,Y, I), is called
the concept lattice of I.* Each set 7 = {(C}, D), ..., {Cy, D))} of formal
concepts of I (with a fixed ordering given by the indices 1, ..., k) natu-
rally induces two Boolean matrices, Ay € {0, 1} and By € {0, 1}/
The columns of Ay are the characteristic vectors of the sets Cy, ..., C;,
and the rows of By are the characteristic vectors of D, ..., D;. In the il-
lustrative example 1 in the supplementary material [3], the pair (C,, D)
with C; = {2,3} and D, = {1,2,3} is a formal concept of I and so are the
pairs (C,, D,) = ({3,4},{3.4,5}) and (Cs, D3) = ({1,3,4},{4,5}). These
are just the formal concepts corresponding to the three column-row pairs
used in that example, and hence the matrices Ar and By induced by
F = {(C}, D),{C5, D,),{C3, D5)} are just the matrices A and B of the
example.

Now, the original GRECOND algorithm computes for a given matrix
I € {0,1}™™ a set F of formal concepts of I such that I = ApoB using
a particular greedy search method. Basically, our new algorithm, Algo-
rithm 1, extends the original GRECOND as follows. First, the algorithm
computes a clarified matrix J = cla({) from I. Second, it computes a fac-
torization of J, i.e., a set G of formal concepts of J for which J = AgoB,
in a way similar to that used by GRECOND, but with a different approach
to coverage as explained below. Third, a set F of formal concepts of [is
obtained from ¢ such that I = ApoBy, i.e., the algorithm finishes with
a factorization of I.

In detail, 11. 1-4 initialize the variables used. In addition to ¥ and G,
explained in the previous paragraph, these include n,, m,, rpos, and cpos
which are returned by the clarification procedure CLA; see Section 3.1.
Moreover, the algorithm involves matrix U of the same dimension as J
which contains information about the entries containing 1 that are not
covered by the factors of G computed in the previous iterations. Unlike
the original GRECOND, which stores in U the values 0 and 1 indicating
“not covered” and “covered” by G, U;; is now a non-negative integer.
While U;; = 0 still indicates that the entry J;; has been covered by the
previously computed factors, U;; > 0 means that J;; = | and that if the
entry J;; gets covered by a formal concept (C, D) of J, then its extension
(E, F) computed in 1. 20-21 shall cover U;; entries of the input matrix
I that contain 1. The rationale behind . 7 is explained in the proof of
theorem 2. Next, the difference from GRECOND in computing G from J in
11. 8-18 consists in storing different information in matrix U indicating
which entries of J have not been covered by the factors in G computed
in the previous iterations. The loop in 1l. 8-18 basically agrees with
the original GRECOND when applied to the clarified matrix J, with the

4 These are the basic notions of formal concept analysis (FCA) [13]. Note that
FCA is based on a formalism of sets rather than Boolean matrices used in BMF.
Thus, instead of a Boolean matrix I, FCA assumes a binary relation between X
and Y, i.e. a subset of X x Y. The correspondence of sets and relations used in
FCA, on the one hand, and vectors and matrices used in BMF, is straightforward,
and one can switch between the two formalisms: I;; = I indicates that the pair
(i, j) is in the corresponding relation.

R. Belohlavek and J. Juracka

provision that the improvement in coverage in the extension of D by the
attribute J is computed according to

pe'j= Y Y Uy @
x€(DU(iDY ye(DU{iPH 1Y

i.e., taking into account the number of uncovered entries in /. In
1. 19-22, the set F is computed from G by a simple extension: For each
(C, D) € G, one puts to F the pair (E, F) in which E contains along with
each row index i € C all the indices i’ € X of the rows =y-equivalent
to i, and F contains with each column index j € D all the j/ € Y =y-
equivalent to j.

Algorithm 1 Extended GRECOND.
Input: I € {0, 1}™"
Output:

1. F<f

2: J,n,,m,,rpos,cpos < CLA(J)

3G9

4: U < J

5 fori=1,...,n, do

6: forj=1,...,m, do

7 Uy =U, - lrpostidle, | - llepos(ilz, |
8: while U # 0" do

o: D¢

10: V<0

11: while there is j ¢ D such that (D @’ j) > V do
12: select j ¢ D that maximizes D @’ j

13: D« (Du{jhtls

14: VD&

15: C « DY

16: add (C,D)to G

17: for (i,j) € C x D do
18: | L U <0

19: for (C,D) € Gdo

20: E < Uieclrposilz,
21: F < U eplepos(Dlz,
22: | add(E,F)toF

23: return F

Theorem 2. Algorithm 1 computes the same formal concepts of I in the
same order as the original GRECOND for any input matrix 1. In particular,
it computes a set F of formal concepts of I for which I = ApoBy.

Proof. We verify that the extensions (E, F) of the factors (C, D) coin-
cide and are being added to the output set F in the same order as the
formal concepts produced by the original GRECOND when applied to
I. As mentioned in the description of the algorithm, 1. 8-18 perform
the original GRECOND on the clarified matrix J, but using the modified
matrix U. That is, starting with D = §J, it constructs the formal concept
(C, D) to be added to ¢ by an incremental extension by attributes j until
such an extension stops improving coverage of 1s. The attribute j is the
one corresponding to a best possible extension of D. Here, best” means
with respect to the improvement in coverage by the constructed formal
concept; see 1. 11-14. Now, due to (4) and the definition of U;;, D @’ j
equals the improvement in the number of the 1s in I uncovered so-far,
i.e., uncovered by the extensions (E, F) of the formal concepts (C, D)
in G obtained in the previous iterations. A moment’s reflection reveals
that since the orderings of rows and columns in J respect those in

Knowledge-Based Systems 335 (2026) 115190

(Section 3.1), the loop in 11. 11-14 results in a formal concept (C, D) to
be added to ¢ whose extension (E, F), later computed in 1. 20-21, is
just the formal concept selected in the corresponding step of the original
GRECOND when run on the input matrix I.

The second part follows the original GRECOND’s output set F satisfies
I =ApoBr. O

A detailed demonstration of the extended GRECOND algorithm is
found in the supplementary material [3, example 5].

Remark 1. As with the original GRECOND, algorithm 1 can easily be
modified to compute approximate factorizations by changing the stop-

ping condition from U # 0" to },, . U;; > €. O

Remark 2. Aswe shall see in Section 4, the extended GRECOND enjoys a
considerable speed-up on real-world data compared to the original GRE-
COND. Yet, its asymptotic worst-case time complexity remains the same
as that of the original GRECOND in most scenarios. Namely, recall first
that the worst-case time complexity of GRECOND is in O(||I||nm?) [4]
(this bound follows from loose estimations; a tighter bound is an open
problem). In the worst case, i.e., with no duplicate rows and columns,
the reduced matrix J coincides with the input matrix /. The extended
algorithm first executes the reduction procedure on line 2, which runs
in time O(mnlog n); see the end of Section 3.1. The algorithm then fol-
lows the logic of the original GRECOND with modified updates of the
auxiliary data structures which clearly do not affect the overall com-
plexity. Hence, the overall worst-case time complexity of the extended
GRECOND is O(mnlog n + ||I||nm?). Now, if mnlog n € O(||I||nm?), which
is true in realistic situations (notice that for this to be true, it suffices
that I contains at least logn/m? entries containing 1), the overal com-
plexity of the extended algorithm is O(||I||nm?), i.e., that of the original
GRECOND.

3.4. Extended ASSO

The Asso algorithm [15] has been designed to solve the DBP by
making use of the so-called association rules among the attributes, i.e.,
matrix columns. Since the description in [15] is somewhat incomplete
as regards some details essential for our extension, we start by a de-
scription of the original algorithm suitable for our purpose. Let again
X ={l,...,n} and Y = {1, ...,m}. For an input matrix I € {0, 1}"*" and
a non-negative integer k < min(m, n), ASSO attempts to find matrices
S € {0,1})* and B € {0,1}*" such that E(I, SoB) is minimal. ASSO
first computes the so-called association matrix A € {0, 1}"*" from I and
a user-defined parameter z € [0, 1], which is defined by

A; o =1liff conf(j; = jp) =7

J1i2
where
Wis Iy, =Vand I =1}| ¥ I;, - I,
.. _ - n

|{1,Iij, =1} Z/=1 I,

is the so-called confidence of the association rule j; = j, in the input
matrix /. Finally, the matrices .S and B are computed in a greedy manner
to minimize the error

conf(jy = jp) =

E(I,SoB) = E,(I,SoB)+ E,(I, SoB)
by maximizing the value of

COVER(S, B, I,w*,w™) = w* - |{(i,j); I = 1,(SoB),; = 1}|- ®)
w™ (i, j); I;; = 0,(SoB);; = 1)]

where w* and w™ are user-defined non-negative weights to reward cov-
ering and penalize overcovering of I, respectively. Note that value of
COVER can be evaluated iteratively for each factor / = 1, ...,k as

k

COVER(S, B, I, w", w™) = Z COVER'(S |, B, ,U,0,w*,w"), 6
I=1

R. Belohlavek and J. Juracka

where the matrices U and O maintain information about the current cov-
erage state by the factors 1,...,/ — 1. Both U and O need to be updated
to avoid repeated rewarding/penalizing for covering the same entries
1.

Our extension of ASSO (Algorithm 2) aims to simulate the steps of
the original Asso algorithm on a clarified matrix resulting from I. First,
one computes from I the clarified matrix CLA(I) = J € {0, 1}"<*™.. Sec-
ond, an association matrix A’ is computed from J using slightly modi-
fied confidence rule conf(j | = Jj») to take into account the rows removed
within clarification. Third, the matrices U and O are identified as the es-
sential part for the accurate calculation of the modified COVER function
as explained below. Finally, an approximate factorization J ~ S’ 0B’
is iteratively computed and the factorization of I ~ SoB is found by
extending SY and B’ as described by (1) and (2), respectively. The al-
gorithm finishes with the exactly same factorization of I as the original
Asso.

In detail, matrix [is clarified on line 1 along with the initialization
of the other used variables on 1l. 2-3. Note that CLA returns, in addition
to J, values n,, m,, rpos, and cpos as described in Section 3.1. The as-
sociation matrix A’ € {0, 1}"*" of J is computed in 1l. 4-6 utilizing a
modified confidence function

Y Ty, - i, - rpos]=, |

Zz iy
This modification includes information about the number of reduced
rows. The following theorem shows, that conf(j; = j,) indeed reflects

the degree of association between the corresponding columns cpos(j;)
and cpos(j,) in I:

conf(j; = jp) = [[rpos(D)]<, |
=x

Theorem 3. Let I € {0,1}"™ " be binary matrix and J € {0, 1}"<*"c be the
corresponding clarified matrix of I. For each j,, j, € {1,...,m_}, we have

conf(jy = jp) = conf(cpos(j) = cpos(ir)).

Proof.

For each column j; of J and its corresponding column cpos(j,) in I
we can compute the number of rows i € {1, ..., n} such that I; ;) = 1
as

n
2 Licposty) =
i=1

Indeed, since X/ =y contains the sets .S; of identical rows (see Sec-
tion 3.1), we can utilize them for the sum instead of adding each row
separately. The first equality follows immediately. Additionaly, the clar-
ification procedure preserves only the index min(.S) of the first row for
each S € X/ =y and since for each i € {1,...,n,} there is exactly one
S; € X/ =x such that rpos(i) = min(S;) and |.S;| = |[rpos(i)]EX |, the sec-
ond equality follows.

Now, we can easily extend the expression by second attribute j, to
prove the equality

Z lupm(jl) icpos(jp) — Z thl “ijy ”

Finally, combining the first and the second equality, we obtain

n
Zi:l IiCPOS(I'l) IICPOS(Jz) Z: 1 1]1)
Z;’:l Iicpos(j]) Z
finishing the proof. O

e
> Luinsepostip * 151 = 2, Ty, < Nlrpos(dl=, .
i=1

SeX/=x

l[rpos(i)l, |-

Jij2 . |[’1705(i)]zx |

- lrpos()]z, |

Corollary 2. With the same assumptions as in theorem 3, for the confidence
matrices A of I and A’ of J holds

CLA(A) = CLA(AY).

Proof. Theorem 3 implies that for each j,, j, € {1,...,m,} we have

J —
A jy = Acpostiyyepostin)-

Knowledge-Based Systems 335 (2026) 115190

Algorithm 2 Extended ASSO.
Input: I € {0,1}™" k < min(m,n),7 € [0,1] and wt,w™ € R
Output: S € {0,1}, B € {0, 1}}xm

1: J,n.,m,,rpos,cpos < CLA(I)
2: SJ P O”L'Xk’ B! < ()k)(mC
3: A.l - Omcxmz
4: for (i,j) e {1,...,m.} x{1,...,m.} do
5t | if conf(i = j) > r then
6: Al =1
ij
7: U <« J
8: for (i,j)e {1,...,n.} x{1,...,m.} do
9 Uy =Uy-Ilrposhlz, | - llepos(il, |
100 0y =1Jy; — 1] - llrposti)l, | - l[cpos(i)z, |

11: for/=1,...,k do

12: select j € {1,...,m, } maximizing COVER(s/, A; ,U, O, w*,w")

13: B,J_ - Aj!_ and S_JI - GENERATES(AJ{_, U,0,w*,w")
14: for (i,jye {l,....n.} x{1,....,m,} do

15: U; < U, |min(SI{,BJ)— 1|

16: 0;; < Oy - |min(S;7, B)) — 1]

17: S = 0™k B = Qkxm
18: for/=1,...,k do

19: fori=1,...,ndo
rpos](mm[i]zx),l

20: L Sy <S8t
21: orj=1,...,mdo
22: By;

< B’
J Lepos=!(minljl=,,)
23: return S, B

The matrix A7 is then just a submatrix of A, such that the rows and
columns of A’ correspond to the columns left in J after the clarification
of I. In the other words, since for each j,, j, € {1,..., m} we clearly have
if IJl = I_/z

then Aj]_ = Ajz_ and A_/-] = A_/z,

we have CLA(A) = CLA(A”). Note that in general, CLA(A) ;é A, because
two non-identical columns js, j, € {1,...,m,} in J, i.e., L FE S C
clearly have identical rows (and columns) AJ = AJ!4 in AJ and then
A’ # CLA(A”); see example 6 in the supplementary material [3]. O

The search for a decomposition of J is carried out with regard to
the resulting decomposition I, which requires a proper adjustment of
the COVER function. We introduce (ll. 7-10) the matrices U € N"‘X”’
(uncovered) and O € Ng XM (overcovered), which maintain 1nformat10n
about the number of as yet uncovered and non-overcovered elements in
I, respectively. In particular, the meaning of U;; > 0 is: If J;; = 1 gets
covered, then extending S 0B’ to SoB results in covering a total of U;;
entries of / that contain 1. Similarly, O;; > 0 indicates that a decomposi-
tion of J with (S”/oB”), ; = 1, followed by the extension to a decomposi-
ton SoB of I, would result in overcovering O;; entries of I that contain
0. In each iteration / (1. 11-16), the algor1thm selects a row AJ and
a vector s/ described below, maximizing value of the revised COVER’
function

n(‘ mC
TOVER (s/, A7, U, 0. w*,w) = 3\ 3 s/ - Al - (w* - Uy —w™ - Oy;

i=1 k=1
and, in addition, the tuple (A/J._, s/) with the highest score is selected as
a new factor, i.e. S = s/ and B/ = A7. The value s{ - A, =1 indicates
a coverage of J;;, entry by the current candidate tuple j and the expres-

R. Belohlavek and J. Juracka

sion in parentheses reflects the contribution to the overall score for the
covering/overcovering of J;,. Note, that in each iteration at most one of
the values U;;, or O, is nonzero.

Algorithm 3 GENERATES.

Input: a € {0, 1}",U € Ni“™,0 € NI, and w*,w™ € R
Output: s € {0, 1}

1: s « 0"

2: fori=1,...,n, do

3 SC(Jre"=u)+~2;n=‘1 U,-j-aj—w“z;"z‘l 0, - q
4: if score’ > 0 then
5 L s; < 1

6

. return s

Let us now describe the algorithm (Algorithm 3) for finding the vec-
tor s/ that maximizes the COVER function. We have

st = GENERATES(A/J. LU0, wh,w™)

as a greedy selection of vector s’ for candidate Af . Our implementation®
initializes zero vector s’ = 0". Then, each s,.J is evaluated in a greedy
manner to determine whether it is better to set s,.J =0or siJ = 1, selecting

the value resulting in the largest increase of COVER . The selected pair
of A;_ and s/ is then stored as a new factor for J (line 14) and the newly
covered elements are updated accordingly in the matrix U and O (Il
14-16).

Finally, a decomposition of T is obtained by extending the matrix .S/
to S according to (1) and extending B’ to B according to (2).

Theorem 4. Algorithm 2 computes the same decomposition of I as the
original ASSo for any input matrix 1.

Proof.

Denote the matrices returned by original Asso algorithm for input /
by S* and B*. To prove our theorem, we verify that finding factors on
1. 11-16 copy the behaviour of original Asso, and thus for each factor
1 it holds

Sj‘, =5, and BZ =B

where S and B are the matrices returned by Algorithm 2.
The selection of S{ and B[J in iteration / is based on the value of

] ‘
COVER, and analogously for 7, B}, and COVER'. We have

COVER'(S*, B} ,U*,0*, w*,w™) = w*|{I;;

U;U; =1,(S70B)); = 1}|-

w‘|{I,-j;O:‘/. = 1,(S_’;oBf_),./. =1},

where U* and O* are the matrices representing the uncovered and non-
overcovered entries of I by factors 1,...,/ — 1. Since s/ - Ajfk = (sfoA/J. Viks
we obtain

n, m,

COVER’(sf,Aj{,U,O, whw?) = Z ZSf : Afk St Uy —w - 0y)
i=1 k=1
= Z z 7 (SjoAf dik - Uy —w™ - (SI°A,{ ik * Oix
i=1 k=1 B B
= COVER/ (ext(s’), ext(A/!), U*, 0%, w*, w"),
for ext(Z) defined as in (1) and (2). Theorem 3 and corollary 2 yield that

the matrices A and A’ maintain the same information. It is evident that
if the extended algorithm chooses a tuple (s/ ,AJJ), with the maximal

— . . .
value of COVER as a new factor, then in the matrix A there exists a

5 Note that finding the vector s/ is not detailed in the paper on the original
Asso algorithm [15], hence our description.

Knowledge-Based Systems 335 (2026) 115190

corresponding cpos(j) with the same score COVER/, and vice versa. Both
algorithms hence clearly select the same factor in each iteration /. O

A detailed demonstration of the extended Asso algorithm can be
found in the supplementary material [3, example 6].

Remark 3. While the extended Asso algorithm achieves a considerable
speed-up on real-world data (Section 4), its asymptotic worst-case time
complexity is the same as that of the original ASso algorithm in realistic
scenarios. In detail, note first that the time complexity of the original
Asso is O(km?n), computing the association matrix in time O(m?n) and
each of the k factors also in time O(m2n); see [5]. In the worst case,
i.e., with no redundancy, the reduced matrix J coincides with the in-
put matrix I. The extended algorithm first runs the reduction procedure
on line 1, which runs in time O(mnlog n); see Section 3.1. Then the ex-
tended algorithm follows the logic of the original Asso, extending it by
bookkeeping steps to ensure correct updates of the auxiliary matrices.
It is immediate to see that none of these bookkeeping steps negatively
affects the overall complexity of O(km?n). Therefore, the overall worst-
case time complexity of the extended ASSO is O(mnlog n + km?n). More-
over, if log n < m—which may be considered a rather realistic scenario—
the time complexity of the extended ASSO remains in O(km?n).

4. Experimental evaluation

In this section, we demonstrate that the reduction scheme proposed
in our paper results in a significant speed-up of factorization algorithms.
In doing so, we provide various results for GRECOND and AsSSo0, i.e., the
two basic algorithms for the AFP and DBP problems whose extensions
we developed in our paper. We focus on the aspects relevant to the
purpose of the proposed extension and omit evaluation of other aspects,
such as coverage graphs of the data by the computed factors or precision
of the computed factorizations which are described in detail elsewhere
in the literature on BMF. This is possible due to our main theorems
according to which both the extended GRECOND and the extended ASSO
compute exactly the same factorizations as their well-known ordinary
counterparts.

In particular, we focus on the dependence of the speed-up resulting
from the proposed transformation of the input data and employment of
the extended algorithms on the redundancy of the input data. We also
explore other relevant questions such as the impact of row redundancy
and column redundancy, and examine further relevant topics. For this
purpose we utilize both the well-known real-world datasets (Section 4.1)
and synthetic datasets (Section 4.2).

4.1. Real-world data

We use the well-known, commonly used benchmark datasets de-
scribed in Section 2. Since all the presented algorithms are determin-
istic, the measured runtimes have a small standard deviation for each
dataset. The experiments were hence repeated 10 times only to obtain
average runtimes for both the original and modified versions of the
algorithms.

The results regarding the observed speed-up of a running time are
summarized in Fig. 1. Note that the datasets with no redundancy as
well as small datasets which get factorized in a fraction of a second, and
hence with a speed-up possibly affected by other factors, are omitted.
The bars on the left depict the redundancy of the dataset, as defined in
section Section 2. The bars on the right present the measured speed-up,
i.e., the ratio

runtime of the original algorithm
runtime of the extended algorithm’

which is depicted on a logarithmic scale. Observe that the highest speed-
up occurs for the large datasets Americas Large and Americas Small
with the redundancy around 98%. For instance, with Americas Large,
the extended GRECOND runs approximately 48 times faster, while ASSO

R. Belohlavek and J. Juracka

Knowledge-Based Systems 335 (2026) 115190

_ Am-large
233
Algorithm
B Asso
73 DNA 127
_ I YT
. | 9as3]
B Y T\
1 NSF JlN 0.95]
F 0.61
100 75 50 25 0 0 2 5 10 20 50 100 250
Fig. 1. Comparison of a redundancy and speed-up on benchmark datasets.
200 & -
/.
175 500
150
400
0125 »
g 4
s £ 300
£ 100 &
o o
< c
75 200
50 —&— Asso —&— Asso
—e— Extended Asso 100 —e— Extended Asso
25 —#— GreConD —#— GreConD
—— Extended GreConD —— Extended GreConD
0 0
0 50 100 150 200 250 0 5000 10000 15000 20000 25000 30000
time [s] time [s]
(a) Americas Small (b) Americas Large
800
120
700
100
600
80
0 500 »
8 8
& 400 & 60
£ £
300
40
200 Asso —=— Asso
—e— Extended Asso 20 —e— Extended Asso
100 —#— GreConD —#— GreConD
—&— Extended GreConD —=— Extended GreConD
0 0
0 20 40 60 80 100 120 140 160 0 2 4 6 8 10 12 14 16
time [s] time [s]

(c) Advertisement

(d) Mushroom

Fig. 2. Comparison of the number of factors (vertical axes) computed over time (horizontal axes) between the original and extended GRECOND and Asso. Both
versions, the original and the extended, compute the same factorizations but their speeds clearly differ; the point where a line stops rising corresponds to the time

when the respective algorithm finishes computation.

runs more than 245 times faster compared to the original algorithms. In
practical terms, this means that the runtime dropped from hours to sec-
onds. One may also observe a phenomenon we examine in more detail
in the next section, namely, a larger impact of column-redundancy com-
pared to row-redundancy on the speed-up. In particular, the Customer
dataset with a considerable 49% redundancy has a very small column-
redundancy (see Table 1), which results in a very small speed-up for
both GRECOND and Asso, which also applies to the DNA dataset. We
also include the considerably large NSF dataset with a rather small 1%
redundancy, resulting in a slow-down of the running time for both GRE-
CoND and ASsO, which is expected because the extended algorithms
naturally involve overhead.

In this context, let us also note that another factor affecting the
speed-up consists in that while the original algorithms may use binary
matrices to represent coverage information, the extended versions need
to use integer matrices, which slows down particularly the repeatedly
performed matrix summations. The overall results imply that this slow-
down is amply compensated by the overall speed-up. Further evalua-
tions of the speed-up is provided in the online supplementary data [3,
S1].

Fig. 2 demonstrates in more detail a single computation of the indi-
vidual factors by the original vs the extended algorithms in dependence
on the running time. As explained above, both versions, the original and
the extended, compute the same factorizations but their speeds differ.

R. Belohlavek and J. Juracka

The points where the lines stop rising indicate when the respective al-
gorithm stops. Recall at this point that ASSO rarely achieves an exact
factorization and typically ends up with an approximate factorization;
in contrast to that, GRECOND always produces an exact factorization
which sometimes results in a longer runtime. The Americas Large and
Small, and the Advertisement datasets enhance the results presented
in Fig. 1; the Mushroom dataset is an example of a zero-redundancy
dataset and displays a slight slow-down caused by the factors explained
in the previous paragraph. The detailed results provided in the online
supplementary data [3, S1], as well as the results for synthetic data,
presented in the following section, show that the slow-down is small in
most cases, and thus does not significantly affect the overall runtime.
Generally, data reduction appears to have a more significant impact on
the speed of the Asso algorithm compared to GRECOND.

4.2. Synthetic data

To provide further experimental results, in particular to assess dif-
ference between the impacts of row- and column-redundancy on the
runtime, a synthetic data generator has been designed to produce a sym-
metric square matrices to suppress a possible bias. As is clear from the
description of both algorithms, they focus on columns when computing
factorizations: GRECOND constructs the factors from the best columns
selected in a greedy manner; as for ASSO, it constructs its association
matrix from the columns. The column-redundancy is thus expected to
have a larger impact on speed-up compared to row-redundancy.

To produce natural random matrices for factorization, we employed
the following process. For a given dimension » and a prescribed density
¢ (see Section 2), matrices A € {0,1}"*! and B € {0, 1}'*" are randomly
initialized. Until the density of a matrix C = AoB reaches ¢, we add
randomly generated vectors 4;, B; € {0,1}" as a new factor to A and B,
respectively. Finally, the square matrix C € {0, 1}"*" is made symmetric
by flipping the upper diagonal to the lower one.

In the experiments presented below, we wused n=
1000, 1500, 2000, 2500,3000, and ¢ =0.1, since 0.1 appears to rep-
resent a common density in the real-wold datasets. We then added
redundancy of r = 0,0.05,0.10,0.25,0.50,0.75 by adding duplicit rows
and columns in a way to maintain symmetry of the resulting matrix
C. For each n and r, we generated 20 input matrices this way, and
computed their factorizations via the original and the extended
algorithms. Finally, a speed-up was computed for each run, and the
average speed-up was stored.

The results are summarized in Table 2. For each redundancy level
r, the value dim in the second column stands for the average dimen-
sion of the input matrix after the addition of redundancy. For both
the GRECOND and ASsO algorithms, the mean speed-up is presented
in three columns corresponding to three kinds to redundancy removal:
row-redundancy only (sp-up®), column-redundancy only (sp-up®), and
both row- and column-redundancy (sp-up®*€) which is equivalent to
our modification.

For data without redundancy, i.e., for r = 0.0, the removal of redun-
dancy, i.e., clarification, does not do anything to the input data, hence
the extended algorithms essentially proceeds as the original ones. In this
case, only the most time-consuming experiment involving removal of re-
dundant rows and columns is reported in the table. Overall, the results
suggest that even though the removal of column-redundancy does not
achieve the effect of the row- and column-redundancy removal, i.e., the
effect of clarification, it saves more time compared to row-redundancy
removal (see also similar observations in Section 4.1 for the Customer
and DNA datasets).

4.3. Further topics
4.3.1. The need to modify the original algorithms

In Section 3.2, we described a simple, alternative factorization ap-
proach that utilizes removal of duplicity but employs the unmodified

Knowledge-Based Systems 335 (2026) 115190

Table 2
Impact of removal of row-redundancy, column-redundancy, and both row- and
column-redundancy on speed-up (sp-up).

GRECOND Asso
r dim sp-up® sp-up® sp-up®€ sp-upR sp-up® sp-up®©
0.0 1000 - - 1.00 - - 0.95
1500 - - 0.99 - - 0.92
2000 - - 1.00 - - 0.91
2500 - - 1.00 - - 0.84
3000 - - 0.99 - - 0.87
0.05 1053 0.95 1.02 1.04 1.02 1.17 1.13
1579 0.96 1.02 1.04 1.02 1.20 1.11
2106 0.98 1.03 1.06 1.09 1.23 1.25
2632 1.00 1.06 1.09 0.93 1.05 1.05
3150 1.02 1.08 1.16 0.89 1.08 1.07
0.10 1112 0.96 1.11 1.16 1.05 1.18 1.41
1667 0.98 1.15 1.20 1.06 1.41 1.41
2223 1.02 1.16 1.25 1.06 1.39 1.52
2778 1.06 1.19 1.25 0.93 1.20 1.25
3300 1.14 1.32 1.52 0.85 1.48 1.65
0.25 1334 1.05 1.42 1.61 1.22 2.27 2.56
2000 1.09 1.59 1.82 1.20 2.13 2.70
2666 1.19 1.67 1.96 1.22 2.00 2.63
3334 1.37 1.68 2.43 1.19 1.92 2.38
4000 1.32 1.79 2.27 1.14 1.82 2.10
0.50 2000 1.37 2.86 3.70 1.79 5.56 8.34
3000 1.52 3.33 4.77 1.92 4.35 10.00
4000 1.75 3.70 5.88 1.89 3.85 8.33
5000 2.78 4.17 10.05 1.89 5.56 10.04
6000 2.12 3.22 9.09 1.91 3.45 6.45
0.75 4000 2.56 10.02 19.78 3.56 13.67 52.19
6000 3.57 14.29 33.33 3.93 12.82 77.33
8000 4.54 11.12 52.14 4.11 14.56 75.13
10,000 6.09 14.53 78.52 5.20 17.41 70.41
12,000 7.19 15.52 84.12 5.14 15.16 72.88

version of the given factorization algorithm, such as GRECOND and
Asso, and described the shortcomings of this alternative approach. The
purpose of this section is to demonstrate that these shortcomings indeed
materialize.

The shortcomings are demonstrated in Fig. 3. The graphs, which dis-
play a typical behavior of both GRECOND and ASsO, represent the cov-
erage c(/) of the input data by the first / = 1,2, 3, ... computed factors for
two selected datasets I € {0, 1}"*". Note that c(/) is defined [16] by

c()=1-EU, Ao B/l

where A(/) and B(/) denote the nx [and / x m matrices corresponding
of the first / of the computed factors. It is apparent that while the cov-
erage graphs of the modified algorithms display the desired shape, i.e.,
are steeply increasing for small /, the graphs corresponding to the al-
ternative approach involving the unmodified algorithms, both of which
run on the clarified data, do not have this desired shape and display
jumps. In particular, the graphs demonstrate that the unmodified algo-
rithms deliver different factorizations compared to those computed by
the modified algorithms.

In addition, as is evident from the graph for Americas Small, the
approach involving the unmodified ASSO achieves smaller coverage, i.e.,
smaller precision, compared to the approach involving a modified Asso
as proposed in our paper. For the Advertisement dataset, the unmodified
Asso algorithm required 44 more factors to reach the coverage achieved
by the modified Asso.

In conclusion, the approach based on the proposed transformation
of input data and employment of the original, unmodified algorithms
suffers from the discussed shortcomings. More results for the other real-
world datasets are found in the supplementary material [3, S2].

4.3.2. Possible limitation
While our method proves useful in the scenario assumed in our study,
its utilization may be limited in a scenario in which the analyzed data

R. Belohlavek and J. Juracka

100 A = = =R e E
80 3
£ 60 i
3 i
o i I
e =
$: e
g 40 IS
20 i
—e— GreConD
Extended GreConD
0 i
0 25 50 75 100 125 150 175 200
no. factors
(a) Americas Small - GreConD
<
o
o
e
[
> M
o O
v ™~
—e— GreConD
Extended GreConD
0
0 100 200 300 400 500 600 700
no. factors

(c) Advertisement - GreConD

Knowledge-Based Systems 335 (2026) 115190

100
80
R 60f
d)
o o
o | ut
g ‘ o
g 40 A
20
—e— Asso
Extended Asso
0
0 20 40 60 80 100 120 140 160
no. factors
(b) Americas Small - Asso
100

80

60

coverage [%]

40

582

20

—e— Asso
Extended Asso

100 200 300

no. factors

400 500

(d) Advertisement - Asso

Fig. 3. Shortcomings of the unmodified algorithms and comparison with their extended versions on representative datasets Advertisement and Americas Small. The
graphs depict the coverage of input data by the first k factors in the computed factorizations. Vertical lines indicate the final number of factors identified by each

algorithm.

is subject to noise [17,18], i.e., a scenario in which “true data” gets
distorted to some extent before it undergoes a Boolean matrix factoriza-
tion. It appears obvious that even a very small extent of noise (or error)
in Boolean data reduces or even destroys the amount of redundancy
of rows and columns that may naturally be present in noise-free data. A
simple quantitative indication consists in realizing that if a noise of level
1% is applied to two equal rows of a Boolean matrix with m columns,® the
probability that these rows remain equal is [(1 — ll'm)z + (&)2]’”. This
reveals that redundancy in the “true data” gets significantly reduced as
the noise level and the matrix dimensions get larger. Consequently, the
time efficiency of our method would be impaired.

An experimental evidence of the reduction of redundancy as a re-
sult of noise and growing matrix dimension is apparent from Table 3,
whose entries display the redundancy of selected datasets introduced
in Section 2 to which a random noise of level p is added as explained
above (the displayed redundancies represent average values over 20 rep-
etitions).

It needs to be emphasized that as demonstrated above, many real
Boolean datasets are highly redundant (Table 1), and hence, do not pre-
sumably contain noise. Therefore, the possible limitations discussed in
this section do not apply, which justifies the relevance of our method.
Nevertheless, the present considerations regarding noise call for an ex-
tension of our method or for an alternative approach to handle redun-
dancy in situations with noise.

L2

6 In the sense that each matrix entry is flipped with the probability of o5

independently of the other entries.

10

Table 3
Reduction of redundancy in selected datasets of Table 1, displayed
in percents as a result of added noise of level p and matrix dimension

dim(I).
data dim(7) p=0 p=.1 p=1 p=2
Americas Small 3,477 x 1,586 98% 24% 0% 0%
APJ 2,044x1,164 86% 18% 0% 0%
Customer 10,961 x 277 49% 37% 2% 0%
DBLP 6,980%x19 87% 87% 82% 77%
Zoo 101x28 46% 44% 30% 21%

5. Conclusions

We observe that many of the benchmark datasets used in the litera-
ture on Boolean matrix factorization are redundant and propose a sim-
ple scheme that makes use of it. The scheme consists in transforming
the input data to remove redundancy, applying an appropriately mod-
ified BMF algorithm, and use the computed, interim factors to restore
from them the factors for the original input data. We developed an im-
plementation of our scheme for two basic BMF algorithms, GRECOND
and AssoO, and provided theorems justifying the proposed modifications
of the original algorithms required by our scheme. Our experimental
evaluation proves the new scheme efficient in terms of speed-up of the
running time which is considerable as redundancy increases.

Reducing the size of an input Boolean matrix /I and subsequently
factorizing the resulting smaller matrix to obtain a reasonable factoriza-
tion of the original matrix I in a shorter time represents a broad research
topic which may be approached from several perspectives and requires
further research. We propose the following directions:

R. Belohlavek and J. Juracka

Table 4
Speed-up of modified TILING in comparison to original
TILING algorithm on selected datasets from Table 1.

data dim(J) redundancy speed-up
Advertisement 3,279% 1,557 70% 3.4
Americas Large 3,485x%x10,127 98% 118.9
Americas Small 3,477 x 1,586 98% 50.0
APJ 2,044x 1,164 86% 3.3
Customer 10,961 x 277 49% 1.6
DNA 4,590 x 392 73% 2.2
Emea 35x% 3,046 92% 333
Firewall 1 365x%x709 97% 12.5
Mushroom 8,124 %119 5% 1.0
Paleo 501x139 6% 1.1
Tic Tac Toe 958 x 30 0% 1.0

e In our paper, utilization of redundancy is illustrated on GRECOND
and ASsSO, i.e., for two primary algorithms designed for the AFP and
the DBP problems (Section 1.2), respectively. Explorations to utilize
redundancy, including redundancy in a broader perspective as de-
scribed in this section below, for a number of other available BMF
algorithms [1] remain a topic for future research.

As mentioned above, utilization of redundancy reduction to speed
up factorization may be implemented either in the straightforward
scenario described in steps 1.-3. at the end of Section 3.2, or in
the improved scenario which alleviates a shortcoming of the first
scenario. The improved scenario requires an appropriate modifica-
tion of the considered factorization algorithm, which we provided
for GRECOND and AsSsO in Sections 3.3 and 3.4 along with proofs
of correctness of the proposed modifications. A correct modifica-
tion of a factorization algorithm is clearly a non-trivial step but ap-
pears feasible due to the kind of redundancy we explore. As a pre-
liminary step toward exploration of other algorithms, we examined
such a modification for TILING—another well-known factorization
algorithm [19].” While TILING uses a different strategy from that of
GRECOND, it also employs as factors rectangular areas of an input
matrix I that are full of 1. Similar ideas to those on which our modifi-
cation of GRECOND is based may hence be used to obtain a modified
TILING and its proof of correctness. Table 4 presents the speed-up of
the thus modified algorithm for selected benchmark datasets. While
the modified TILING does not slow down factorization of data with
low redundancy, its speed-up is comparable and in most cases larger
than that of GRECOND on redundant data (cf. Fig. 1).

In addition to removing duplicate rows and columns of the input
matrix I, one may utilize the so-called reduction of /—a different
method of reducing the size of I employed by formal concept anal-
ysis [13, pp. 24-34]. The basic idea consists in removing the rows
and columns of I that may be obtained as intersections of other rows
and columns, respectively. The resulting reduced matrix J preserves
important structural information of the original matrix 7/ [13]. Most
significantly, the concept lattice of J is isomorphic to the concept
lattice of I, and the formal concepts of I, i.e., the potential factors
of I, can be restored from those of J. According to our preliminary
results, factorizing reduced matrices and an appropriate extension of
the factors of J to obtain factors of I results in factorizations whose
quality in terms of the coverage of data by the computed factors
is comparable to those obtained by factorizing clarified matrices in
most cases. Note also that for most of the real-world datasets used
in our study, reduction results in a removal of a much smaller num-
ber of rows compared to clarification, i.e., the real-world datasets
seem not greatly amenable to reduction. In some cases, factorizing
a reduced matrix lead to a larger number of computed factors com-

Knowledge-Based Systems 335 (2026) 115190

pared to factorizing the original matrix. Also note that modifying a
factorization algorithm so that it delivers a factorization of the re-
duced matrix that equals the factorization of the original data seems
considerably more complex compared to clarification. Due to the sig-
nificance of reduction in processing Boolean data, questions related
to utilizing reduction for the purpose of factorization need further
exploration.
¢ A rather general approach to factorization via size reduction of the
input matrix derives from the idea of sampling. In particular, one
may attempt to select only a certain percentage of rows of I (and
possibly also columns) to get a smaller matrix J, factorize J, and
extend the factors of J to obtain a factorization of I. From this per-
spective, both the approach studied in this paper and the approach
described in the previous paragraph may be regarded as particular
cases of sampling. In the first case, the non-selected rows are the du-
plicate ones; in the latter case, they are the reducible ones. In general,
sampling requires a heuristic or theoretically justified method of row
selection. This method is supposed to select rows that are represen-
tative of I in that the factors computed form the sample obtained
from I, i.e., from the smaller matrix, provide a good factorization of
1. In our preliminary exploration, we used a probability-based selec-
tion of rows with a uniform distribution of probability. Such a simple
random sampling yields reasonable results for the datasets used in
this paper in that selection of 20% of the rows results in a consider-
ably faster and still rather precise factorization of the input matrix.
On the other hand, the simple random sampling does not utilize any
insight into the factorization problem, and hence is likely to be out-
performed by better sampling methods that need to be explored.
Note in this context that while sampling methods for Boolean
matrix factorization have not been studied in the past, a recent work
published in this journal [21] is an exception. In this work, the au-
thors propose a method to select rows of the input matrix that is
based on the so-called essential entries of the input matrix [4]. The
basic idea is to select rows containing a large number of essential en-
tries. The authors demonstrate that the proposed way of reducing the
input matrix leads to promising results. Nevertheless, our examina-
tion revealed a notable shortcoming of [21]. Namely, reversing the
logic of row selection, i.e., preferring the rows with a small number of
essential entries, results in a comparable performance. In addition,
the simple random sampling described in the previous paragraph,
which ignores the property of essentiality at all, leads to compara-
ble and mostly even better results. In fact, it turns out that rather
than being justified by the preference of rows with a large number
of essential entries, the seemingly promising experimental results in
[21] are a consequence of the fact that the involved datasets contain
a considerable duplicity of rows and the fact that the unintended
consequence of the method in [21] is removal of duplicate rows—a
phenomenon studied in our paper. An analysis of the method devised
in [21] is a subject of our forthcoming note.
The idea of removing duplicate, i.e., identical, rows and columns
suggests a more general idea of considering an appropriately de-
fined similarity of rows and columns and collapsing highly similar
rows and columns for the purpose of reducing the input data instead
of collapsing identical rows and columns. Such an approach would
likely result in the lost of the possibility to compute exact factoriza-
tions of the input data, but could lead to yet faster computation of
approximate factorizations. Considering a more general kind of re-
dundancy is also relevant in scenarios in which the Boolean data is
subject to noise (or error), mentioned in Section 4.3.2.

CRediT authorship contribution statement

Radim Belohlavek: Writing — review & editing, Writing — origi-

7 While TILING is devised for the problem of tiling Boolean databases in [19], nal draft, Validation, Supervision, Resources, Project administration,
it essentially coincides with the GRECON algorithm; see also [20] for an efficient Methodology, Investigation, Formal analysis, Conceptualization; Jakub
implementation of this algorithm. Juracka: Writing — review & editing, Writing — original draft, Visualiza-

11

R. Belohlavek and J. Juracka

tion, Validation, Software, Methodology, Investigation, Formal analysis,
Data curation, Conceptualization.

Data availability
Data will be made available on request.
Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgement

This work was supported by grant No. IGA_PrF_2025_018 of Palacky
University Olomouc.

References

[1] P. Miettinen, S. Neumann, Recent developments in Boolean matrix factorization, in:
Proc. IJCAI, 1IJCAI, (2020), pp. 4922-4928.

K.H. Kim, Boolean Matrix Theory and Applications. M. Dekker, NY, 1982.

R. Belohlavek, J. Juracka, Reduce before you factorize, in: Mendeley Data V2, (2024)
https://doi.org/10.17632/d73jhrxdx3.2

R. Belohlavek, M. Trnecka, From-below approximations in Boolean matrix factoriza-
tion: geometry and new algorithm, J. Comput. Syst. Sci. 81 (8) (2015) 1678-1697.
P. Miettinen, T. Mielikainen, A. Gionis, G. Das, H. Mannila, The discrete basis prob-
lem, IEEE Trans. Knowl. Data Eng. 20 (10) (2008) 1348-1362.

[2]
[3]

[4]

[5]

12

[6]
[71

(8]

[91
[10]
[11]
[12]
[13]
[14]

[15]
[16]

[17]

[18]

[19]
[20]

[21]

Knowledge-Based Systems 335 (2026) 115190

R. Belohlavek, V. Vychodil, Discovery of optimal factors in binary data via a novel
method of matrix decomposition, Proc. SCIS ISCIS 76 (2006) 3-20.

M. Kelly, R. Longjohn, K. Nottingham, The UCI machine learning repository,
http://archive.ics.uci.edu/ml.

N. Kushmerick, Learning to remove Internet advertisments, AGENTS 99: Proc. 3rd
International Conference on Autonomous Agents, Washington, Seattle, USA, 1999,
pp. 175-181.

A. Ene, et al., Fast exact and heuristic methods for role minimization problems, in:
Proc. SACMAT, SACMAT, 2008, pp. 1-10.

P. Miettinen, Matrix Decomposition Methods for Data Mining: Computational Com-
plexity and Algorithms, Technical Report, PhD thesis, 2009.

A. Shapiro, The Role of Structured Induction in Expert Systems, Technical Report,
Ph.D. Thesis, 1983.

S. Myllykangas, et al., DNA copy number amplification profiling of human neo-
plasms, Oncogene 25 (55) (2006) 7324-7332.

B. Ganter, R. Wille, Formal Concept Analysis: Mathematical Foundations, Berlin,
Springer, 1999.

T. Do, G. Graefe, J. Naughton, Efficient sorting, duplicate removal, grouping, and
aggregation, ACM Trans. Database Syst. 47 (4) (2023) 1-35.

P. Miettinen, The Discrete Basis Problem, Technical Report, MSc thesis, 2005.

R. Belohlavek, J. Outrata, M. Trnecka, Toward quality assessment of Boolean matrix
factorizations, Inf. Sci. 459 (2018) 71-85.

R. Belohlavek, M. Trnecka, Handling noise in Boolean matrix factorization, Int. J.
Approx. Reason 96 (2018) 78-94.

S. Karaev, P. Miettinen, J. Vreeken, Getting to know the unknown unknowns:
destructive-noise resistant Boolean matrix factorization, in: Proceedings of the 2015
SIAM International Conference on Data Mining, the 2015 SIAM International Con-
ference on Data Mining, 2015, pp. 325-333.

F. Geerts, B. Goethals, T. Mielikainen, Tiling databases, Proc. DS 2004 3245 (2004)
278-289.

M. Trnecka, R. Vyjidacek, Revisiting the GreCon algorithm for Boolean matrix fac-
torization, Knowl. Based Syst. 249 (2022) 108895.

M. Trnecka, M. Trneckova, Data reduction for Boolean matrix factorization algo-
rithms based on formal concept analysis, Knowl. Based Syst. 158 (2018) 75-80.

http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0001
http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0001
http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0002
https://doi.org/10.17632/d73jhrxdx3.2
https://doi.org/10.17632/d73jhrxdx3.2
http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0004
http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0004
http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0005
http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0005
http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0006
http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0006
http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0008
http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0008
http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0008
http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0009
http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0009
http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0010
http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0010
http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0011
http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0011
http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0012
http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0012
http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0013
http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0013
http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0014
http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0014
http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0015
http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0016
http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0016
http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0017
http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0017
http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0018
http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0018
http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0018
http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0018
http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0019
http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0019
http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0020
http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0020
http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0021
http://refhub.elsevier.com/S0950-7051(25)02224-5/sbref0021

	Reduce before you factorize: A simple scheme for Boolean matrix factorization
	1 Introduction
	1.1 Problem setting and our contribution
	1.2 Notation

	2 Redundancy in real Boolean data
	3 New scheme for factorization
	3.1 Clarification as the proposed reduction of input matrix
	3.2 Factorizing the clarified matrix and the need to modify a factorization algorithm
	3.3 Extended GreConD
	3.4 Extended Asso

	4 Experimental evaluation
	4.1 Real-world data
	4.2 Synthetic data
	4.3 Further topics
	4.3.1 The need to modify the original algorithms
	4.3.2 Possible limitation

	5 Conclusions

