
Fixpoints of fuzzy closure operators
via ordinary algorithms

Radim Belohlavek and Jan Konecny
Palacký University, Olomouc, Czech Republic,

e-mail: radim.belohlavek@acm.org; jan.konecny@upol.cz

Abstract—We present a way to compute the set of fixpoints of
a given fuzzy closure operator via algorithms for computing sets
of fixpoints of ordinary closure operators. We assume that the
fuzzy closure operator is given by a set of fuzzy sets generating
this operator. The proposed way is based on certain reduction
theorems which we provide and which relate fuzzy and ordinary
closure operators and the sets of their fixpoints. We also present
explicit description of selected algorithms which result using the
presented approach.

I. INTRODUCTION

Fuzzy closure operators and fuzzy closure systems are
among the fundamental mathematical concepts that have been
explored since the early days of fuzzy logic. Fuzzy topology
and later on Pavelka-style fuzzy logic were the first areas
within which these concepts have been investigated. Since the
late 1990s, a more thorough investigations of fuzzy closure op-
erators started, partly due to their close connections to formal
concept analysis of data with fuzzy attributes. In particular, a
number of investigations examined the problem of computing
sets and lattices of fixpoints of fuzzy closure operators. The
reason is that these lattices are—up to an isomorphism—just
the so-called fuzzy concept lattices, i.e. the main structures in
formal concept analysis. Since the computational aspects are
most developed in the context of formal concept analysis and
since this area is practically important, we regard this area as
the primary source of motivation for our study. For details we
refer to [4].

One possibility in computing the sets of fixpoints of fuzzy
closure operators and computing fuzzy concept lattices is
to generalize the existing algorithms for the ordinary clo-
sure operators and concept lattices. An overview of some
approaches of this kind is provided in [6]. Note that such
generalizations are not obvious because, as we shall discuss
in more detail below, in the fuzzy setting there are two
generating operations instead of a single operation, namely the
minimum, on which ordinary closure operators are based, and
an operation based on the residuum. Another possibility, which
is our main concern in this paper, derives from a question
of general importance in fuzzy logic, namely the question of
a relationship between ordinary notions and their fuzzified
counterparts. In particular, we are interested in whether and
to what extent the notions of a fuzzy closure operator and
related ones are reducible to their ordinary counterparts in
that the results and algorithms available for ordinary closure

operators be applicable to fuzzy closure operators. Some such
relationships were obtained in [3], [20]; see also [4].

Our paper is organized as follows. In Section II, we provide
the notions needed in our paper. The contributions of our paper
are the subject of the the next sections and are the following.
First, we present in Section III several theorems related to the
above-mentioned problem of reduction. Second, we apply in
Section IV the results from Section III to obtain as examples
explicit descriptions of selected algorithms for computing the
sets of fixpoints of fuzzy closure operators. In Section V, we
present conclusions and discuss some further problems to be
explored.

II. PRELIMINARIES

In accordance with modern fuzzy logic, we use residuated
lattices as structures of truth degrees and require completeness
for reasons mentioned later. Recall that a complete residuated
lattice [12] is an algebra L = 〈L,∧,∨,⊗,→, 0, 1〉 such that
〈L,∧,∨, 0, 1〉 is a complete lattice with 0 and 1 being the
least and greatest element of L, respectively; 〈L,⊗, 1〉 is a
commutative monoid (i.e. ⊗ is commutative, associative, and
a⊗1 = 1⊗a = a for each a ∈ L); ⊗ and→ satisfy so-called
adjointness property:

a⊗ b ≤ c iff a ≤ b→ c (1)

for each a, b, c ∈ L. The elements a of L are called truth
degrees. The operations ⊗ and → are (truth functions of)
“fuzzy conjunction” and “fuzzy implication”. A common
choice of L is a structure with L = [0, 1] (unit interval),
∧ and ∨ being minimum and maximum, ⊗ being a left-
continuous t-norm with the corresponding residuum→. Three
most important pairs of adjoint operations on the unit interval
are:

Łukasiewicz:
a⊗ b = max(a+ b− 1, 0),

a→ b = min(1− a+ b, 1),
(2)

Gödel:
a⊗ b = min(a, b),

a→ b =

{
1 if a ≤ b,
b otherwise,

(3)

Goguen (product):
a⊗ b = a · b,

a→ b =

{
1 if a ≤ b,
b
a otherwise.

(4)

Another common choice is a finite linearly ordered L. For
instance, one can put L = {a0 = 0, a1, . . . , an = 1} ⊆ [0, 1]

(a0 < · · · < an) with ⊗ given by ak⊗al = amax(k+l−n,0) and
the corresponding→ given by ak → al = amin(n−k+l,n). Such
an L is called a finite Łukasiewicz chain. Another possibility
is a finite Gödel chain which consists of L and restrictions of
the Gödel operations on [0, 1] to L.

Having L, we define usual notions: an L-set (fuzzy set) A
in universe U is a mapping A : U → L, A(u) being interpreted
as “the degree to which u belongs to A.” If U = {u1, . . . , un}
then A can be denoted by A = {a1/u1, . . . ,

an/un} meaning
that A(ui) equals ai for each i = 1, . . . , n.

Let LU denote the collection of all L-sets in U . The oper-
ations with L-sets are defined componentwise. For instance,
the intersection of L-sets A,B ∈ LU is an L-set A ∩B in U
such that (A ∧ B)(u) = A(u) ∧ B(u) for each u ∈ U , etc.
Binary L-relations (binary fuzzy relations) between U and V
can be thought of as L-sets in the universe U × V . That is, a
binary L-relation R ∈ LU×V between a set U and a set V is
a mapping assigning to each u ∈ U and each v ∈ V a truth
degree R(u, v) ∈ L (a degree to which u and v are related
by R). An L-set A ∈ LU is called crisp if A(u) ∈ {0, 1} for
each u ∈ U . Crisp L-sets can be identified with (characteristic
functions of) ordinary sets: A crisp L-set A ∈ LU corresponds
to the ordinary set {u ∈ U | A(u) = 1}. Therefore, for a crisp
A, we also write u ∈ A for A(u) = 1 and u 6∈ A for A(u) = 0.
An L-set A ∈ LU is called empty (denoted by ∅) if A(u) = 0
for each u ∈ U ; A ∈ LU is called full (denoted by U) if
A(u) = 1 for each u ∈ U .

Given A,B ∈ LU , we define the subsethood degree

S(A,B) =
∧

u∈U (A(u)→ B(u)) (5)

of A in B generalizing the classical subsethood relation ⊆.
Described verbally, S(A,B) represents a degree to which A is
a subset of B. In particular, we write A ⊆ B iff S(A,B) = 1.
As a consequence, A ⊆ B iff A(u) ≤ B(u) for each u ∈ U .
In the following we use well-known properties of residuated
lattices and fuzzy structures which can be found in [4], [12].

Throughout the rest of the paper, L denotes an arbitrary
complete residuated lattice. For our purposes, L needs to be
equipped with operations which model the so-called intensi-
fying linguistic hedges such as “very.” In particular, we use
the concept of a truth-stressing hedge which is very close to
the one used in [12], [13]. By a truth-stressing hedge (shortly,
a hedge) on L, we mean a unary mapping ∗ on L satisfying

1∗ = 1, (6)
a∗ ≤ a, (7)

(a→ b)∗ ≤ a∗ → b∗, (8)
a∗∗ = a∗, (9)

for each a, b ∈ L. Hedge ∗ can indeed be seen as a (truth
function of) unary logical connective “very”, “extremely”, etc.,
see [12], [13]. Note that as a consequence of (6) and (8) we
get monotony: if a ≤ b then a∗ ≤ b∗.

∗g ∗3∗1 ∗2 ∗id

1

0.75

0.5

0.25

0

Fig. 1. Truth-stressing hedges on 5-element chain with Łukasiewicz op-
erations L = 〈{0, 0.25, 0.5, 0.75, 1},min,max,⊗,→, 0, 1〉. The leftmost
truth-stressing hedge ∗g is the globalization, the rightmost truth-stressing
denoted by ∗id is the identity.

Two boundary cases of (truth-stressing) hedges are (i)
identity, i.e. a∗ = a (a ∈ L); (ii) globalization [21]:

a∗ =

{
1 if a = 1,
0 otherwise. (10)

See Fig. 1 for examples of truth-stressing hedges.
A particularly important special case of a complete resid-

uated lattice with hedge is a two-element Boolean algebra
〈{0, 1},∧,∨,⊗,→, ∗, 0, 1〉, denoted by 2, which is the struc-
ture of truth degrees of classical logic. That is, the operations
∧,∨,⊗,→ of 2 are the truth functions (interpretations) of the
corresponding logical connectives of the classical logic and
0∗ = 0, 1∗ = 1.

III. RESULTS

For reasons explained below, we are interested in the
following concept of a fuzzy closure operator [2], [7]. For
a complete residuated lattice L with a truth-stressing hedge ∗,
an L∗-closure operator in a set U is a mapping C : LU → LU

satisfying

A ⊆ C(A),

S(A,B)∗ ≤ S(C(A), C(B)),

C(A) = C(C(A)),

for every A,B ∈ LU . Notice in particular the second condition
which expresses the requirement that C preserves graded
subsethood and which employs the truth-stressing hedge ∗. An
L∗-closure system in U , which is the corresponding notion in
terms of closure systems, is a system S ⊆ LU of fuzzy sets
in U satisfying:

a∗ → A ∈ S whenever a ∈ L and A ∈ S
(closedness under a∗-shifts), and∧

j∈J Aj ∈ S whenever Aj ∈ S (j ∈ J)

(closedness under intersections),

•
∗g

•∗1 • ∗2

•
∗3

•
∗id

Fig. 2. Hasse diagram of ≤ on hedges from Fig. 1.

where b → A (called also a left →-multiplication of A by
b) and

∧
j∈J Aj are defined for fuzzy sets A,Aj ∈ LU , j ∈

J , and b ∈ L by (
∧

j∈J Aj)(u) =
∧

j∈J Aj(u) and (b →
A)(u) = b → A(u). With these notions, one has the usual
correspondence, i.e. L∗-closure systems are just the sets of
fixpoints of L∗-closure operators.
L∗-closure operators and systems arise in formal concept

analysis in the following way. Given a formal fuzzy context
〈X,Y, I〉, i.e. X , Y , and I are a set of objects, a set of
attributes, and a fuzzy relation between these sets, respectively,
consider the mappings ↑ : LX → LY and ↓ : LY → LX

defined by

A↑(y) =
∧

x∈X(A(x)→ I(x, y)),

B↓(x) =
∧

y∈Y (B(y)∗ → I(x, y)).
(11)

The set

B(X,Y ∗, I) = {〈A,B〉 ∈ LX × LY |A↑ = B, B↓ = A}

of all fixpoints of 〈↑, ↓〉 is called a (fuzzy) concept lattice of
I . Note that this is an important particular case of so-called
concept lattices with hedges; see [5], [10]. Two especially
important cases result if ∗ is the identity, in which case we
obtain the classical fuzzy concept lattices [5], [20], and the
globalization in which case we obtain the so-called one-sided,
or crisply generated, fuzzy concept lattices [10], [22], [15].

Some basic observations are as follows. It is easily shown
that the set of extents of B(X,Y ∗, I), i.e. the set

Ext(X,Y ∗, I) = {A ∈ LX | 〈A,B〉 ∈ B(X,Y ∗, I)

for some B},

forms an L∗-closure system. Moreover, Ext(X,Y ∗, I) is the
set of all fixpoints of the L∗-closure operator C : LX → LX

defined by
C(A) = A↑↓

for each A ∈ LX .
A natural partial order of hedges on L is defined by ∗1 ≤ ∗2

iff a∗1 ≤ a∗2 for every a ∈ L. Clearly, ∗g ≤ ∗ ≤ ∗id for every
∗ (∗g is the globalization, ∗id is the identity). Fig. 2 illustrates
≤ on the set of hedges from Fig. 1.

One easily checks that ∗1 ≤ ∗2 iff fix(∗1) ⊆ fix(∗2) where

fix(∗) = {a ∈ L | a∗ = a}.

One may also check that if ∗1 ≤ ∗2 then B(X,Y ∗1 , I) ⊆
B(X,Y ∗2 , I).

As was mentioned above, we assume that the L∗-closure
operator C is given by a system S ⊆ LU of fuzzy sets in U :
C is the operator generated by S in that the set of all fixpoints
of C is just the L∗-closure system generated by S.

To analyze our problem further, we need the following
concepts. For any system S ⊆ LU of fuzzy sets in U , denote
by

– [S]∗ the least L∗-closure system containing S,
– [S]∧ the least system containing S that is closed under∧

-intersections,
– [S]∗→ the least system containing S that is closed under
a∗-shifts for every a ∈ L.

From the present viewpoint, it is natural to consider a formal
context 〈X,Y, I〉 as represented by the system S = {Iy ∈
LX | y ∈ Y } of fuzzy sets Iy (columns of the context) defined
by

Iy(x) = I(x, y)

for each x ∈ X . As shown by the following lemma, the L∗-
closure system generated by S is then just the set of all extents
of the fuzzy concept lattice B(X,Y ∗, I) of 〈X,Y, I〉:

Lemma 1. [S]∗ = Ext(X,Y ∗, I).

Proof. Omitted due to lack of space.

From now on we assume that ∗ satisfies

(a⊗ b)∗ = a∗ ⊗ b∗ (12)

for every a, b ∈ L, i.e. ∗ is a member of a class of hedges
employed in [9].

The following theorem provides an important insight into
our problem.

Theorem 1. For every system S = {Iy ∈ LY | y ∈ Y } we
have

[S]∧ = {
∧
T | T ⊆ S}, (13)

[S]∗→ = {a∗ → Iy | a ∈ L, y ∈ Y }, (14)
[S]∗ = [[S]∗→]∧. (15)

Proof. (13) is immediate to check.
(14): Since 1∗ → Iy = 1 → Iy = Iy , we have S ⊆ [S]∗→.

Clearly, every system closed under a∗-shifts contains [S]∗→. It
is sufficient to show that [S]∗→ itself is closed under a∗-shifts.
This follows from the fact that due to (12), and the fact that
α→ (β → γ) = (α⊗ β)→ γ,

b∗ → (a∗ → Iy) = ((b∗⊗a∗)→ Iy) = ((b⊗a)∗ → Iy) ∈ [S]∗→.

(15): It is easy to check that [[S]∗→]∧ contains S and
is contained in every system closed under a∗-shifts and

∧
-

intersections, i.e. in every L∗-closure system, that contains
S. Therefore, it is sufficient to show that [[S]∗→]∧ is closed
under

∧
-intersections and a∗-shifts. Closedness under

∧
-

intersections is obvious. For a∗-shifts, let a ∈ L and consider

an arbitrary element of [[S]∗→]∧, i.e. an element of the form∧
y∈Z(a∗y → Iy) for Z ⊆ Y . Then

a∗ →
∧

y∈Z(a∗y → Iy) =
∧

y∈Z(a∗ → (a∗y → Iy))

=
∧

y∈Z(a∗ ⊗ a∗y)→ Iy)

=
∧

y∈Z((a⊗ ay)∗)→ Iy) ∈ [[S]∗→]∧.

In particular, (15) is an important decomposition result:
To compute [S]∗, i.e. L∗-closure system generated by S, it
suffices to compute first the []∗→-closure of S and then apply
to it the operator of []∧-closure. Now, (14) shows that to
obtain [S]∗→, i.e. the []∗→-closure of S, it suffices to add all
the a∗-shifts of elements in S. Computing the []∧-closure is,
due to (13), analogous to the problem of computing closure
systems in the ordinary case.

The next result we need is:

Theorem 2. If ∗1 ≤ ∗2 then

[S]∗2 = [[S]∗2→]∗1 . (16)

Proof. [[S]∗2→]∗1 ⊆ [S]∗2 : Due to Theorem 1, every element of
[[S]∗2→]∗1 is of the form∧

y∈Z(a∗1y → (b∗2y → Iy)), (17)

for some Z ⊆ Y and ay, by ∈ L. By assumption, ∗1 ≤ ∗2 from
which we easily obtain fix(∗1) ⊆ fix(∗2). Therefore, since
a∗1y ∈ fix(∗1), we have a∗1y ∈ fix(∗2), whence a∗1y = (a∗1y)∗2 .
We thus obtain∧

y∈Z(a∗1y → (b∗2y → Iy)) =
∧

y∈Z((a∗1y ⊗ b∗2y)→ Iy)) =

=
∧

y∈Z(((a∗1y)∗2 ⊗ b∗2y)→ Iy)) =

=
∧

y∈Z(((a∗1y ⊗ by)∗2)→ Iy)),

which is an element of [S]∗2 on account of Theorem 1.
[S]∗2 ⊆ [[S]∗2→]∗1 : Putting ay = 1 in (17), which is the form

of an arbitrary element in [[S]∗2→]∗1 , we obtain
∧

y∈Z(b∗2y →
Iy), which is the form of a general element in [S]∗2 , proving
the claim.

Theorem 2 may be interpreted as follows. To obtain the set
of all fixpoints of an L∗2 -closure operator induced by S, it is
enough to have, for some ∗1 ≤ ∗2, a method to obtain sets of
fixpoints of L∗1 -closure operators induced by systems of L-
sets. Namely, it is enough to apply this method to the system
[S]∗2→ of all a∗2 -shifts of the L-sets in S.

Theorem 2 is particularly appealing if one puts ∗2 = ∗ and
∗1 is the globalization. Namely, we then get

Ext(X,Y ∗, I) = [S]∗ = [[S]∗→]∗g = [{a∗ → Iy | y ∈ Y }]∗g .

Importantly, as the next theorem shows, for globalization, []∗g

may be computed using the existing algorithms for computing
sets of fixpoints of ordinary closure operators.

Theorem 3. For a system T = {Jz ∈ LX | z ∈ Z}, the
operator clT : 2Z → 2Z defined by

clT (D) = {z ∈ Z | Jz(x) ≥
∧

z′∈D Jz′(x) for all x ∈ X}

is an ordinary closure operator in Z such that

Ext(X,Z∗g , J) = [T]∗g = {
∧

z∈D Jz | D ∈ fix(clT)}.

Proof. The proof is technically involved and thus omitted due
to lack of space.

We therefore arrive at the final result in this section:

Theorem 4. For S = {Iy ∈ LX | y ∈ Y }, put Z = Y ×fix(∗),
T = {a→ Iy | a ∈ fix(∗), y ∈ Y } and consider the ordinary
closure operator clT from Theorem 3. Then

Ext(X,Y ∗, I) = [S]∗ = {
∧
〈y,a〉∈D(a→ Jy) | D ∈ fix(clT)}.

Proof. Follows directly from the previous results in this sec-
tion.

IV. APPLICATION: ALGORITHMS COMPUTING FUZZY
CONCEPT LATTICES

Theorem 4 can be used to formulate a principle allowing
a direct generalization of algorithms for computing concept
lattices, such as NextClosure [11] or CbO [16] (see [17] for
a survey), to algorithms for computing fuzzy concept lattices
B(X,Y ∗, I). The principle is presented by a particular “wrap”
around a given ordinary algorithm.

The correctness of our wrapping procedure follows directly
from the results in the previous section. For convenience, we
identify the intents in Int(X,Z∗g , J) with their 1-cuts. That
is, whenever we mention concepts 〈A,B〉 ∈ B(X,Z∗g , J)
(which are in fact the crisply-generated fuzzy concepts), we
actually mean pairs 〈A,1B〉 (which are the corresponding one-
sided fuzzy concepts) such that A ∈ Ext(X,Z∗g , J) and 1B
is the 1-cut of B. This identification is justified by the existing
results on fuzzy concept lattices.

The description of our wrapping procedure follows.

Step 1 (scaling): Transform the input fuzzy context 〈X,Y, I〉
to the fuzzy context 〈X,Z, J〉 where Z = Y × fix(∗) and
J ∈ LX×Z is given by

J(x, 〈y, a〉) = a→ I(x, y).

Note that we need not explicitly form a new fuzzy context
which would be considerably larger than the original one.
Instead, it suffices to obtain the concept-forming operators of
J , namely the operators defined by

A⇑ = {〈y, a〉 | A ⊆ a→ Iy},

B⇓ =
∧

〈y,a〉∈B

a→ Iy. (18)

〈⇑,⇓〉 are indeed the operators induced by J provided one
identifies the intents B with their 1-cuts 1B as described above.
Step 2 (ordinary computation): Compute B(X,Z∗g , J) us-
ing an algorithm for computing fixpoints of an ordinary closure
operator (apply this algorithm to the intents of B(X,Z∗g , J),
which are ordinary sets due to our identification of intents with
their 1-cuts).

Step 3 (transformation of results): Transform B(X,Z∗g , J)
to the required fuzzy concept lattice B(X,Y ∗, I).

Due to the above results, we just transform each 〈A,B〉 ∈
B(X,Z∗g , J) to its corresponding concept in B(X,Y ∗, I).
This transformation is simple since the two concept lattices
are isomorphic and since the corresponding fuzzy concepts
have the same extents. It is therefore enough to transform each
〈A,B〉 to 〈A,A↑〉. Computing A↑ is simplified by observing
that A↑ = dBe where

dBe(y) =
∨
{a | 〈y, a〉 ∈ B}.

We now present two applications of our wrapping proce-
dure. The first is a generalization of the CbO algorithm to
compute the collection of all fuzzy concepts in B(X,Y ∗, I).
The second one is a generalization of Lindig’s algorithm to
compute a fuzzy concept lattice B(X,Y ∗, I). In the descrip-
tions, we assume that the elements of Z are represented by
integers {1, . . . , |Z|}.

A. Generalized Close by One

In this section, we demonstrate our approach on the CbO
algorithm [16]. It is sufficient for our purpose to use a
simplified version of CbO introduced in [14]. The generalizing
wrap can be applied the same way to its advancements, like
fCbO [19] and InClose family of algorithms [1].

The principal part of the CbO algorithm is the procedure
GENERATEFROM (see Algorithm 1). The procedure is called
with a fuzzy concept 〈A,B〉 (initial fuzzy concept) from
B(X,Z∗, J) and an attribute z ∈ Z (first attribute to be pro-
cessed) as its arguments. The procedure recursively descends
through the space of fuzzy concepts, starting with 〈A,B〉.
When invoked with 〈A,B〉 and y ∈ Y , GENERATEFROM first
outputs 〈A, dBe〉 (line 1) and then checks its halting condition
(lines 2–4). The computation stops if 〈A,B〉 equals 〈Z⇓, Z〉
or if y > n. Otherwise, it goes through all attributes j ∈ Z
with j ≥ z which are not present in the intent B (lines 5 and
6). For each such attribute, a new formal concept

〈C,D〉 = 〈A ∩ {j}⇓, (A ∩ {j}⇓)⇑〉 (19)

is formed (lines 7 and 8). Then the algorithm makes the
canonicity test on 〈C,D〉 (line 9) to check whether it should
continue with 〈C,D〉 and j+1 by recursively calling GENER-
ATEFROM or not. The canonicity test is based on comparing
B ∩ Zj = D ∩ Zj where Zj ⊆ Z is defined by

Zj = {z ∈ Z | z < j}.

The loop in lines 5–13 continues with the next value of j.
Note that the only changes in the procedure GENERATE-

FROM in comparison with its basic form are the following:
– We use the operators (18) in lines 7 an 8 to form concepts

(19) of B(X,Z∗g , J). This represents Step 1 of our
procedure.

– In line 1, the fuzzy concept 〈A,B〉 of B(X,Z∗g , J)
is transformed to the fuzzy concept 〈A, dBe〉 of
B(X,Y ∗, I) before it is output. This represents Step 3
of our procedure.

Algorithm 1: GENERATEFROM(〈A,B〉, z)

1 output 〈A, dBe〉
2 if B = Z or z > n then
3 return
4 end
5 for j from z upto n do
6 if j /∈ B then
7 C := A ∩ {j}⇓
8 D := C⇑

9 if B ∩ Zj = D ∩ Zj then
10 GENERATEFROM(〈C,D〉, j + 1)
11 end
12 end
13 end
14 return

B. Generalized Lindig’s algorithm

The second algorithm is the Lindig’s algorithm [18]. For
convenience, we switch the roles of objects and attributes;
thus we generate the concepts in a top-down manner instead
of a bottom-up manner.

The core part of the algorithm is the procedure NEIGHBORS
(see Algorithm 2) which generates for a fuzzy concept 〈A,B〉
of B(X,Z∗g , J) the set N of its lower neighbors. It first
initializes N to be empty (line 2). Then it goes trough all
attributes not present in B (the loop in lines 3 and 11). A new
fuzzy concept 〈C,D〉 = 〈(B ∪ {z})⇓, (B ∪ {z})⇓⇑〉 is then
formed (lines 7 and 8). To avoid duplicates and generation of
concepts which are not direct lower neighbors it makes a test
using the set min of minimal possible generators. The set min
is initialized with all attributes not present in B (line 1). If the
new intent D contains a possible generator different from z
(line 6) then z is removed from the set min (line 9). Otherwise,
the newly formed fuzzy concept 〈C,D〉 is the lower neighbor
of 〈A,B〉 and is added to N (line 7).

Algorithm 2: NEIGHBORS(〈A,B〉)
Data: concept 〈A,B〉
Result: Set N of lower neighbors of 〈A,B〉

1 min := Z −B
2 N := ∅
3 for z ∈ Z −B do
4 C := (B ∪ {z})⇓
5 D := C⇑

6 if min ∩ ((D −B)− {z}) = ∅ then
7 N := N ∪ {〈C,D〉}
8 else
9 min := min− {z}

10 end
11 end
12 return N

The procedure LINDIG (Algorithm 3) generates the largest

concept and then, for each concept that is generated for the
first time, generates all its lower neighbors. Lindig uses a tree
of concepts that allows one to check whether some concept
has already been generated. This property is used to compute
the concepts of B(X,Z∗g , J). After all concepts are processed
this way, it runs an additional loop (lines 12-13) to transform
the intents by application of d e.

Algorithm 3: LINDIG(〈X,Y, I〉)
Data: L-context 〈X,Y, I〉
Result: B(X,Y ∗, I)

1 c := 〈X,X⇑〉
2 T is a concept tree consisting of the root node c
3 while c 6= null do
4 for n ∈ NEIGHBORS(c) do
5 if n /∈ T then
6 insert n to T
7 end
8 set n to be a lower neighbor of c
9 end

10 c := Next(c, T)
11 end
12 for 〈A,B〉 ∈ T do
13 change intent of 〈A,B〉 to dBe
14 end
15 return T

The changes in comparison with the original algorithm are
the following:

– We use the operators (18) at lines 4 and 5 of procedure
NEIGHBORS (Algorithm 2) and line 1 of procedure
LINDIG (Algorithm 3) to form fuzzy concepts (19) of
B(X,Z∗g , J) via the implicit simple scaling. This repre-
sents Step 1 of our procedure.

– Procedure LINDIG contains an additional loop on lines
12-14 to transform the intents of fuzzy concepts stored
in T . This represents Step 3 of our procedure.

V. CONCLUSIONS AND FURTHER RESEARCH

We provided new insights into the theory of fuzzy closure
operators motivated by the question of whether and to what
extent is it possible to apply results on ordinary closure
operators to general fuzzy closure operators. In particular, we
presented reduction results that enable one to apply established
results and algorithms for computing sets of fixpoints of
ordinary closure operators to obtain the corresponding results
and algorithms for fuzzy closure operators. The two core in-
sights involved are a decomposition theorem for fuzzy closure
operators and a theorem emphasizing an important role of
globalization used as a truth-stressing hedge. As an example of
applications of our results, we provided a wrapping procedure
which enables one to take an algorithm for computing ordinary
concept lattices and obtain a corresponding algorithm for
computing fuzzy concept lattices.

The topics for future research include: Experimental evalua-
tion of the algorithms obtained using our wrapping procedure;
exploration of further applications of our two key results, the
decomposition theorem and the theorem emphasizing the role
of globalization; further investigation of relationships between
fuzzy and ordinary closure structures.

ACKNOWLEDGMENT

Supported by Grant No. GA15-17899S of the Czech Science
Foundation.

REFERENCES

[1] S. Andrews, “A ‘best-of-breed’ approach for designing a fast algorithm
for computing fixpoints of Galois connections,” Information Sciences,
vol. 295, pp. 633–649, 2015.

[2] R. Belohlavek, “Fuzzy closure operators,” Journal of Mathematical
Analysis and Applications, vol. 262, no. 2, pp. 473–489, Oct. 2001.

[3] ——, “Reduction and a simple proof of characterization of fuzzy concept
lattices,” Fundamenta Informaticae, vol. 46, no. 4, pp. 277–285, 2001.

[4] ——, Fuzzy Relational Systems: Foundations and Principles. Norwell,
USA: Kluwer Academic Publishers, 2002.

[5] ——, “Concept lattices and order in fuzzy logic,” Ann. Pure Appl. Log.,
vol. 128, no. 1-3, pp. 277–298, 2004.

[6] R. Belohlavek, B. De Baets, J. Outrata, and V. Vychodil, “Computing the
lattice of all fixpoints of a fuzzy closure operator,” IEEE Transactions
on Fuzzy Systems, vol. 18, no. 3, pp. 546–557, 2010.

[7] R. Belohlavek, T. Funioková, and V. Vychodil, “Fuzzy closure operators
with truth stressers,” Logic Journal of IGPL, vol. 13, no. 5, pp. 503–513,
2005.

[8] R. Belohlavek, V. Sklenar, and J. Zacpal, “Crisply generated fuzzy
concepts,” in International Conference on Formal Concept Analysis.
Springer, 2005, pp. 269–284.

[9] R. Belohlavek and V. Vychodil, “Fuzzy Horn logic I,” Archive for
Mathematical Logic, vol. 45, no. 1, pp. 3–51, 2006.

[10] ——, “Formal concept analysis and linguistic hedges,” Int. J. General
Systems, vol. 41, no. 5, pp. 503–532, 2012.

[11] B. Ganter and R. Wille, Formal Concept Analysis – Mathematical
Foundations. Springer, 1999.

[12] P. Hájek, Metamathematics of Fuzzy Logic (Trends in Logic). Springer,
November 2001.

[13] P. Hájek, “On very true,” Fuzzy Sets and Systems, vol. 124, no. 3, pp.
329–333, 2001.

[14] P. Krajca, J. Outrata, and V. Vychodil, “Parallel algorithm for computing
fixpoints of Galois connections,” Annals of Mathematics and Artificial
Intelligence, vol. 59, no. 2, pp. 257–272, 2010.

[15] S. Krajci, “A generalized concept lattice,” Logic Journal of the IGPL,
vol. 13, no. 5, pp. 543–550, 2005.

[16] S. O. Kuznetsov, “A fast algorithm for computing all intersections of
objects from an arbitrary semilattice,” Nauchno-Tekhnicheskaya Infor-
matsiya Seriya 2-Informatsionnye Protsessy i Sistemy, no. 1, pp. 17–20,
1993.

[17] S. O. Kuznetsov and S. Obiedkov, “Comparing performance of algo-
rithms for generating concept lattices,” Journal of Experimental and
Theoretical Artificial Intelligence, vol. 14, pp. 189–216, 2002.

[18] C. Lindig, “Fast concept analysis,” Working with Conceptual Structures-
Contributions to ICCS, vol. 2000, pp. 152–161, 2000.

[19] J. Outrata and V. Vychodil, “Fast algorithm for computing fixpoints of
Galois connections induced by object-attribute relational data,” Informa-
tion Sciences, vol. 185, no. 1, pp. 114–127, 2012.

[20] S. Pollandt, Fuzzy Begriffe: Formale Begriffsanalyse von unscharfen
Daten. Berlin–Heidelberg: Springer–Verlag, 1997.

[21] G. Takeuti and S. Titani, “Globalization of intui tionistic set theory,”
Annals of Pure and Applied Logic, vol. 33, pp. 195–211, 1987.

[22] S. B. Yahia and A. Jaoua, Discovering knowledge from fuzzy concept
lattice. Heidelberg, Germany: Physica-Verlag GmbH, 2001, pp.
167–190.

