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Abstract. We present results regarding row and column spaces of matrices whose entries are ele-
ments of residuated lattices. In particular, we define the notions of a row and column space for matri-
ces over residuated lattices, provide connections to concept lattices and other structures associated to
such matrices, and show several properties of the row and column spaces, including properties that
relate the row and column spaces to Schein ranks of matrices over residuated lattices. Among the
properties is a characterization of matrices whose row (column) spaces are isomorphic. In addition,
we present observations on the relationships between results established in Boolean matrix theory
on one hand and formal concept analysis on the other hand.
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1. Introduction

The results presented in this paper are motivated by recent results on decompositions of matrices over
residuated lattices and factor analysis of data described by such matrices, see e.g. [5, 6, 9]. The results
reveal a fundamental role of closure and interior structures, most importantly concept lattices, for the de-
compositions. In particular, the results motivate us to investigate the calculus of matrices over residuated
lattices. Such matrices include Boolean matrices as a particular case. Therefore, we investigate in the
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setting of matrices over residuated lattices the notions known from Boolean matrices that are relevant
to matrix decompositions. The most important among them are the notions of a row and column space.
These notions are the main subject of the present paper. In addition to obtain appropriate generalizations
of these notions for matrices over residuated lattices and the results regarding these notions, our goal is
to establish links between the matrix-like setting and the setting of interior/closure structures of formal
concept analysis. Note that most of the notions and results we establish for matrices remain true when
rephrased in terms of relations between possibly infinite sets; for this to be true, however, the residuated
lattices need to be complete.

2. Preliminaries: Matrices, Decompositions, Concept Lattices

Matrices We deal with matrices whose degrees are elements of residuated lattices. Recall that a (com-
plete) residuated lattice [3, 13, 20] is a structure L = 〈L,∧,∨,⊗,→, 0, 1〉 such that

(i) 〈L,∧,∨, 0, 1〉 is a (complete) lattice, i.e. a partially ordered set in which arbitrary infima and
suprema exist (the lattice order is denoted by ≤; 0 and 1 denote the least and greatest element,
respectively);

(ii) 〈L,⊗, 1〉 is a commutative monoid, i.e. ⊗ is a binary operation that is commutative, associative,
and a⊗ 1 = a for each a ∈ L;

(iii) ⊗ and→ satisfy adjointness, i.e. a⊗ b ≤ c iff a ≤ b→ c.

Throughout the paper, L denotes an arbitrary (complete) residuated lattice. Common examples of com-
plete residuated lattices include those defined on the real unit interval, i.e. L = [0, 1], or on a finite
chain in a unit interval, e.g. L = {0, 1n , . . . ,

n−1
n , 1}. For instance, for L = [0, 1], we can use any left-

continuous t-norm for ⊗, such as minimum, product, or Łukasiewicz, and the corresponding residuum
→ [3, 13, 20]. Residuated lattices are commonly used in fuzzy logic [3, 12, 13]. Elements a ∈ L are
called grades (degrees of truth). Operations⊗ (multiplication) and→ (residuum) play the role of a (truth
function of) conjunction and implication, respectively.

We deal with (de)compositions I = A ∗ B which involve an n ×m matrix I , an n × k matrix A,
and a k×m matrix B. We assume that Iij , Ail, Blj ∈ L. That is, all the matrix entries are elements of a
given residuated lattice L. Therefore, examples of matrices I which are subject to the decomposition are 1.0 1.0 0.0 0.0 0.6 0.4

1.0 0.9 0.0 0.0 1.0 0.8
1.0 1.0 0.0 1.0 0.0 0.0
1.0 0.5 0.0 0.7 1.0 0.4

 or

 0 0 1 1 1
0 0 1 1 0
0 0 0 0 1
0 1 1 1 0

.
The second matrix emphasizes that binary matrices are a particular case for L = {0, 1}. The i-th row
and the j-th column of I are denoted by Ii and I j , respectively.

Composition Operators We use three matrix composition operators, ◦, /, and ., and consider the
corresponding decompositions I = A ◦ B, I = A/B, and I = A.B. In the decompositions, Iij is
interpreted as the degree to which the object i has the attribute j; Ail as the degree to which the factor
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l applies to the object i; Blj as the degree to which the attribute j is a manifestation (one of possibly
several manifestations) of the factor l. The composition operators are defined by

(A ◦B)ij =
∨k

l=1Ail ⊗Blj , (1)

(A/B)ij =
∧k

l=1Ail → Blj , (2)

(A.B)ij =
∧k

l=1Blj → Ail. (3)

Note that these operators were extensively studied by Bandler and Kohout, see e.g. [16]. They have
natural verbal descriptions. For instance, (A ◦B)ij is the truth degree of the proposition “there is factor
l such that l applies to object i and attribute j is a manifestation of l”; (A/B)ij is the truth degree of
“for every factor l, if l applies to object i then attribute j is a manifestation of l”. Note also that for
L = {0, 1}, A ◦B coincides with the well-known Boolean product of matrices [15].

Decomposition Problem Given an n ×m matrix I and a composition operator ∗ (i.e., ◦, /, or .), the
decomposition problem consists in finding a decomposition I = A ∗ B of I into an n × k matrix A
and a k × m matrix B with the number k (number of factors) as small as possible. The smallest k is
called the Schein rank of I and is denoted by ρs(I) (to make the type of product explicit, also by ρs◦(I),
ρs /(I), and ρs .(I)). Looking for decompositions I = A ∗ B can be seen as looking for factors in data
described by I . That is, decomposing I can be regarded as factor analysis in which the data as well as
the operations used are different from the ordinary factor analysis [14].

Concept Lattices Associated to I Let X = {1, 2, . . . , n} and Y = {1, 2, . . . ,m}. Recall that LU

denotes the set of all L-sets in U , i.e. all mappings from U to L Consider the following pairs of operators
induced by matrix I . First, the pair 〈↑, ↓〉 of operators ↑ : LX → LY and ↓ : LY → LX is defined by

C↑(j) =
∧n

i=1(C(i)→ Iij), D↓(i) =
∧m

j=1(D(j)→ Iij), (4)

for j ∈ {1, . . . ,m} and i ∈ {1, . . . , n}. Second, the pair 〈∩, ∪〉 of operators ∩ : LX → LY and
∪ : LY → LX is defined by

C∩(j) =
∨n

i=1(C(i)⊗ Iij), D∪(i) =
∧m

j=1(Iij → D(j)), (5)

for j ∈ {1, . . . ,m} and i ∈ {1, . . . , n}. Third, the pair 〈∧, ∨〉 of operators ∧ : LX → LY and ∨ : LY →
LX is defined by

C∧(j) =
∧n

i=1(Iij → C(i)), D∨(i) =
∨m

j=1(D(j)⊗ Iij), (6)

for j ∈ {1, . . . ,m} and i ∈ {1, . . . , n}. 〈↑, ↓〉 forms an antitone Galois connection [1], 〈∩, ∪〉 and 〈∧, ∨〉
each form an isotone Galois connection [11]. To emphasize that the operators are induced by I , we also
denote the operators by 〈↑I , ↓I 〉, 〈∩I , ∪I 〉, and 〈∧I , ∨I 〉. Furthermore, denote the corresponding sets of
fixpoints by B(X↑, Y ↓, I), B(X∩, Y ∪, I), and B(X∧, Y ∨, I), i.e.

B(X↑, Y ↓, I) = {〈C,D〉 |C↑ = D, D↓ = C},
B(X∩, Y ∪, I) = {〈C,D〉 |C∩ = D, D∪ = C},
B(X∧, Y ∨, I) = {〈C,D〉 |C∧ = D, D∨ = C}.
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The sets of fixpoints are complete lattices, called concept lattices associated to I , and their elements
are called formal concepts. Note that these operators and their sets of fixpoints have extensively been
studied, see e.g. [1, 2, 4, 11, 18]. Clearly, 〈C,D〉 ∈ B(X∩, Y ∪, I) iff 〈D,C〉 ∈ B(Y ∧, X∨, IT), where
IT denotes the transpose of I; so one could consider only one pair, 〈∩I , ∪I 〉 or 〈∧I , ∨I 〉, and obtain
the properties of the other pair by a simple translation. Note also that if L = {0, 1}, B(X↑, Y ↓, I)
coincides with the ordinary concept lattice of the formal context consisting of X , Y , and the binary
relation (represented by) I .

It is well known that for L = {0, 1}, each of the three operators is definable by any of the remaining
two and that, as a consequence, B(X↑, Y ↓, I) is isomorphic to B(X∩, Y ∪, I) with 〈A,B〉 7→ 〈A,B〉
being an isomorphism (U denotes the complement of U ).

The mutual definability fails for general L because it is based on the law of double negation which
does not hold for general residuated lattices. A simple framework that enables us to consider all the
three operators as particular types of a more general operator is provided in [6], cf. also [11] for another
possibility. For simplicity, we do not work with the general approach and use the three operators because
they are well known.

The concept lattices associated to I play a fundamental role for decompositions of I . Namely, given
a set F = {〈C1, D1〉, . . . , 〈Ck, Dk〉} of L-sets Cl and Dl in {1, . . . , n} and {1, . . . ,m}, respectively,
define n× k and k ×m matrices AF and BF (we assume a fixed indexing of the elements of F) by

(AF )il = (Cl)(i) and (BF )lj = (Dl)(j).

This says: the l-th column of AF is the transpose of the vector corresponding to Cl and the l-th row of
BF is the vector corresponding to Dl. Then, we have:

Theorem 2.1. ([6])
For every n×m matrix I over a residuated lattice, ρs◦(I), ρs /(I), ρs .(I) ≤ min(m,n). In addition,
(◦) there exists F ⊆ B(X↑, Y ↓, I) with |F| = ρs◦(I) such that I = AF ◦BF ;
(/) there exists F ⊆ B(X∩, Y ∪, I) with |F| = ρs /(I) such that I = AF /BF ;
(.) there exists F ⊆ B(X∧, Y ∨, I) with |F| = ρs .(I) such that I = AF .BF .

Note that Theorem 2.1 says that if I = A ◦ B for n × k and k ×m matrices A and B, then there
exists F ⊆ B(X↑, Y ↓, I) with |F| ≤ k such that for the n× |F| and |F| ×m matrices AF and BF we
have I = AF ◦BF ; the same for / and . (this is the way the theorem is phrased in [6]).

3. Row and Column Spaces

In this section, we define the notions of row and column spaces for matrices over residuated lattices and
establish their properties and connections to concept lattices and other structures known from formal
concept analysis.

In what follows, we denote

X = {1, . . . , n}, Y = {1, . . . ,m}, F = {1, . . . , k}.

We assume that E∧A∧B stands for (E∧A)∧B and the like. For convenience and since there is no danger
of misunderstanding, we take the advantage of identifying n ×m matrices over residuated lattices (the
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set of all such matrices is denoted by Ln×m) with binary fuzzy relations between X and Y (the set of
all such relations is denoted by LX×Y ). Also, we identify vectors with n components over residuated
lattices (the set of all such vectors is denoted by Ln) with fuzzy sets in X (the set of all such fuzzy sets
is denoted by LX ). As usual, we identify vectors with n components with 1× n matrices.

Using the terminology known from Boolean matrices [15], we define the following notions.

Definition 3.1. V ⊆ Ln is called an i-subspace if

– V is closed under ⊗-multiplication, i.e. for every a ∈ L and C ∈ V we have a ⊗ C ∈ V (here,
a⊗ C is defined by (a⊗ C)(i) = a⊗ C(i) for i = 1, . . . , n);

– V is closed under
∨

-union, i.e. for Cj ∈ V (j ∈ J) we have
∨

j∈J Cj ∈ V (here,
∨

j∈J Cj is
defined by (

∨
j∈J Cj)(i) =

∨
j∈J Cj(i)).

V ⊆ Ln is called a c-subspace if

– V is closed under left →-multiplication (or →-shift), i.e. for every a ∈ L and C ∈ V we have
a→ C ∈ V (here, a→ C is defined by (a→ C)(i) = a→ C(i) for i = 1, . . . , n);

– V is closed under
∧

-intersection, i.e. for Cj ∈ V (j ∈ J) we have
∧

j∈J Cj ∈ V (here,
∧

j∈J Cj

is defined by (
∧

j∈J Cj)(i) =
∧

j∈J Cj(i)).

Remark 3.1. (1) If elements of V are regarded as fuzzy sets, the concepts of an i-subspace and a c-
subspace coincide with the concept of a fuzzy interior system and a fuzzy closure system as defined in
[2, 7].

(2) For L = {0, 1} the concept of an i-subspace coincides with the concept of a subspace from the
theory of Boolean matrices [15]. In fact, closedness under⊗-multiplication is satisfied for free in the case
of Boolean matrices. Note also that for Boolean matrices, V forms a c-subspace iff V = {C |C ∈ V }
forms an i-subspace (with C defined by C(i) = C(i) where a = a→ 0, i.e. 0 = 1 and 1 = 0), and vice
versa. However, such a reducibility among the concepts of i-subspace and c-subspace is not available in
general because in residuated lattices, the law of double negation (saying that (a → 0) → 0 = a) does
not hold.

Definition 3.2. The i-span (c-span) of V ⊆ Ln is the intersection of all i-subspaces (c-subspaces) of Ln

that contain V , hence itself an i-subspace (c-subspace) of Ln.
The row i-space (row c-space) of matrix I ∈ Ln×m is the i-span (c-span) of the set of all rows of

I (considered as vectors from Ln). The column i-space (column c-space) is defined analogously as the
i-span (c-span) of the set of columns of I . The row i-space, row c-space, column i-space, and column
c-space of matrix I is denoted by Ri(I), Rc(I), Ci(I), Cc(I).

For a concept lattice B(XM, Y O, I), where 〈M, O〉 is either of 〈↑, ↓〉, 〈∩, ∪〉, and 〈∧, ∨〉, denote the
corresponding sets of extents and intents by Ext(XM, Y O, I) and Int(XM, Y O, I). That is,

Ext(XM, Y O, I) = {C ∈ LX | 〈C,D〉 ∈ B(XM, Y O, I) for some D},
Int(XM, Y O, I) = {D ∈ LY | 〈C,D〉 ∈ B(XM, Y O, I) for some C},

A fundamental connection between the row and column spaces on one hand, and the concept lattices
on the other hand, is described in the following theorem (IT denotes the transpose of I).



6 R. Belohlavek, J. Konecny / Row and Column Spaces of Matrices over Residuated Lattices

Theorem 3.1. For a matrix I ∈ Ln×m, X = {1, . . . , n}, Y = {1, . . . ,m}, we have

Ri(I) = Int(X∩, Y ∪, I) = Ext(Y ∧, X∨, IT), (7)

Rc(I) = Int(X↑, Y ↓, I) = Ext(Y ↑, X↓, IT), (8)

Ci(I) = Ext(X∧, Y ∨, I) = Int(Y ∩, X∪, IT), (9)

Cc(I) = Ext(X↑, Y ↓, I) = Int(Y ↑, X↓, IT). (10)

Proof:
(7): To establish Ri(I) = Int(X∩, Y ∪, I), notice that Int(X∩, Y ∪, I) is just the set of all fixpoints of
the fuzzy interior operator ∪∩ (see e.g. [7, 11]), i.e. a fuzzy interior system. To see that this fuzzy
interior system is the least one that contains all rows of I , it is sufficient to observe that every intent
D ∈ Int(X∩, Y ∪, I) is a

∨
-union of ⊗-multiplications of rows of I and that Int(X∩, Y ∪, I) contains

every row of I . To observe this fact, consider the corresponding formal concept 〈C,D〉 ∈ B(X∩, Y ∪, I).
It follows from the description of suprema in B(X∩, Y ∪, I) that

〈C,D〉 =
∨

x∈X〈{C(x)/x}∩∪, {C(x)/x}∩〉 =
〈(
∨

x∈X{C(x)/x})∩∪,
∨

x∈X{C(x)/x}∩〉,

(note that {a/x} denotes a singleton fuzzy set A defined by A(u) = a for u = x and A(u) = 0 for
u 6= x) and hence

D =
∨

x∈X{C(x)/x}∩ =

=
∨

x∈X C(x)⊗ {1/x}∩.

In addition, 〈{1/x}∩∪, {1/x}∩〉 is a particular formal concept from B(X∩, Y ∪, I). It is now sufficient to
realize that {1/x}∩ is just the x-th row of I .

The second equality of (7) is immediate. (9) is a consequence of (7) when taking a transpose of I .
Namely, in such case extents and intents switch their roles.

(8): Similarly, to establish Rc(I) = Int(X↑, Y ↓, I), notice that Int(X↑, Y ↓, I) is just the set of
all fixpoints of the fuzzy closure operator ↓↑ (see e.g. [1, 2]), i.e. a fuzzy closure system. To see
that Int(X↑, Y ↓, I) is the least fuzzy closure system which contains all rows of I , it is sufficient to
observe that every intent D ∈ Int(X↑, Y ↓, I) is an

∧
-intersection of →-shifts of rows of I and that

Int(X↑, Y ↓, I) contains every row of I . To observe this fact, consider the corresponding formal concept
〈C,D〉 ∈ B(X↑, Y ↓, I). Then it follows from the description of suprema in B(X↑, Y ↓, I) that

〈C,D〉 =
∨

x∈X〈{C(x)/x}↑↓, {C(x)/x}↑〉 =
〈(
∨

x∈X{C(x)/x})↑↓,
∧

x∈X{C(x)/x}↑〉,

and hence

D =
∧

x∈X{C(x)/x}↑ =
=

∧
x∈X C(x)→ {1/x}↑.

In addition, 〈{1/x}↑↓, {1/x}↑〉 is a particular formal concept from B(X↑, Y ↓, I). It is now sufficient to
realize that {1/x}↑ is just the x-th row of I .

Again, (10) is a consequence of (8) when taking the transpose of I . ut
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The following lemma provides us with the relationships between the row and column spaces of
matrices and their compositions. Recall that X = {1, . . . , n}, Y = {1, . . . ,m}, and F = {1, . . . , k}.

Lemma 3.1. For matrices A ∈ Ln×k and B ∈ Lk×m,

Ri(A ◦B) ⊆ Ri(B), (11)

Ci(A ◦B) ⊆ Ci(A), (12)

Rc(A/B) ⊆ Rc(B), (13)

Cc(A.B) ⊆ Cc(A). (14)

In addition,

Cc(A/B) ⊆ Ext(X∩, F∪, A), (15)

Rc(A.B) ⊆ Int(F∧, Y ∨, B). (16)

Proof:
(11): According to [8, Theorem 4],

Int(X∩A◦B , Y ∪A◦B , A ◦B) ⊆ Int(F∩B , Y ∪B , B).

Due to Theorem 3.1, Int(X∩A◦B , Y ∪A◦B , A◦B) = Ri(A◦B) and Int(F∩B , Y ∪B , B) = Ri(B), whence
the claim.

The other inclusions follow analogously from

Ext(X∧A◦B , Y ∨A◦B , A ◦B) ⊆ Ext(X∧A , F∨A , A),

Int(X↑A/B , Y ↓A/B , A /B) ⊆ Int(F ↑B , Y ↓B , B),

Ext(X↑A.B , Y ↓A.B , A .B) ⊆ Ext(X↑A , F ↓A , A),

Ext(X↑A/B , Y ↓A/B , A /B) ⊆ Ext(X∩A , F∪A , A),

Int(X↑A.B , Y ↓A.B , A .B) ⊆ Int(F∧B , Y ∨B , B),

proved in [8, Theorem 4], and Theorem 3.1. ut

The necessary and sufficient conditions for inclusions of row and column spaces of two matrices are
the subject of the following theorem.

Theorem 3.2. Consider matrices I ∈ Ln×m, A ∈ Ln×k, and B ∈ Lk×m.

Ri(I) ⊆ Ri(B) iff there exists a matrix A′ ∈ Ln×k such that I = A′ ◦B, (17)

Ci(I) ⊆ Ci(A) iff there exists a matrix B′ ∈ Lk×m such that I = A ◦B′, (18)

Rc(I) ⊆ Rc(B) iff there exists a matrix A′ ∈ Ln×k such that I = A′ /B, (19)

Cc(I) ⊆ Cc(A) iff there exists a matrix B′ ∈ Lk×m such that I = A.B′. (20)

In addition,

Cc(I) ⊆ Ext(X∩, F∪, A) (21)

iff there exists a matrix B′ ∈ Lk×m such that I = A/B′,

Rc(I) ⊆ Int(F∧, Y ∨, B) (22)

iff there exists a matrix A′ ∈ Ln×k such that I = A′ .B.



8 R. Belohlavek, J. Konecny / Row and Column Spaces of Matrices over Residuated Lattices

Proof:
(17): “⇒”: Let Ri(I) ⊆ Ri(B), i.e. by Theorem 3.1, Int(X∩, Y ∪, I) ⊆ Int(F∩, Y ∪, B). Every
H ∈ Int(F∩, Y ∪, B) can be written as

H =
∨

1≤l≤k cl ⊗Bl .

Thus every H ∈ Int(X∩, Y ∪, I) can be written as
∨

1≤l≤k cl ⊗ Bl . Therefore, since every row Ii of I
belongs to Int(X∩, Y ∪, I), Ii can be written as

Ii =
∨

1≤l≤k cli ⊗Bl .

Now, we get the required matrix A′ by putting A′il = cli. “⇐” is established in Lemma 3.1.
(18) follows from (17), (9) and the fact that (C ◦D)T = DT ◦ CT.
(19): “⇒”: Let Rc(I) ⊆ Rc(B), i.e. by Theorem 3.1, Int(X↑, Y ↓, I) ⊆ Int(F ↑, Y ↓, B). Every

H ∈ Int(F ↑, Y ↓, B) can be written as

H =
∧

1≤l≤k cl → Bl .

Thus every H ∈ Int(X↑, Y ↓, I) can be written in this form as well. Therefore, since every row Ii of I
belongs to Int(X↑, Y ↓, I), Ii can be written as

Ii =
∧

1≤l≤k cli → Bl .

Now, we get the required matrix A′ by putting A′il = cli. “⇐” is established in Lemma 3.1.
(20) follows from (19), (10) and the fact that (C /D)T = DT .CT.
(21): “⇒”: LetCc(I) ⊆ Ext(X∩, F∪, A), i.e. by Theorem 3.1, Ext(X↑, Y ↓, I) ⊆ Ext(X∩, F∪, A).

Every H ∈ Ext(F∩, Y ∪, B) and thus in particular every H ∈ Ext(X↑, Y ↓, I) can be written as∧
1≤l≤k A l → cl. Therefore, since every column I i of I belongs to Ext(X↑, Y ↓, I), I i can be written

as
I i =

∧
1≤l≤k A l → cli

Now, we get the required matrix B′ by putting B′li = cli. Again, “⇐” is established in Lemma 3.1.
(22): follows from (21), (8) and the fact that (C /D)T = DT .CT.

ut

As a corollary, we obtain the following theorem.

Theorem 3.3. Let I and J be n×m matrices.

(a) If Ri(I) = Ri(J) and I = A ◦ B for some A ∈ Ln×k, B ∈ Lk×m then there exists A′ ∈ Ln×k

such that J = A′ ◦B.

(b) If Ci(I) = Ci(J) and I = A ◦ B for some A ∈ Ln×k, B ∈ Lk×m then there exists B′ ∈ Lk×m

such that J = A ◦B′.

(c) If Rc(I) = Rc(J) and I = A/B for some A ∈ Ln×k, B ∈ Lk×m then there exists A′ ∈ Ln×k

such that J = A′ /B.
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(d) If Cc(I) = Cc(J) and I = A.B for some A ∈ Ln×k, B ∈ Lk×m then there exists B′ ∈ Lk×m

such that J = A.B′.

In addition,

(e) If Cc(I) = Cc(J) and I = A/B for some A ∈ Ln×k, B ∈ Lk×m then there exists B′ ∈ Lk×m

such that J = A/B′.

(f) If Rc(I) = Rc(J) and I = A.B for some A ∈ Ln×k, B ∈ Lk×m then there exists A′ ∈ Ln×k

such that J = A′ .B.

Proof:
(a): If I = A ◦ B then, according to (17), Ri(I) ⊆ Ri(B). Since Ri(J) = Ri(I), we also have
Ri(J) ⊆ Ri(B). Another application of (17) yields A′ for which J = A′ ◦ B. The proof for (b)–(f) is
similar. ut

We now show two theorems, well known from the Boolean matrix theory [15], as corollaries of the
above results. As is mentioned above, for L = {0, 1}, the row i-space Ri(I) of I coincides with the row
space of the Boolean matrix I as defined in the Boolean matrix theory; likewise, Ci(I) coincides with
the column space of I as defined in the Boolean matrix theory.

Remark 3.2. From the point of view of concept lattices, as developed within formal concept analysis
[10], the row space of a Boolean matrix I , i.e. Ri(I), is dually isomorphic as a lattice to the lattice of all
intents of the ordinary concept lattice of the complement of I , i.e. to Int(X↑, Y ↓, I). Namely, according
to Theorem 3.1, Ri(I) = Int(X∩, Y ∪, I) and it is well known that for L = {0, 1}, Int(X∩, Y ∪, I) is
dually isomorphic to Int(X↑, Y ↓, I) with D 7→ D being the dual isomorphism. Lattices Int(X∩, Y ∪, I)
have been studied by Markowsky, see e.g. [17] (see Section 2).

Corollary 3.1. (1) For Boolean matrices A and B, the row space of A ◦ B is a subset of the row space
of B.

(2) For a Boolean matrix A, the row space of A has the same number of elements as the columns
space of A.

Proof:
(1) is a particular case of (11) for L = {0, 1}.

(2): By Theorem 3.1, Ri(A) = Int(X∩, Y ∪, A) and Ci(A) = Int(Y ∩, X∪, AT). As is men-
tioned in Remark 3.2, Int(X∩, Y ∪, A) is dually isomorphic to Int(X↑, Y ↓, A) and hence isomorphic to
B(X↑, Y ↓, A). Thus, Int(Y ∩, X∪, AT) is isomorphic to B(Y ↑, X↓, AT

). As is well-known from FCA
[10], B(X↑, Y ↓, A) is dually isomorphic to B(Y ↑, X↓, AT

), proving the claim. ut

Remark 3.3. (1) From Theorem 3.1 we have |Rc(I)| = |Cc(I)| for any I ∈ Ln×m since Cc(I) =
Ext(X↑, Y ↓, I) and, as is well known, Ext(X↑, Y ↓, I) is dually isomorphic toRc(I) = Int(X↑, Y ↓, I).

(2) Contrary to Corollary 3.1 (2), |Ri(I)| = |Ci(I)| does not hold for general L. As an example,
consider L being a finite chain containing a < b with ⊗ defined as follows:

x⊗ y =

{
x ∧ y if x = 1 or y = 1,
0 otherwise,
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for each x, y ∈ L. One can easily see that x ⊗
∨

j yj =
∨

j(x ⊗ yj) and thus an adjoint operation →
exists such that 〈L,∧,∨,⊗,→, 0, 1〉 is a complete residuated lattice (see e.g. [12]). Namely,→ is given
as follows:

x→ y =


1 if x ≤ y,
y if x = 1,
b otherwise,

for each x, y ∈ L. Now, for the matrix I =
(
a b

)
, we have Ri(I) = {(a, b), (0, 0)} and Ci(I) =

{(0), (a), (b)}.

The next theorem shows that Schein ranks of matrices with the same row or column spaces are equal.

Theorem 3.4. Let I and J be n×m matrices.

(a) If Ri(I) = Ri(J) then ρs◦(I) = ρs◦(J).

(b) If Ci(I) = Ci(J) then ρs◦(I) = ρs◦(J).

(c) If Rc(I) = Rc(J) then ρs /(I) = ρs /(J) and ρs .(I) = ρs .(J).

(d) If Cc(I) = Cc(J) then ρs /(I) = ρs /(J) and ρs .(I) = ρs .(J).

Proof:
(a): Let I = A ◦ B for an n × k matrix A and a k ×m matrix B. According to Theorem 3.3 (a), there
exists an n × k matrix A′ such that J = A′ ◦ B, proving ρs◦(I) ≥ ρs◦(J). In a similar way one shows
ρs◦(I) ≤ ρs◦(J).

(b): Let I = A ◦ B for an n × k matrix A and a k ×m matrix B. According to Theorem 3.3 (b),
there exists a k ×m matrix B′ such that J = A ◦ B′, proving ρs◦(I) ≥ ρs◦(J). In a similar way one
shows ρs◦(I) ≤ ρs◦(J).

(c): Let I = A/B for an n × k matrix A and a k ×m matrix B. According to Theorem 3.3 (c),
there exists an n × k matrix A′ such that J = A′ /B, proving ρs /(I) ≥ ρs /(J). In a similar way one
shows ρs /(I) ≤ ρs /(J).

Similarly, Let I = A.B for an n × k matrix A and a k ×m matrix B. By Theorem 3.3 (f), there
exists a k ×m matrix B′ such that J = A.B′, proving ρs .(I) ≥ ρs .(J). In a similar way one shows
ρs .(I) ≤ ρs .(J).

(d): Similar to (c). ut

4. Matrices with Isomorphic Row Spaces

Because of their particular role in ◦-decompositions and because of the established results in the Boolean
case, row i-spaces are investigated in more detail in this section. In particular, we characterize matrices
with isomorphic row i-spaces and isomorphic concept lattices, and show that isomorphism of row i-
spaces (or, equivalently, of concept lattices) implies equality of the Schein rank ρs◦. Clearly, one obtains
results regarding column i-spaces by going to transpose matrices.
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Definition 4.1. A mapping h : V → W from an i-subspace V ⊆ Lp into an i-subspace W ⊆ Lq is
called an i-morphism if it is a ⊗- and

∨
-morphism, i.e. if

– h(a⊗ C) = a⊗ h(C) for each a ∈ L and C ∈ V ;

– h(
∨

k∈K Ck) =
∨

k∈K h(Ck) for every collection of Ck ∈ V (k ∈ K).

An i-morphism h : V →W is called an

– extendable i-morphism if h can be extended to an i-morphism of Lp to Lq, i.e. if there exists an
i-morphism h′ : Lp → Lq such that for every C ∈ V we have h′(C) = h(C);

– an i-isomorphism if h is bijective and both h and h−1 are extendable i-morphisms; if such h exists,
we write V ∼=W and call V and W i-isomorphic.

A mapping h : V →W from a c-subspace V ⊆ Lp into a c-subspace W ⊆ Lq is called a c-morphism if
it is a→- and

∧
-morphism, i.e. if

– h(a→ C) = a→ h(C) for each a ∈ L and C ∈ V ;

– h(
∧

k∈K Ck) =
∧

k∈K h(Ck) for every collection of Ck ∈ V (k ∈ K).

The notions of extendable c-morphism and c-isomorphism are defined similarly as in the case of i-
morphisms.

For our purpose, we need the following two lemmas, establishing an important fact that i-morphisms
are just the mappings obtained from matrices using the ◦-product.

Lemma 4.1. For every matrix A ∈ Lp×q, the mapping hA : Lp → Lq defined by

hA(C) = C ◦A

is an extendable i-morphism.

Proof:
Follows easily from the properties of residuated lattices. ut

Lemma 4.2. If for V ⊆ Lp, h : V → Lq is an extendable i-morphism then there exists a matrix
A ∈ Lp×q such that h(C) = C ◦A for every C ∈ Lp.

Proof:
Since h is extendable, we may safely assume that h : Lp → Lq, i.e. that h is defined for every C ∈ Lp.
Let A ∈ Lp×q be defined by

Aij =
∧

C∈V (C(i)→ (h(C))(j)).

That is,Ai =
∧

C∈V (C(i)→ h(C)), i.e. the rowAi contains a vector of degrees that can be interpreted
as the intersection of images of those vectors C from V for which the corresponding fuzzy set contains
i (in Boolean case: for which the i-th component is 1).
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We now check h(C) = C ◦A for every C ∈ Lp. First,

(C ◦A)(j) =
∨p

i=1[C(i)⊗Aij ] =

=
∨p

i=1[C(i)⊗ (
∧

C′∈V (C
′(i)→ (h(C ′))(j)))] ≤ (h(C))(j).

Second, to establish (h(C))(j) ≤ (C ◦A)(j), we first show

(h(Ek))(j) ≤ (Ek ◦A)(j) (23)

for every k = 1, . . . , p, where Ek is defined by

Ek(i) =

{
0 for i 6= k,

1 for i = k,

for every i = 1, . . . , p. Notice that for any C ∈ V , as C(k) ⊗ Ek ≤ C, we have C(k) ⊗ h(Ek) =
h(C(k)⊗ Ek) ≤ h(C), whence h(Ek) ≤ C(k)→ h(C). Using this inequality, we get

(Ek ◦A)(j) =
∨p

i=1[Ek(i)⊗ (
∧

C∈V (C(i)→ (h(C))(j)))] =

=
∧

C∈V (C(k)→ (h(C))(j)) ≥ (h(Ek))(j).

Using (23), we now get

(h(C))(j) = (h(
∨p

i=1(C(i)⊗ Ei)))(j) =
∨p

i=1(C(i)⊗ h(Ei)(j)) ≤
≤

∨p
i=1(C(i)⊗ (Ei ◦A)(j)) = (

∨p
i=1(C(i)⊗ Ei) ◦A)(j)) = (C ◦A)(j),

finishing the proof. ut

Remark 4.1. (1) As a result of Lemma 4.1 and Lemma 4.2, extendable i-morphisms may be represented
by matrices by means of ◦-products.

(2) In case of Boolean matrices, every i-morphism is extendable. Namely, due to [15, Lemma 1.3.2],
for every i-morphism h : V → {0, 1}q there exists a Boolean matrix A ∈ {0, 1}p×q such that h(C) =
C ◦ A for every C ∈ V . Clearly, h′ : {0, 1}p → {0, 1}q defined by h′(C) = C ◦ A for any C ∈ {0, 1}p
is the required extension of h which is an i-morphism.

(3) For general residuated lattices, however, there exist i-morphisms that are not extendable. Consider
any finite chain L with a < b being two elements of L. Let ⊗ be defined as in Remark 3.3 (2). For
p = q = 1, put V = {(0), (a)}, W = {(0), (b)}. Clearly, both V and W are i-subspaces for which
h((0)) = (0) and h((a)) = (b) defines an i-morphism h. If h was extendable, there would exist a matrix
A = (c) for which h(C) = C ◦A (Lemma 4.2). In particular, this would mean (b) = h((a)) = (a)◦ (c),
i.e. b = a⊗ c which is impossible because b > a. Therefore, h is not extendable.

The following theorem provides us with a criterion for two row spaces of matrices to be isomorphic
as i-spaces.

Theorem 4.1. Let I ∈ Ln×m and J ∈ Lp×r be matrices. Then Ri(I) ∼= Ri(J) (row spaces of I
and J are i-isomorphic) if and only if there exists a matrix K ∈ Lp×m such that Ri(I) = Ri(K) and
Ci(K) = Ci(J).
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Proof:
“⇒”: Let h : Ri(J) → Ri(I) be an i-isomorphism. According to Lemma 4.2, there exist matrices
X ∈ Lr×m and Y ∈ Lm×r such that

h(C) = C ◦X and h−1(D) = D ◦ Y

for every C ∈ Ri(J) and D ∈ Ri(I). Because every row of J is an element of Ri(J), it follows that
J ◦ X ◦ Y = J . Therefore, according to Theorem 3.2 (18), Ci(J) ⊆ Ci(J ◦ X). Since, according
to Theorem 3.2 (18) again, Ci(J) ⊇ Ci(J ◦ X), we conclude Ci(J ◦ X) = Ci(J). Furthermore, if
D ∈ Ri(I), then D ◦ Y = h−1(D) ∈ Ri(J), hence D ◦ Y = C ◦ J for some C ∈ Lp. Since
D = (D ◦ Y ) ◦X , we get D = (C ◦ J) ◦X = C ◦ (J ◦X), showing D ∈ Ri(J ◦X). We established
Ri(I) ⊆ Ri(J ◦X). If D ∈ Ri(J ◦X) then D = C ◦ (J ◦X) = (C ◦ J) ◦X for some C ∈ Lp. Since
C ◦ J ∈ Ri(J), we get

D = (C ◦ J) ◦X = h(C ◦ J) ∈ Ri(I),

proving Ri(J ◦ X) ⊆ Ri(I). Summing up, we proved Ri(I) = Ri(J ◦ X). Now, J ◦ X yields the
required matrix K.

“⇐”: Since Ci(K) = Ci(J), an application of Theorem 3.2 (18) to Ci(K) ⊇ Ci(J) and Ci(K) ⊆
Ci(J) yields a matrix S ∈ Lm×r for which K ◦ S = J and a matrix T ∈ Lr×m for which J ◦ T = K,
respectively. Consider now mappings f : Ri(K) → Ri(J) and g : Ri(J) → Ri(K) defined for
D ∈ Ri(K) and F ∈ Ri(J) by

f(D) = D ◦ S and g(F ) = F ◦ T. (24)

Notice that every D ∈ Ri(K) is in the form D = C ◦K for some C ∈ Lp and that every F ∈ Ri(J) is
in the form F = E ◦ J for some E ∈ Lp. The mappings f and g are defined correctly. Indeed,

f(D) = D ◦ S = (C ◦K) ◦ S = C ◦ (K ◦ S) = C ◦ J

for some C, and because C ◦ J ∈ Ri(J), we have f(D) ∈ Ri(J). In a similar way one obtains
g(F ) ∈ Ri(K). Next, since D is in the form D = C ◦K for some C, we have

g(f(D)) = ((C ◦K) ◦ S) ◦ T = (C ◦ (K ◦ S)) ◦ T = C ◦ (J ◦ T ) = C ◦K = D

and, similarly, f(g(F )) = F , proving that f and g are mutually inverse bijections. Finally, due to (24),
Lemma 4.1 implies that f and g are extendable i-morphisms. This shows that Ri(K) ∼= Ri(J), and
hence Ri(I) ∼= Ri(J). ut

Remark 4.2. For Boolean matrices, Theorem 4.1 is known for n = m = p = r, i.e. for square matrices
[15]. Note that for Boolean matrices, Ri(I) ∼= Ri(J) means that Ri(I) and Ri(J) are isomorphic as
lattices. Namely, the ⊗-morphism property is not required because it is satisfied for free in the Boolean
case.

Next, we show how Theorem 4.1 may be used to prove a characterization of isomorphism of concept
lattices induced by the ∩ and ∪ operators. We consider mappings of concept lattices. Since every extent
of a formal concept is uniquely determined by the corresponding intent and vice versa (using operators
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∩ and ∪), a mapping h : B(X∩1 , Y ∪1 , I1) → B(X∩2 , Y ∪2 , I2) may be thought of as consisting of a pair
〈hExt, hInt〉 of mappings, such that h(A,B) = 〈hExt(A), hInt(B)〉. That is, h consists of

hExt : Ext(X
∩
1 , Y

∪
1 , I1)→ Ext(X∩2 , Y

∪
2 , I2)

and
hInt : Int(X

∩
1 , Y

∪
1 , I1)→ Int(X∩2 , Y

∪
2 , I2).

Since Ext(X∩i , Y
∪
i , Ii) are c-spaces and Int(X∩i , Y

∪
i , Ii) are i-spaces, the following definition provides

natural requirements for h to be a morphism.

Definition 4.2. A mapping h = 〈hExt, hInt〉 : B(X∩1 , Y ∪1 , I1) → B(X∩2 , Y ∪2 , I2) is called an (extend-
able) morphism if hExt is an (extendable) c-morphism and hInt is an (extendable) i-morphism (cf. Defi-
nition 4.1). h is called an isomorphism if hExt is a c-isomorphism and hInt is an i-isomorphism; if such
h exists, we write B(X∩1 , Y ∪1 , I1) ∼= B(X∩2 , Y ∪2 , I2).

Lemma 4.3. If hInt : Int(X∩1 , Y
∪
1 , I1) → Int(X∩2 , Y

∪
2 , I2) is an i-isomorphism then the corresponding

mapping hExt : Ext(X∩1 , Y
∪
1 , I1) → Ext(X∩2 , Y

∪
2 , I2) is a c-isomorphism, hence B(X∩1 , Y ∪1 , I1) ∼=

B(X∩2 , Y ∪2 , I2).

Proof:
Due to Lemma 4.2, there exists a matrix Ah such that

hInt(C) = C ◦Ah,

i.e. hInt(C) = C∩Ah for every C ∈ Int(X∩1 , Y
∪
1 , I1). As a result,

hExt(E) = (hInt(E
∩I1 ))∪I2 = E∩I1∩Ah

∪I2 (25)

for every E ∈ Ext(X∩1 , Y
∪
1 , I1). Since Ri(I) = Int(X∩, Y ∪, I) for every I due to Theorem 3.1 (7),

Theorem 4.1 and its proof (put I = I2, J = I1, and X = Ah) imply that the matrix K = I1 ◦ Ah

satisfies Ri(K) = Int(X∩1 , Y
∪
2 ,K) = Int(X∩2 , Y

∪
2 , I2) = Ri(I2). Since Ri(K) ⊆ Ri(I2), there is a

matrix J such that K = J ◦ I2 (Theorem 3.2 (17)). Note that due to [8, Theorem 3 (11)], ∩J◦I2 = ∩J∩I2

and ∪J◦I2 = ∪I2∪J . As a result, (25) implies

hExt(E) = E∩I1∩Ah
∪I2 = E∩I1◦Ah

∪I2 = E∩K∪I2 = E∩J◦I2∪I2 = E∩J∩I2∪I2 . (26)

Observe now that since hExt is a bijection, we have

E∩J∩I2∪I2∪J = E (27)

for every E ∈ Ext(X∩1 , Y
∪
1 , I1). Indeed, since E∩J∩I2∪I2∪J = E∩J◦I2∪J◦I2 , it follows from the general

properties of isotone Galois connections that

E∩J◦I2∪J◦I2 ⊇ E. (28)

If in (28), E∩J◦I2∪J◦I2 ⊃ E, i.e. E∩J◦I2∪J◦I2 6= E then applying ∩J◦I2∪I2 to both sides of the inequality
and taking into account that ∩J◦I2∪I2 = hExt is a bijection, we get

E∩J◦I2∪J◦I2∩J◦I2∪I2 6= E∩J◦I2∪I2 , (29)
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which yields a contradiction because using ∩J◦I2∪J◦I2∩J◦I2 = ∩J◦I2 , both sides of (29) are equal.
We established (26) and (27) from which it follows that ∪J is inverse to hExt, i.e.

h−1Ext(E2) = E∪J2 (30)

for each E2 ∈ Ext(X∩2 , Y
∪
2 , I2).

Now, in a similar way, one may show that there exists a matrix J ′ such that

hExt(E1) = E
∪J′
1 (31)

for each E1 ∈ Ext(X∩1 , Y
∪
1 , I1). Namely, just start as in the beginning of this proof with h−1Int instead of

hInt, i.e. start by claiming the existence of A′h for which h−1Int(D) = D ◦ A′h and proceed dually to how
we have proceeded above.

Observe now that (30) implies that h−1Ext is a→-morphism:

h−1Ext(E2)(x) = (a→ D)∪J (x) =
∧

y∈Y J(x, y)→ (a→ D(y)) =∧
y∈Y a→ (J(x, y)→ D(y)) = a→

∧
y∈Y J(x, y)→ D(y) = a→ D∪J (x).

For the same reason, (31) implies that hExt is a →-morphism. Since hInt is a bijective
∨

-morphism,
it is a lattice isomorphism and hence, in particular, a

∧
-morphism. Since mapping an extent to the

corresponding intent is a lattice isomorphism of the lattice of extents to the lattice of intents, hExt is a∧
-morphism. To sum up, hExt is a c-morphism. Furthermore, it follows from (31) and (30) that hExt

and h−1Ext are extendable. As a result, hExt is a c-isomorphism, finishing the proof. ut

For a positive integer n, we put
n̂ = {1, . . . , n}.

Theorem 4.2. Let I ∈ Ln×m and J ∈ Lp×r be matrices. B(n̂∩, m̂∪, I) ∼= B(p̂∩, q̂∪, J) if and only if
there exists a matrix K ∈ Lp×m such that Ri(I) = Ri(K) and Ci(K) = Ci(J).

Proof:
“⇒”: If B(n̂∩, m̂∪, I) ∼= B(p̂∩, r̂∪, J) then Ri(I) ∼= Ri(J). Due to Theorem 3.1 (7), Int(n̂∩, m̂∪, I) =
Ri(I) and Int(p̂∩, r̂∪, J) = Ri(J). A matrix K satisfying the required conditions exists due to Theorem
4.1.

“⇐”: Due to Theorem 4.1, Ri(I) ∼= Ri(J). Since Int(n̂∩, m̂∪, I) = Ri(I) and Int(p̂∩, r̂∪, J) =
Ri(J), this means that there exists an i-isomorphism hInt : Int(n̂

∩, m̂∪, I) → Int(p̂∩, r̂∪, J). Lemma
4.3 now implies B(n̂∩, m̂∪, I) ∼= B(p̂∩, r̂∪, J). ut

As a corollary, we obtain the following theorem.

Theorem 4.3. Let I ∈ Ln×m and J ∈ Lp×r be matrices. If B(n̂∩, m̂∪, I) ∼= B(p̂∩, q̂∪, J) then ρs◦(I) =
ρs◦(J).

Proof:
Let B(n̂∩, m̂∪, I) ∼= B(p̂∩, q̂∪, J), let K be a matrix for which Ri(I) = Ri(K) and Ci(K) = Ci(J)
which exists due to Theorem 4.2. Due to Theorem 3.4 (a) and (b), ρs◦(I) = ρs◦(K) = ρs◦(J). ut
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5. Conclusions

We investigated the notions of a row and column space, known for Boolean matrices, for matrices with
entries from complete residuated lattices. We showed that in the more general, non-Boolean setting, two
kinds of spaces naturally appear, namely, interior- and closure- row and column spaces. We provided
properties of these spaces and established links to concept-forming operators and concept lattices known
from formal concept analysis. We provided connections between the Schein ranks of two matrices and
their row and column spaces. Topics left for future research include further characterizations of isomor-
phic row and column spaces, in particular c-spaces, and in general, further investigation of the calculus
of matrices over residuated lattices with the focus on results regarding matrix decompositions. A partic-
ularly interesting topic seems to be an investigation of structures related to approximate decompositions,
i.e. decompositions in which matrix I is approximately equal to A ∗B.
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