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A B S T R A C T

Similarity measures for binary data have been subject to a number of comparative studies. In contrast to these
studies, we provide a comparison of similarity measures with human judgment of similarity. For this purpose,
we utilize the phenomenon of typicality, whose definition is based on similarity. We observe how well the
similarity of objects – either computed by a similarity measure or provided by human judgment – enables the
prediction of typicality of these objects in various human categories. In doing so, we examine a large variety
of existing similarity measures, and utilize recently available extensive data involving binary data as well as
data on human judgment of similarity and typicality.
1. Problem description

Measuring similarity of binary data plays a crucial role in many
tasks and has been subject to extensive research. Since the first formulas
to measure similarity appeared more than a hundred years ago, a
multitude of similarity measures, as well as the dual dissimilarity
measures, have been proposed in various areas. Given the number
of existing similarity measures for binary data, exploration of the
proposed similarity measures has naturally become the subject of a
number of studies.

The existing works study various properties of the proposed simi-
larity measures, mutual relationships of the measures, and examine the
performance of particular similarity measures; see, e.g., [1–7] for some
influential as well as recent studies.1 The comparative studies usually
involve tens of similarity measures (see Section 2.1 for details) and the
comparison is typically based on evaluating these measures on data
from a particular domain of interest, such as biology or chemistry, and
also on randomly generated data.

The primary purpose of our paper is different, namely to compare
the large variety of the existing similarity measures using extensive
psychological data. Such exploration has not been done before and
constitutes the main novelty of our contribution. In particular, we
compare the available similarity measures on the one hand with a
human judgment of similarity on the other hand. We explore this
question indirectly via the important phenomenon of typicality, which
– according to a common psychological view – is based on the concept

∗ Corresponding author.
E-mail addresses: radim.belohlavek@acm.org (R. Belohlavek), mail@tomasmikula.cz (T. Mikula).

1 As works on similarity measures for binary data are rather numerous, we only include selected papers, directly related to our purpose, and refer to these
papers for further references.

of similarity [8]. For this purpose, we utilize our recent results on typi-
cality and its prediction [9]. In particular, we consider the capability of
pairwise similarity ratings – those computed by similarity measures and
those provided by human judgment – to predict typicality. In addition
to relating similarity measures with a human judgment of similarity,
our comparison also provides a view on the relationship between the
involved similarity measures themselves. Our study is possible due to
the now available high-quality psychological data regarding human
categories and related phenomena [10], which involves binary data and
data on human judgment of similarity and typicality.

In Section 2.1, we present preliminaries on similarity measures; a
list of formulas for all the similarity measures involved in our study
along with additional information is supplied in the appendix. The
phenomenon of typicality and the formula for computing typicality are
the subjects of Section 2.2. In Section 3, we describe the data we use
in the present study. Our experimental evaluation is the content of
Section 4. Section 5 concludes the paper with observations drawn from
the experiments.

2. Similarity and typicality

2.1. Similarity measures

For the purpose of our paper, we follow a general understanding
according to which a similarity measure on a set 𝑋 of objects is a binary
vailable online 17 January 2024
568-4946/© 2024 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.asoc.2024.111270
Received 4 August 2023; Received in revised form 5 January 2024; Accepted 13 Ja
nuary 2024

https://www.elsevier.com/locate/asoc
https://www.elsevier.com/locate/asoc
mailto:radim.belohlavek@acm.org
mailto:mail@tomasmikula.cz
https://doi.org/10.1016/j.asoc.2024.111270
https://doi.org/10.1016/j.asoc.2024.111270
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2024.111270&domain=pdf


Applied Soft Computing 153 (2024) 111270R. Belohlavek and T. Mikula

t
t
m
a

o
l
t
c
o

E
9
o

function

𝑠𝑖𝑚 ∶ 𝑋 ×𝑋 → R;

he value 𝑠𝑖𝑚(𝑥, 𝑦) is interpreted as the extent to which 𝑥 is similar
o 𝑦. This general approach subsumes a variety of particular similarity
easures proposed in the literature. That is, we do not impose possible

dditional constraints, such as 𝑠𝑖𝑚(𝑥, 𝑦) = 𝑠𝑖𝑚(𝑦, 𝑥), 𝑠𝑖𝑚(𝑥, 𝑦) ≤ 𝑠𝑖𝑚(𝑥, 𝑥),
or various dual forms of the triangle inequality, which are sometimes
considered.

When the similarity of binary data is considered, the set 𝑋 consists
of all possible objects described by 𝑛 binary attributes, and may hence
be conveniently identified with the set {0, 1}𝑛 of all 𝑛-dimensional
binary vectors. Thus, for instance,

𝑥 = ⟨1, 0, 0, 1, 1⟩

represents an object described by 5 binary attributes, i.e., 𝑥 ∈ {0, 1}5,
and one has 𝑥1 = 1, 𝑥2 = 0, 𝑥3 = 0, 𝑥4 = 1, and 𝑥5 = 1. That is, the object
has the first, the fourth, and the fifth attribute, but not the second, nor
the third.

The similarity measures considered in the literature can conve-
niently be defined in terms of the values 𝑎, 𝑏, 𝑐, and 𝑑, defined as
follows. Consider 𝑛 attributes and two binary vectors 𝑥, 𝑦 ∈ {0, 1}𝑛, and
let

𝑎 = #{𝑖 ∣ 𝑥𝑖 = 1 and 𝑦𝑖 = 1},

𝑏 = #{𝑖 ∣ 𝑥𝑖 = 1 and 𝑦𝑖 = 0},

𝑐 = #{𝑖 ∣ 𝑥𝑖 = 0 and 𝑦𝑖 = 1},

𝑑 = #{𝑖 ∣ 𝑥𝑖 = 0 and 𝑦𝑖 = 0}.

That is, 𝑎 is the number of common presences and 𝑑 is the number
of common absences of the attributes 𝑖 = 1,… , 𝑛. On the other hand,
𝑏 is the number of attributes present on 𝑥 but not on 𝑦, and 𝑐 is the
number of attributes absent on 𝑥 but present on 𝑦. While 𝑎 and 𝑑
indicate similarity of 𝑥 and 𝑦, 𝑏 and 𝑑 indicate dissimilarity. Clearly,
𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝑛.

For example, for the vectors

𝑥 = ⟨0, 1, 1, 0, 0, 1, 0, 1, 1, 0⟩,

𝑦 = ⟨1, 1, 1, 0, 0, 1, 0, 1, 0, 1⟩

in {0, 1}10, one has

𝑎 = 4 𝑏 = 1
𝑐 = 2 𝑑 = 3

.

Now, a similarity measure may be defined by a formula involving
the coefficients 𝑎, 𝑏, 𝑐, and 𝑑, corresponding to 𝑥, 𝑦 ∈ {0, 1}𝑛, such as

𝑠𝑖𝑚(𝑥, 𝑦) = 𝑎 + 𝑑
𝑎 + 𝑏 + 𝑐 + 𝑑

and 𝑠𝑖𝑚(𝑥, 𝑦) = 𝑎
𝑎 + 𝑏 + 𝑐

. (1)

The formulas in (1) actually represent two well-known similarity mea-
sures, the simple matching coefficient (SMC) and the Jaccard measure
(Jac), respectively.

Measures of similarity for binary data have a long history; see,
e.g., [1,2,4]. The first measures were proposed at the end of the 19th
century to facilitate the analysis of biological species, which were often
described in terms of binary attributes. Since then, numerous other
measures have been proposed in areas as diverse as biology, ecol-
ogy, geology, psychology, chemistry, medicine, information retrieval,
machine learning, and bioinformatics. A principal reason for the contin-
uing interest in these measures is the omnipresence of data describing
various kinds of items, such as biological species, chemical compounds,
performance tests, or documents, in terms of binary attributes, and the
need to analyze such data.

Even though no definite categorization or grouping of similarity
measures for binary data has been established in the literature, a few
classification criteria have been considered. The following two seem
2

best known. The first one attempts to classify the measures into statisti-
cally based and co-occurrence based. The statistically based, also called
association measures, are often interpretable as correlation coefficients
and have usually their values in the interval [−1, 1]. Their formulas may
seem less intuitive and often contain 𝑎𝑑 − 𝑏𝑐 in the numerator. The
co-occurrence-based measures are based on the frequencies 𝑎 and 𝑑 of
co-occurrence of the involved binary attributes, have their values in
[0, 1], and are usually defined by intuitive formulas such as (1), which
contain 𝑎 or 𝑎 + 𝑑 in the numerator. The second widely used criterion
consists in whether the measure takes into account, ignores, or takes
into account partially the number 𝑑 of common absences (negative
matches) of the attributes. For instance, while the above SMC measure
takes 𝑑 into account in that it increases similarity, the Jaccard measure
ignores 𝑑.

In our study, we employ 69 similarity measures, which we se-
lected from a large variety of similarity measures described in the
literature, particularly in [1,2,4–6]. The employed measures, along
with comments on the logic of our selection and further information
about these measures are described in the appendix of this paper. In
particular, a list of the employed measures is provided by Table 4,
which contains an abbreviation and a name for each measure as well as
a formula for computing the values of a given measure. The list is sorted
alphabetically by the abbreviations so that a reader may quickly find
details about the measures when assessing our experimental results.

2.2. Typicality

The phenomenon of typicality is well known from everyday life:
Intuitively, a sparrow is a typical bird, an ostrich is not. Typicality is
one of the most important phenomena accompanying human concepts
and plays a significant role in a variety of cognitive tasks including
categorization and classification. Since being typical is a matter of de-
gree, typicality manifests a graded structure of concepts. Both typicality
and the graded structure of concepts have been among the central
topics of research in the psychology of concepts since the 1970s. For
a comprehensive exposition of typicality and its role in the psychology
of concepts, we refer to [8].

According to a mainstream psychological view, which goes back to
the seminal work by Eleanor Rosch and her colleagues [11–13], the
notion of typicality of an object in a concept (category) is based on the
notion of similarity: An object is considered typical in a given concept if
the object is similar to the objects to which the concept applies. In [9],
we formalized this view of Rosch as follows2:

Definition 1. Given a similarity 𝑠𝑖𝑚 ∶ 𝑋 × 𝑋 → R, an object 𝑥 ∈ 𝑋,
and a nonempty set 𝐴 ⊆ 𝑋 representing a concept, a degree of typicality
of 𝑥 in 𝐴 is defined by

𝑡𝑦𝑝(𝑥,𝐴) =

∑

𝑥1∈𝐴 𝑠𝑖𝑚(𝑥, 𝑥1)

|𝐴|
. (2)

Formula (2) for typicality results as a straightforward formalization
f a verbal description of the psychological view available in the
iterature and represents the average similarity of the object 𝑥 to all
he objects in 𝐴. As demonstrated in [9], the degrees of typicality
omputed by this formula are highly correlated with human judgment
f typicality, i.e., with degrees of typicality provided by humans.

xample 1. Table 1 presents a part of the Zoo data [14], restricted to
exemplars of the category ‘‘bird’’ (sparrow, . . . , penguin) and some

f their binary attributes (feathers, . . . , legs 2). The column labeled

2 In fact, in [9] we used formula (2) to define typicality of 𝑥 in 𝐴, for 𝐴
being an extent of a so-called formal concept. The definition in the present
paper simply gets rid of the constraint and allows 𝐴 to be a general subset of
𝑋, i.e., allows 𝐴 to represent an arbitrary category.
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Table 1
Values of typicality of exemplars of the category ‘‘bird’’ from example 1.
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𝑡𝑦
𝑝(
J)

sparrow 1 1 1 0 0 1 1 1 0 0 1 0.809
crow 1 1 1 0 1 1 1 1 0 0 1 0.807
vulture 1 1 1 0 1 1 1 1 0 1 1 0.802
duck 1 1 1 1 0 1 1 1 0 0 1 0.784
swan 1 1 1 1 0 1 1 1 0 1 1 0.783
kiwi 1 1 0 0 1 1 1 1 0 0 1 0.763
ostrich 1 1 0 0 0 1 1 1 0 1 1 0.759
chicken 1 1 1 0 0 1 1 1 1 0 1 0.745
penguin 1 1 0 1 1 1 1 1 0 1 1 0.745

𝑡𝑦𝑝(J) provides the values of typicality of the exemplars, i.e., the values
𝑦𝑝(𝑥,𝐴) computed according to (2), based on the Jaccard similarity (cf.
ection 2.1). Note that in (2), 𝑥 denotes the exemplar whose typicality

is being computed, 𝐴 represents the 9-element set of exemplars of
‘‘bird,’’ and 𝑠𝑖𝑚(𝑥, 𝑥1) denotes the Jaccard similarity of exemplars 𝑥
and 𝑥1 calculated from the binary descriptions of the two exemplars
provided by the corresponding table rows.

The ordering of the exemplars in the table by the values of typicality
corresponds to intuition despite the limited number of attributes used
in our illustrative example; see [9] for a more comprehensive study of
typicality in the context of the Zoo data. Note also that the relatively
low dispersion of typicality values results from the limited number of
the exemplars and attributes involved in this illustrative example.

3. Data

The availability of high-quality data is essential for any kind of
experiment that aims to be psychologically relevant. For our purpose,
the Dutch data [10] is unique in this regard, as it provides perhaps
the most comprehensive data regarding common human categories
and their numerous characteristics, including similarity and typicality.
Moreover, the data is considerably larger than the previously available
psychological data of similar nature. In this section, we provide a
brief description of the data, particularly the parts we use, and our
comments regarding usability in experiments along with our technical
modifications in this regard.

The Dutch data has been gathered by psychologists at the University
of Leuven in a thorough, carefully designed study involving hundreds
of human respondents. It basically provides information regarding
common language concepts (categories), binary attributes (features)
relevant to these categories, objects (exemplars) in these categories, and
various psychologically relevant characteristics.

In particular, the data involves 16 linguistic categories. These in-
clude both the so-called natural kind and artifact categories, as these
two kinds are commonly believed to have distinct properties. Each cate-
gory is represented by a number of objects (exemplars), such as a robin
for the category ‘‘bird.’’ There are 10 natural kind categories: ‘‘fruit’’ (30
exemplars); ‘‘vegetables’’ (30); ‘‘professions’’ (30); ‘‘sports’’ (30); the
animal categories ‘‘amphibians’’(5),3 ‘‘birds’’ (30), ‘‘fish’’ (23), ‘‘insects’’
(26), ‘‘mammals’’ (30), and ‘‘reptiles’’ (22).4 In addition, there are 6

3 Since the category ‘‘amphibians’’ only contains 5 exemplars, and since
these exemplars are included in the category ‘‘reptiles,’’ we omit it in most
of our considerations below; see [10] for reasons to include the exemplars of
‘‘amphibians’’ in ‘‘reptiles.’’

4 The exemplar-by-feature applicability matrices, which we describe below
and use in our experiments, contain only 20 exemplars of the category
‘‘reptiles,’’ because the respondents who were to fill in these matrices turned
out to not to be familiar with two exemplars (komodo and iguanodon). We
3

hence exclude these two exemplars from our experiments. a
artifact categories: ‘‘clothing’’ (29), ‘‘kitchen utensils’’ (33), ‘‘musical
instruments’’ (27), ‘‘tools’’ (30), ‘‘vehicles’’ (30), and ‘‘weapons’’ (20).5

These categories comprise 249 exemplars for the natural kind and
166 exemplars for the artifact categories, which were obtained from
humans and are representative of the respective categories.6 Coverage
by these categories is considerable; for instance, the animal categories
cover a rather large part of the known animal domain. The objects
(exemplars) and attributes (features) were obtained by processes de-
scribed in [10]. In particular, the attributes were generated by 1003
respondents in two ways: First, respondents were asked to list relevant
attributes for a given category (these are called category attributes).
Second, they were asked to list relevant attributes for each object in-
volved in the data (these are called exemplar attributes). Furthermore,
unions of all exemplar features listed for all the objects in a given
category were considered, as well as the union of all exemplar features
of all the objects in the animal domain, and an analogous union of
exemplar features for the artifact domain.

An essential part of the data are the so-called exemplar-by-feature
applicability matrices. These are various matrices in which the rows
and columns correspond to some of the objects and attributes, respec-
tively, and the entries contain information about whether a particular
object has or does not have a particular attribute. Each of the matrices
was filled separately by four respondents. The data also contains the
corresponding aggregated matrices, in which the values, viz. 0, 1, 2,
3, and 4, indicate the number of respondents who agreed on that the
respective object has the respective attribute. To obtain binary matrices
(and thus data with binary attributes) from these aggregated matrices,
one naturally thresholds the matrix entries. We present our experiments
for a threshold equal to 2. Hence, our binary matrices contain 1 in the
entry corresponding to the object 𝑥 and the attribute 𝑦 if at least two
respondents agreed that 𝑥 has 𝑦.

In particular, we use the binary matrices described in Tables 2
and 3. For instance, the first row in Table 2 refers to two binary
matrices: The first one, a 30 × 28 matrix, describes which of the
30 exemplars of the category ‘‘bird’’ has which of the 28 category
attributes of this category (i.e., attributes listed as category attributes
for this category by respondents); the second one, a 30 × 225 matrix,
describes which of the 30 exemplars of the category ‘‘bird’’ has which
of the 225 exemplar attributes for this category (i.e., all attributes listed
as exemplar attributes for some exemplar of ‘‘bird’’). Similarly, the
129 × 225 binary matrix referred to by the first row in Table 3 describes
which of the 129 objects in the animal domain have which of the
corresponding 225 category attributes; the 129 objects are all the objects
of the categories ‘‘amphibian’’, ‘‘bird’’, ‘‘fish’’, ‘‘insect’’, ‘‘mammal’’, and
‘‘reptile’’, and the 225 category attributes are all attributes listed as
category attributes for these six categories. Likewise, the 129 × 764
matrix describes which of the objects in the animal domain have which
of the corresponding 764 exemplar attributes, i.e., all the attributes
listed as exemplar attributes for some of the 129 exemplars in the
animal domain.

Typicality ratings, which are present in the Dutch data, were ob-
tained from 112 respondents. For each of the 16 categories and each
object in the respective category, the data contains a typicality rating
on the scale 1 (very atypical) to 20 (very typical).

The pairwise similarity ratings of the Dutch data come partly from
the previous study [15], in which the ratings were obtained for ten
of the present categories from 42 participants. The ratings for the
other categories were obtained from 92 respondents in [10], who also

5 Here, we use plural in category names, as the authors do [10]; below, we
se singular, i.e., ‘‘bird’’ rather than ‘‘birds’’ to be consistent with our previous
ritings.
6 In addition to the 5 amphibians included in reptiles and two omitted ex-

mplars of reptiles (see above), note that three exemplars of artifact categories

re included in two distinct categories.



Applied Soft Computing 153 (2024) 111270R. Belohlavek and T. Mikula

d

f
c
t
f
o
f
c
m
T
w

4

4

C
o
i
f
a
g

[

t
b

r
d
o

t
t
o
t
t

s
d
𝜏
W

4

d
m
o
c
T

Table 2
Category-based binary matrices used in our experiments.

Category Objects Category
attributes

Exemplar
attributes

bird 30 28 225
clothing 29 38 258
fruit 30 32 233
fish 23 32 156
insect 26 37 214
kitchen utensil 33 39 328
mammal 30 34 288
musical instrument 27 39 218
profession 30 21 370
reptile 20 35 179
sport 30 33 382
tool 30 37 285
vegetable 30 30 291
vehicle 30 34 322
weapon 20 32 181

Table 3
Domain-based binary matrices used in our experiments.

Domain Objects Category
attributes

Exemplar
attributes

animal 129 225 764
artifact 166 301 1,295

provided additional ratings for the ten categories involved in [15]
to improve reliability. For every category – except for ‘‘amphibians,’’
whose five exemplars are included in ‘‘reptiles’’ – and each pair of
objects, the data contains a similarity rating on the scale 1 (totally
issimilar) and 20 (totally similar).

Since the original data contains some minor semantic and technical
aults, as well as inconveniences as regards a possible machine pro-
essing of the data, we modified the data as follows. For one, since
he original data contains some wrongly formatted comma-separated
iles, we transformed them into a valid format. In addition, the names
f some objects and attributes are spelled differently across multiple
iles in the original data; we therefore unified these names. We also
onverted all names to lowercase to unify them. No changes were
ade to the data itself. The result is easily machine-processable data.
he corrected version of Dutch data, along with a convenient Python
rapper, is publicly available on GitHub [16].

. Experiments

.1. Rationale

omparing similarities via the ability to predict typicality. The rationale of
ur experiments may be described as follows. Formula (2) for comput-
ng degrees of typicality involves degrees 𝑠𝑖𝑚(𝑥, 𝑦) of similarity. Hence,
or a given similarity function 𝑠𝑖𝑚, the function 𝑡𝑦𝑝 may be regarded as
function 𝑡𝑦𝑝(𝑠𝑖𝑚) parameterized by 𝑠𝑖𝑚, which assigns to each 𝑥 in a

iven universe 𝑋 of objects and a non-empty subset 𝐴 of 𝑋 the degree

𝑡𝑦𝑝(𝑠𝑖𝑚)](𝑥,𝐴) =

∑

𝑥1∈𝐴 𝑠𝑖𝑚(𝑥, 𝑥1)

|𝐴|

o which the object 𝑥 is typical for the concept (category) represented
y 𝐴.

As explained in Section 3, the Dutch data contains information
egarding the objects (exemplars) of a variety of categories, including
escriptions of these objects by binary attributes. The descriptions of
bjects by binary attributes enable one to compute the values 𝑠𝑖𝑚(𝑥, 𝑦)

of similarity measures 𝑠𝑖𝑚 for pairs of objects 𝑥 and 𝑦. Consequently,
one may compute, for any given category 𝐴, the degrees [𝑡𝑦𝑝(𝑠𝑖𝑚)](𝑥,𝐴)
of typicality determined by each particular similarity measure 𝑠𝑖𝑚. In
addition, since the Dutch data also contains information on human
4

judgment of similarity, i.e., contains similarity degrees HJ(𝑥, 𝑦) obtained
from humans for pairs of the involved objects 𝑥 and 𝑦, one may also
compute the degrees [𝑡𝑦𝑝(HJ)](𝑥,𝐴) of typicality determined by human
judgment of similarity HJ. From this perspective, different similarities
shall generally lead to different predictions of typicality.

Now, since the Dutch data also contains degrees of typicality as-
sessed by humans for the involved categories, one may explore, for a
given category 𝐴 and for each similarity measure 𝑠𝑖𝑚, a correlation of
the computed typicality degrees [𝑡𝑦𝑝(𝑠𝑖𝑚)](𝑥,𝐴) for the objects 𝑥 in 𝐴
on the one hand, and the degrees of typicality obtained for the category
𝐴 from humans on the other hand. The same kind of correlation may
be explored for the typicality degrees [𝑡𝑦𝑝(HJ)](𝑥,𝐴) computed using
human similarity in place of [𝑡𝑦𝑝(𝑠𝑖𝑚)](𝑥,𝐴). High correlation implies
that the particular similarity (represented by a similarity measure or by
human judgment) is capable of predicting well the human judgment of
typicality.

One may then explore various questions; most importantly:

• How do the various similarity measures compare in their ability
to predict typicality?

• How do the similarity measures compare to a human similarity
in the same regard, i.e., in their ability to predict typicality?

It is basically these questions that we examine using the experiments
presented below. Note that while various comparisons of selected simi-
larity measures are available in the literature (cf. Section 2.1), compar-
ing similarity measures with human judgment of similarity has never
been explored in the literature.

Assessment of correlation. The design of our experiments implies a need
to assess correlation in the following scenario. For a given category
𝐴 and a given similarity function 𝑠𝑖𝑚 (either a similarity measure or
a similarity obtained from human judgment), we need to assess the
correlation between a typicality rating of objects (exemplars) 𝑥 of the
given category, computed by the above formula for [𝑡𝑦𝑝(𝑠𝑖𝑚)](𝑥,𝐴), and
a typicality rating given by a human judgment. To assess correlation
of these two typicality ratings, we use the well-known Kendall tau
rank-order correlation coefficient.

Recall that the Kendall-tau coefficient measures agreement between
two linear orderings (rank orderings), <1 and <2, on a given set of
objects. Its basic version is defined by
# concordant pairs − # discordant pairs

# all pairs ;

here, a pair of objects 𝑥 and 𝑦 is concordant if 𝑥 <1 𝑦 and 𝑥 <2 𝑦, or
𝑥 >1 𝑦 and 𝑥 >2 𝑦, and is discordant if 𝑥 <1 𝑦 and 𝑥 >2 𝑦, or 𝑥 >1 𝑦 and
𝑥 <2 𝑦.

In our scenario, the first ordering of the objects, <1, is determined by
he computed typicality 𝑡𝑦𝑝(𝑠𝑖𝑚), while the second one, <2, is given by
he human rating of typicality, and the Kendall tau is applied to these
rderings. In this sense, Kendall tau measures the extent to which the
ypicality rating determined by the chosen similarity 𝑠𝑖𝑚 agrees with
he typicality rating given by human judgment.

Note also that we chose the 𝜏𝑏 variant of the Kendall coefficient
ince it properly accounts for ties, i.e., situations in which the same
egree of typicality is assigned to two or more objects. The coefficient
𝑏 ranges from 1 (same ordering) to −1 (inverse, i.e., opposite ordering).
e used the implementation of 𝜏𝑏 in a Python library [17].

.2. Results

Our first set of experiments involves the category-based matrices
escribed in Table 2. As described in Section 3, each of these 30
atrices corresponds to a single category and one of the two kinds

f attributes (category and exemplar). For each such matrix and each
onsidered similarity 𝑠𝑖𝑚 (i.e., each considered similarity measure of
able 4 and the human similarity obtained from the Dutch data), we
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computed the degrees [𝑡𝑦𝑝(𝑠𝑖𝑚)](𝑥,𝐴) of typicality for all objects 𝑥 of the
respective category (i.e., for all matrix rows).7 We then computed the
Kendal 𝜏𝑏 correlation coefficient of the computed degrees of typicality
and the human-assessed typicality degrees for the given category. The
results for all the natural kind categories and their category attributes
are displayed in Fig. 1. Fig. 2 shows analogous results for the exemplar
attributes. The results for all the artifact categories and their category
and exemplar attributes are shown in Figs. 3 and 4, respectively.

In this and the other graphs, we use the abbreviations introduced
in the appendix (Table 4) to denote the respective similarity measures.
Thus, for instance, 𝑡𝑦𝑝(Di2) denotes the typicality computed by means
of the Di2 (Dice 2) similarity measure. In the same spirit, 𝑡𝑦𝑝(HJ)
denotes the typicality computed by means of the human judgment of
similarity. The 𝑡𝑦𝑝(𝑠𝑖𝑚) on the horizontal axis are ordered by the mean
value of the correlation coefficients across the involved categories.

The second set of experiments involves the four domain-based
matrices of Table 3. We performed analogous computations as in the
first set of experiments. First, for each category in the animal domain,
we computed the degrees of typicality using all the category attributes
of the domain matrix for each object of the category. Then a Kendall 𝜏𝑏
coefficient of the computed typicality degrees and the human-assessed
degrees of typicality was computed for each particular category. The
results are displayed in Fig. 5. The results of the same computation
with all the exemplar attributes of the animal domain replacing the
category attributes are shown in Fig. 6. Analogous results for the
artifact domain and its categories are presented in Figs. 7 and 8. Notice
that the categories ‘‘fruit’’, ‘‘profession’’, ‘‘sport’’, and ‘‘vegetable’’ are
not included in the second set of experiments because these categories
are not part of the two domains.

To provide a summarized view of the results, we also include
Figs. 9, 10, and 11, which display the average correlation coefficients
over all the categories in the animal domain, the artifact domain,
and in both of these domains, respectively. In each graph, the mean
correlation coefficients are presented for the four sets of attributes:
the category-based category attributes, the category-based exemplar
attributes, the domain-based category attributes, and the domain-based
exemplar attributes; cf. Tables 2 and 3.

4.3. Discussion

Both the detailed graphs (Figs. 1–8) and the averaged summary
views (Figs. 9–11) reveal notable patterns as regards the ability to
predict human judgment of typicality by various similarity functions,
as well as regards a comparison of the explored similarity measures and
human judgments of similarity. Note first that according to a commonly
accepted interpretation, the values of 𝜏𝑏 of rank-order correlation may
be interpreted as follows: 𝜏𝑏 ≥ 0.3, 0.2 ≤ 𝜏𝑏 < 0.3, 0.1 ≤ 𝜏𝑏 <
0.2, and 0.0 ≤ 𝜏𝑏 < 0.1 indicate strong, moderate, weak, and very
weak correlation, respectively; the negative values of 𝜏𝑏 are interpreted
analogously.

Consider first the human similarity HJ. Overall, HJ enables rather
good predictions of typicality and is among the best similarities in
this regard. Not only ranks the human similarity as the sixth best as
regards average of correlations across all the categories and all the sets
of attributes (Fig. 11) with a rather strong 𝜏𝑏 = 0.42, but performs best
as regards prediction of typicality in the animal domain (Fig. 9).

The slightly worse performance of human similarity on the artifact
categories and also on the three natural categories outside the animal
domain may, in our view, be due to the fact that a judgment of
similarity of exemplars of these categories is somewhat problematic
(consider, e.g.: What is the similarity degree of sailing and sport fishing,

7 The similarity measures with undefined values are not included; see
emark 1 in the appendix.
5

r

of being an accountant and a postman, sled and bicycle?) and the
calculated similarity may hence yield better predictions of typicality.8

As regards the performance of all the involved similarities, the
averaged summary graph (Fig. 11) indicates that there is a group
of similarities with an overall strong correlation of human judgment
of typicality. Naturally, this group does not have a sharp boundary,
but among its core members are, except for the human similarity HJ
discussed above, the similarity measures Co1, RR, int, Di2, and CT3,
which all have higher average correlation compared to HJ across all
categories and across the artifact domain (Fig. 10). In addition, there
is a group of other highly correlated similarity measures, which include
Fai, FM, CT4, Fos, Ku2, McC, Sor, SS1, cos, Jac, Maa, and Gle.

Observe that some of the similarity measures display a high av-
erage correlation except for predictions in the category-based data
with category attributes. We contend that the latter drop in corre-
lation is mainly due to the fact that the category attributes of the
smaller, category-based matrices provide less information about the
exemplars—a significant phenomenon to which we turn below.

One can also identify a group of similarity measures with a low
average correlation and with values around 0, and varying considerably
in prediction of typicality over the domain-based and the artifact-based
data and the two respective kinds of attributes. These include Den,
Co2, Col, Di1, Twd, Fo1, and Gow. From this point of view, Gow
seems particularly peculiar as its correlation attains significant negative
values in several cases but not in others, which is apparent in all figures
except Figs. 1 and 3.

Worth noting is also the good prediction of typicality by Co1 and
Di2, and the poor performance of their symmetric counterparts, Co2
and Di1. In both cases, good prediction results when the value of 𝑐 (see
Section 2.1) increases the value of the denominator in the respective
similarity formula; hence, if the value 𝑠𝑖𝑚(𝑥, 𝑥1) involved in formula (2)
for typicality gets smaller when 𝑥 does not have an attribute possessed
by 𝑥1 but does not get smaller when 𝑥 has an attribute not possessed
by 𝑥1.

Note at this point that as may be observed in the graphs, certain
groups of similarity measures displayed a perfect correlation 𝜏𝑏 in that
the correlation coefficient with a human judgment of typicality is the
same for all data we explored. This pertains to the pairs BU1 and BU2,
Gle and Maa, Ku2 and McC, RG and Sco, and to the triplet Ham, ip,
and SMC. In all these cases the respective pairs of similarity measures
yield different values, i.e., are distinct functions. Their formulas are,
nevertheless, closely related.

Another conclusion which may be drawn from the experiments
pertains the quality of attributes. It is well known in the psychology

8 See Section 5 for more details. Human similarity HJ was assessed by the
espondents with no context, in that each respondent was asked to judge the
imilarity for a number of exemplar pairs selected across various categories.
e hypothesize that such assessment yields different, likely smaller and less

onsistent, degrees of similarity compared to an alternative scenario, in which
category name and a list of all exemplars of the category are given, and

he respondent is to assess similarity of all exemplar pairs in this category.
he name and the list of all objects of the category provide a context for the
ssessment. In the presence of this context, the assessed similarity degree of,
.g., sled and bicycle, is likely to be higher compared to when no context
s present (the context helps one realize, so to say, the similarity because
elevant attributes become more apparent in the presence of the context).
hen assessing typicality, respondents implicitly utilize their context-based

udgment of similarity (because then, the category name and the lists of
xemplars are available). Now, we hypothesize that the similarity computed
sing a reasonably good similarity measure 𝑠𝑖𝑚 is likely to be better correlated
ith the context-based human similarity rather than with the without-context

imilarity HJ. Hence, the correlation of the human typicality rating with
yp(𝑠𝑖𝑚) is likely to be higher than the correlation with typ(HJ). This hypothesis
ould hence explain the slightly worse correlation of the computed typicality
ased on human similarity compared to computed typicality based on a
easonably good similarity measure.



Applied Soft Computing 153 (2024) 111270R. Belohlavek and T. Mikula
Fig. 1. Correlations of computed typicality to human judgment of typicality across natural categories with category attributes (horizontal axis ordered by mean value).
Fig. 2. Correlations of computed typicality to human judgment of typicality across natural categories with exemplar attributes (horizontal axis ordered by mean value).
of concepts that the quality of attributes used to assess typicality and
similarity is essential [8]; see also [10] and the references therein. In
order to enable good predictions, the attributes need to represent well
the aspects people naturally take into account in their judgments on
typicality and similarity. This intuitive knowledge has, nevertheless,
not been confirmed by any extensive experimentation. Our results
provide confirmation of this knowledge. Namely, as is apparent from
all the graphs, the exemplar attributes generally result in a better pre-
diction of human judgment of typicality than the category attributes,
which are considerably less numerous and provide less distinctive
6

information about the exemplars due to how these kinds of attributes
have been collected (see Section 3). This is particularly apparent for the
category-based data with the category attributes because, for this data,
the numbers of attributes are considerably smaller than for the corre-
sponding data with the exemplar attributes and also much smaller than
the numbers of the exemplar and category attributes for the domain-
based data. For the domain-based data, the numbers of both kinds of
attributes are rather high, resulting in a comparable performance of
prediction in this case.
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Fig. 3. Correlations of computed typicality to human judgment of typicality across artifact categories with category attributes (horizontal axis ordered by mean value).
Fig. 4. Correlations of computed typicality to human judgment of typicality across artifact categories with exemplar attributes (horizontal axis ordered by mean value).
As regards a possible answer to the question in the title of our
paper, i.e., which similarity is best to predict typicality, it comes as
no surprise that there is no clear winner. This seems to result from
the fact that all the similarity measures have been carefully designed
to serve in certain real situations and have been proven through the
test of time. In addition, several measures have been proposed for
each particular purpose in the past. It is hence to be expected that
groups of similarities, albeit vaguely delineated, rather than a single
similarity, might be identified as the best predictors of typicality. In
this regard, the group consisting of Co1, RR, int, Di2, CT3, and HJ
may be identified as representing the best predictors. It is significant
7

that this group includes the human similarity HJ, which not only
confirms an intuitive expectation (human similarity is expected to come
out among the best similarities) but also justifies the adequacy of
formula (2) for computing degrees of typicality (the formula provides
a verified relationship between a human judgment of similarity and a
human judgment of typicality). As regards possible common properties
of Co1, RR, int, Di2, and CT3, except for Co1, they are examples of
the co-occurrence similarity measures defined by intuitive formulas.
Moreover, the number 𝑑 of negative matches (see Section 2.1) does
not increase the value of similarity for these measures. We do not have
an intuitive explanation for the good performance of the statistically
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Fig. 5. Correlations of computed typicality to human judgment of typicality across animal domain with category attributes (horizontal axis ordered by mean value).
Fig. 6. Correlations of computed typicality to human judgment of typicality across animal domain with exemplar attributes (horizontal axis ordered by mean value).
motivated Co1. The second group that still provides very good predic-
tions of typicality consists of Fai, FM, CT4, Fos, Ku2, McC, Sor, SS1, cos,
Jac, Maa, and Gle. A majority of these measures are also co-occurrence
based and for all of them, except for Fai, the negative matches (𝑑) do
not increase the value of similarity. On the other hand, similarities Den,
Gow, Co2, Col, Di1, Twd, and Fo1 lead to poor predictions of typicality.
Except for Di1, these are statistically motivated measures and for most
of them, the negative matches (𝑑) do increase the similarity value.

The graphs also reveal a few interesting particular observations. For
instance, Figs. 3 and 4 display that for the category ‘‘weapon,’’ the
8

exemplar attributes result in the best predictions of typicality across
all the artifact categories (with correlation values around 0.7), while
the category attributes for ‘‘weapon’’ result in the worst prediction, and
this holds true for most of the similarity measures. This is likely to be
attributed to the small number of category attributes for this category,
which turn out poorly informative for the prediction of typicality with
most of the measures. We refrain from a detailed exposition of such
particular observations, however interesting they may be and leave
them for possible future examination due to lack of space.
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Fig. 7. Correlations of computed typicality to human judgment of typicality across artifact domain with category attributes (horizontal axis ordered by mean value).
Fig. 8. Correlations of computed typicality to human judgment of typicality across artifact domain with exemplar attributes (horizontal axis ordered by mean value).
As regards possible limitations of the conclusions drawn from our
experiments, they are implied, for the most part in our view, by the
nature of the test data we use. For one, even though the Dutch data
we utilized is rather extensive and involves several binary matrices,
which we used, the validity of our conclusions would be improved
if supported on yet another data, i.e., data obtained within an inde-
pendent psychological study. Lack of such data presents a limitation
not only to our study but for other possible explorations of a similar
kind. Moreover, even though reliability was observed when gathering
the Dutch data, both similarity and typicality may still be regarded
as considerably subjective phenomena, and hence, a human judgment
9

of both similarity and typicality may suffer from additional forms of
possible unreliability compared to when data is obtained by an ordinary
physical measurement. The latter problem, however, represents an
unavoidable aspect of experimentation with psychological data.

5. Conclusions

Our experiments comparing 62 similarity measures for binary data
with human judgments of similarity via their ability to predict human
assessment of typicality reveal several patterns and observations. Most
importantly, human similarity results in overall very good predictions
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Fig. 9. Mean correlations of computed typicality to human judgment of typicality across categories of the animal domain.
Fig. 10. Mean correlations of computed typicality to human judgment of typicality across categories of the artifact domain.
of typicality. For categories of the animal domain, it provides the best
predictions. In this perspective, human similarity has a distinct place
among the examined similarities as regards cognitive abilities.

On the other hand, human similarity ranks as the sixth best among
all the explored similarities across all typicality predictions involved in
our experiments. The experiments reveal a group of similarities, which
includes human similarity, whose predictions of similarity are indeed
strongly correlated with human assessment of typicality, as well as
further observations worth further exploration.

As regards future research, we propose the following topics:
10
• The present experiments enable to compare similarities as regards
their performance in a certain cognitive task (viz. prediction of
typicality). A different experiment, however, should also be per-
formed in which the existing similarity measures are compared as
regards their ability to predict human judgment of similarity. This
may reveal further, possibly different patterns and observations.
The Dutch data, used in our experiment, allow for such kind of
experiment.

• It became apparent that the quality of attributes which describe
the exemplars plays a significant role in prediction of typicality
of these exemplars. Since the quality of attributes is generally
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Fig. 11. Mean correlations of computed typicality to human judgment of typicality across all data.
regarded as important in a variety of cognitive tasks in the
psychological literature, more focused studies shall be conducted
in this direction. This includes possible quantitative measure of
quality of a given set of attributes.

• In view of note 4.3, it seems to be of interest to compare the
human assessment of similarity in the presence of context with
the assessment with no context in the sense of note 4.3, as
well as to perform a comparison with similarity degrees com-
puted using similarity measures when binary attributes describing
the exemplars are available. Such experiments may improve our
understanding of the role of context for human assessment of
similarity.

• It is apparent that for some categories (such as ‘‘mammal’’ in
Fig. 2), the observed similarity measures differ in their capability
to predict typicality to a larger extent compared to other cate-
gories (such as ‘‘fish’’ in Fig. 2). It seems of interest to explore in
greater detail whether this phenomenon is due to the particular
dataset used in our experiments or rather due to some general
factor of psychological relevance.
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Appendix. Similarity measures

The appendix presents 69 similarity measures for binary data we
employ in the experiments along with additional information. In the
formulas defining the similarity measures we denote for two binary
vectors 𝑥, 𝑦 ∈ {0, 1}𝑛 by 𝑎, 𝑏, 𝑐, and 𝑑 the numbers of attributes defined
in Section 2.1. Hence, 𝑎, 𝑏, 𝑐, and 𝑑 denote the number of attributes
shared by 𝑥 and 𝑦, possessed by 𝑥 but not by 𝑦, possessed by 𝑦 but not
by 𝑥, and possessed neither by 𝑥 nor by 𝑦, respectively. Thus,

𝑛 = 𝑎 + 𝑏 + 𝑐 + 𝑑.

The measures are presented in Table 4. For each measure we include
its abbreviation, its name (along with alternative names), a formula
defining the measure, and a list of significant comparative papers in
which this measure appears. The measures are ordered lexicographi-
cally by their abbreviations for ease of lookup. In our table, we refer to
the following comparative papers, to which refer by the numbers 1–5
in the appendix:

1. Brusco, Cradit, and Steinley [1], which contains 71 similarity
measures;

2. Choi, Cha, and Tappert, 2010 [2], which includes 60 similarity
(and 16 dissimilarity) measures;

3. Hubálek, 1982 [4], which involves 20 similarity measures (in
fact, it lists 43 measures from which 20 are selected after re-
moving certain measures due to their equivalence with other
involved measures or due to lack of required properties);

4. Todeschini, Consonni, Xiang, Holliday, Buscema, and Willett,
2012 [5], which employs 44 similarity measures (it includes 51
similarity measures, of which 7 were eliminated due to their
equivalence with other measures);

5. Wijaya, Afendi, Batubara, Darusman, Altaf-Ul-Amin, and Kanaya,
2016 [6], which includes 62 similarity (and 17 dissimilarity)
measures.

Remark 1. (a) Some similarity measures presented in Table 4 are not
defined for certain values of 𝑎, 𝑏, 𝑐, and 𝑑, which naturally occur in
data. The measures that suffer from this defect on our data are omitted

in the graphs presenting results of our experiments in Section 4. In
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Table 4
Similarity measures.

Symbol Name Formula Source

AC Austin-Colwell 2
𝜋
arcsin

√

𝑎+𝑑
𝑛

1, 3, 4

And Anderberg 𝜏1−𝜏2
2𝑛

with 𝜏1 = max(𝑎, 𝑏) + max(𝑐, 𝑑) + max(𝑎, 𝑐) + max(𝑏, 𝑑)
𝜏2 = max(𝑎 + 𝑐, 𝑏 + 𝑑) + max(𝑎 + 𝑏, 𝑐 + 𝑑)

1, 2, 5

BB Braun-Blanquet 𝑎
max(𝑎+𝑏,𝑎+𝑐)

1, 2, 3, 4, 5

BU1 Baroni-Urbani-Buser 1
√

𝑎𝑑+𝑎
√

𝑎𝑑+𝑎+𝑏+𝑐
1, 2, 3, 4, 5

BU2 Baroni-Urbani-Buser 2
√

𝑎𝑑+𝑎−𝑏−𝑐
√

𝑎𝑑+𝑎+𝑏+𝑐
1, 2, 3, 4, 5

Coh Cohen 2(𝑎𝑑−𝑏𝑐)
(𝑎+𝑏)(𝑏+𝑑)+(𝑎+𝑐)(𝑐+𝑑)

1, 4

Col Cole

𝑎𝑑−𝑏𝑐
(𝑎+𝑏)(𝑏+𝑑)

if 𝑎𝑑 ≥ 𝑏𝑐
𝑎𝑑−𝑏𝑐

(𝑎+𝑏)(𝑎+𝑐)
if 𝑎𝑑 < 𝑏𝑐 and 𝑑 ≥ 𝑎

𝑎𝑑−𝑏𝑐
(𝑏+𝑑)(𝑐+𝑑)

otherwise

2, 3, 5

Co1 Cole (Cole 1) 𝑎𝑑−𝑏𝑐
(𝑎+𝑐)(𝑐+𝑑)

1, 4

Co2 Cole (Cole 2) 𝑎𝑑−𝑏𝑐
(𝑎+𝑏)(𝑏+𝑑)

1, 4

cos cosine (Driver-Kroeber, Ochiai) 𝑎
√

(𝑎+𝑏)(𝑎+𝑐)
1, 2, 4, 5

CT1 Consonni-Todeschini 1 ln(1+𝑎+𝑑)
ln(1+𝑛)

1, 4

CT2 Consonni-Todeschini 2 ln(1+𝑛)−ln(1+𝑏+𝑐)
ln(1+𝑛)

1, 4

CT3 Consonni-Todeschini 3 ln(1+𝑎)
ln(1+𝑛)

1, 4, 5

CT4 Consonni-Todeschini 4 ln(1+𝑎)
ln(1+𝑎+𝑏+𝑐)

1, 4, 5

CT5 Consonni-Todeschini 5 ln(1+𝑎𝑑)−ln(1+𝑏𝑐)
ln(1+𝑛2 ∕4)

1, 4, 5

Den Dennis 𝑎𝑑−𝑏𝑐
√

𝑛(𝑎+𝑏)(𝑎+𝑐)
1, 2, 4, 5

dis dispersion 𝑎𝑑−𝑏𝑐
𝑛2

1, 2, 4, 5

Di1 Dice 1 𝑎
𝑎+𝑏

1, 4

Di2 Dice 2 𝑎
𝑎+𝑐

1, 4

Eyr Eyraud 𝑛2 (𝑛𝑎−(𝑎+𝑏)(𝑎+𝑐))
(𝑎+𝑏)(𝑎+𝑐)(𝑏+𝑑)(𝑐+𝑑)

1, 2, 5

Fai Faith 𝑎+0.5𝑑
𝑛

1, 2, 4, 5

FM Fager-McGowan 𝑎
√

(𝑎+𝑏)(𝑎+𝑐)
− 1

2
√

max(𝑎+𝑏,𝑎+𝑐)
1, 2, 3, 5

Fos Fossum 𝑛(𝑎− 1
2
)2

(𝑎+𝑏)(𝑎+𝑐)
1, 2, 4, 5

Fo1 Forbes 1 𝑛𝑎
(𝑎+𝑏)(𝑎+𝑐)

1, 2, 3, 4, 5

Fo2 Forbes 2 𝑛𝑎−(𝑎+𝑏)(𝑎+𝑐)
𝑛min(𝑎+𝑏,𝑎+𝑐)−(𝑎+𝑏)(𝑎+𝑐)

1, 2, 3, 5

Gle Gleason (Dice, Sørensen,
Czekanowski

2𝑎
2𝑎+𝑏+𝑐

1, 2, 3, 4, 5

GK1 Goodman-Kruskal 1 𝜏1−𝜏2
2𝑛−𝜏2

with
𝜏1 = max(𝑎, 𝑏) + max(𝑐, 𝑑) + max(𝑎, 𝑐) + max(𝑏, 𝑑)
𝜏2 = max(𝑎 + 𝑐, 𝑏 + 𝑑) + max(𝑎 + 𝑏, 𝑐 + 𝑑)

1, 2, 5

GK2 Goodman-Kruskal 2 2min(𝑎,𝑑)−𝑏−𝑐
2min(𝑎,𝑑)+𝑏+𝑐

1, 4

Gow Gower 𝑎+𝑑
√

(𝑎+𝑏)(𝑎+𝑐)(𝑏+𝑑)(𝑐+𝑑)
1, 2, 5

GW Gilbert-Wells ln 𝑛3

2𝜋(𝑎+𝑏)(𝑐+𝑑)(𝑎+𝑐)(𝑏+𝑑)
+ 2 ln 𝑛!𝑎!𝑏!𝑐!𝑑!

(𝑎+𝑏)!(𝑐+𝑑)!(𝑎+𝑐)!(𝑏+𝑑)!
1, 2, 3, 5

Ham Hamman 𝑎+𝑑−𝑏−𝑐
𝑛

1, 2, 3, 4, 5
HD Hawkins-Dotson 1

2

(

𝑎
𝑎+𝑏+𝑐

+ 𝑑
𝑑+𝑏+𝑐

)

1, 4

HL Harris-Lahey 𝑎(2𝑑+𝑏+𝑐)
2(𝑎+𝑏+𝑐)

+ 𝑑(2𝑎+𝑏+𝑐)
2(𝑏+𝑐+𝑑)

1, 4

int intersection 𝑎 2, 5

ip inner product 𝑎 + 𝑑 2, 5

Jac Jaccard (Jaccard-Tanimoto) 𝑎
𝑎+𝑏+𝑐

1, 2, 3, 4, 5

Ku1 Kulczynski 1 𝑎
𝑏+𝑐

1, 2, 3, 5

Ku2 Kulczynski 2 (Driver-Kroeber) 1
2
( 𝑎
𝑎+𝑏

+ 𝑎
𝑎+𝑐

) 1, 2, 3, 4, 5

Maa van der Maarel 2𝑎−𝑏−𝑐
2𝑎+𝑏+𝑐

1, 4

McC McConnaughey 𝑎2−𝑏𝑐
(𝑎+𝑏)(𝑎+𝑐)

1, 2, 3, 4, 5

Mic Michael 4(𝑎𝑑−𝑏𝑐)
(𝑎+𝑑)2+(𝑏+𝑐)2

1, 2, 3, 4, 5

Mou Mountford 2𝑎
𝑎𝑏+𝑎𝑐+2𝑏𝑐

1, 2, 3, 4, 5

MP Maxwell-Pilliner 2(𝑎𝑑−𝑏𝑐)
(𝑎+𝑏)(𝑐+𝑑)+(𝑎+𝑐)(𝑏+𝑑)

1, 4

Pe1 Pearson 1 (𝜒2 statistical
significance)

𝑛(𝑎𝑑−𝑏𝑐)2

(𝑎+𝑏)(𝑎+𝑐)(𝑏+𝑑)(𝑐+𝑑)
1, 2, 3, 5

Pe2 Pearson 2
√

𝜒2

𝑛+𝜒2 with 𝜒2 equal to Pe1 1, 2, 3, 5

Pe3 Pearson 3
√

𝜌
𝑛+𝜌

with 𝜌 equal to PH1 2, 5

PH1 Pearson-Heron 1 (Phi) 𝑎𝑑−𝑏𝑐
√

(𝑎+𝑏)(𝑎+𝑐)(𝑐+𝑑)(𝑏+𝑑)
1, 2, 3, 4, 5

PH2 Pearson-Heron 2 cos
(

𝜋
√

𝑏𝑐
√

𝑎𝑑+
√

𝑏𝑐

)

2, 3, 5

Pr1 Peirce 1 𝑎𝑑−𝑏𝑐
(𝑎+𝑏)(𝑐+𝑑)

1, 4

Pr2 Peirce 2 𝑎𝑑−𝑏𝑐
(𝑎+𝑐)(𝑏+𝑑)

1, 3, 4

Pr3 Peirce 3 𝑎𝑑+𝑏𝑐
𝑎𝑏+2𝑏𝑐+𝑐𝑑

1, 2, 3, 5

RG Rogot-Goldberg 𝑎
2𝑎+𝑏+𝑐

+ 𝑑
2𝑑+𝑏+𝑐

1, 4

RR Russel-Rao 𝑎
𝑛

1, 2, 3, 4, 5

RT Rogers-Tanimoto 𝑎+𝑑
𝑎+2(𝑏+𝑐)+𝑑

1, 2, 3, 4, 5

Sco Scott 4𝑎𝑑−(𝑏+𝑐)2

(2𝑎+𝑏+𝑐)(2𝑑+𝑏+𝑐)
1, 4

Sim Simpson 𝑎
min(𝑎+𝑏,𝑎+𝑐)

1, 2, 3, 4, 5

SMC simple matching coefficient
(Sokal-Michener)

𝑎+𝑑
𝑛

1, 2, 3, 4, 5

Sor Sorgenfrei 𝑎2

(𝑎+𝑏)(𝑎+𝑐)
1, 2, 3, 4, 5

SS1 Sokal-Sneath 1 𝑎
𝑎+2𝑏+2𝑐

1, 2, 3, 4, 5

SS2 Sokal-Sneath 2 2𝑎+2𝑑
2𝑎+𝑏+𝑐+2𝑑

1, 2, 3, 4, 5

SS3 Sokal-Sneath 3 1
4
( 𝑎
𝑎+𝑏

+ 𝑎
𝑎+𝑐

+ 𝑑
𝑏+𝑑

+ 𝑑
𝑐+𝑑

) 1, 2, 3, 4, 5

SS4 Sokal-Sneath 4, Ochiai 2 𝑎𝑑
√

(𝑎+𝑏)(𝑎+𝑐)(𝑏+𝑑)(𝑐+𝑑)
1, 2, 3, 4, 5

SS5 Sokal-Sneath 5 𝑎+𝑑
𝑏+𝑐

1, 2, 3, 5

Sti Stiles log10
𝑛(|𝑎𝑛−𝑏𝑐|− 1

2
𝑛)2

𝑏𝑐(𝑛−𝑏)(𝑛−𝑐)
1, 2, 5

Tar Tarantula 𝑎(𝑐+𝑑)
𝑐(𝑎+𝑏)

=
𝑎

𝑎+𝑏
𝑐

𝑐+𝑑
1, 2, 5

Twd Tarwid 𝑛𝑎−(𝑎+𝑏)(𝑎+𝑐)
𝑛𝑎+(𝑎+𝑏)(𝑎+𝑐)

1, 2, 3, 5

YuQ Yule (Yule Q) 𝑎𝑑−𝑏𝑐
𝑎𝑑+𝑏𝑐

1, 2, 3, 4, 5

YuW Yule (Yule W)
√

𝑎𝑑−
√

𝑏𝑐
√

𝑎𝑑+
√

𝑏𝑐
1, 2, 3, 4, 5

3𝑎
3WJ 3W-Jaccard
3𝑎+𝑏+𝑐

1, 2, 4, 5
12
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particular, there are 7 such measures: Ku1, Mou, Pe3, Pr3, SS5, Sti, Tar.
For instance, the Mountfond measure given by 2𝑎

𝑎𝑏+𝑎𝑐+2𝑏𝑐 is not defined
f 𝑎 = 𝑏 = 0 or 𝑎 = 𝑐 = 0.

(b) Some measures are not defined even for two objects which share
he same attributes (i.e., for which 𝑏 = 𝑐 = 0), which is counterintuitive.

One could redefine each such measure so that for 𝑏 = 𝑐 = 0 it
yields its maximal value. We nevertheless refrained from this possible
modification to obey the definitions presented in the literature.

Remark 2. We found a number of mistakes in the literature on
similarity measures for binary data. In the following list, we include
the significant ones pertaining to the measures we employ.

1. AC: 3 lists a slightly different formula for AC, namely 1
50𝜋

√

𝑎+𝑑
𝑛 ,

i.e., a formula yielding a value 100× smaller than our formula.
2. Col: 2, 3, 5 list a different formula, namely

√

2(𝑎𝑑−𝑏𝑐)
√

(𝑎𝑑−𝑏𝑐)2−(𝑎+𝑏)(𝑎+𝑐)(𝑏+𝑑)(𝑐+𝑑)
. This formula also appears in the orig-

inal paper [18, p. 416] as a so-called mean square contingency,
but is not meant as the similarity measure which the authors
present in their paper. The Abydos library [19] lists our formula
for Col.

3. Eyr: 3 lists a different formula, namely 𝑎−(𝑎+𝑏)(𝑎+𝑐)
(𝑎+𝑏)(𝑎+𝑐)(𝑏+𝑑)(𝑐+𝑑) .

4. FM: 1, 2, 3, and 5 list a different formula, 𝑎
√

(𝑎+𝑏)(𝑎+𝑐)
−max(𝑎+𝑏,𝑎+𝑐)

2 ,
which is apparently wrong. Namely, the original paper [20]
contains the formula we use as FM, and notes that this formula
results by a modification of a formula used in [21].

5. Fos: 1 lists a different formula,
𝑛(𝑎− 1

2 )
2

√

(𝑎+𝑏)(𝑎+𝑐)
, which is an apparent

misprint.
6. GW: 1, 2, 3, and 5 list a different formula, namely log 𝑎− log 𝑛−

log( 𝑎+𝑏𝑛 ) − log( 𝑎+𝑐𝑛 ); 1 and 3 refer to [22], 2 does not contain a
reference for this measure, and refers to 1 and 3. The original
paper [22] includes our formula, as does [19].
Note also that 1, 2, 3, 4, and 5 list the so-called Johnson measure
with a formula 𝑎

𝑎+𝑏 + 𝑎
𝑎+𝑐 . Clearly, this formula yields the value

of 2 ⋅ Ku2, hence we do not include the Johnson measure [23].
7. SS3: 2 contains a misprint in the formula for SS3.
8. Sti: 1, 2, and 5 list a different formula, namely

log 𝑛(|𝑎𝑑−𝑏𝑐|−𝑛∕2)2

(𝑎+𝑏)(𝑎+𝑐)(𝑏+𝑑)(𝑐+𝑑) . Our formula comes from the original paper
[24] and is also used in the Abydos library [19].
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