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a b s t r a c t 

Boolean matrix factorization has become an important direction in data analysis. In this 

paper, we examine the question of how to assess the quality of Boolean matrix factoriza- 

tion algorithms. We critically examine the current approaches, and argue that little atten- 

tion has been paid to this problem so far and that a systematic approach to it is missing. 

We regard quality assessment of factorization algorithms as a multifaceted problem, iden- 

tify major views with respect to which quality needs to be assessed, and present various 

observations on the available algorithms in this regard. Due to its primary importance, we 

concentrate on the quality of collections of factors computed from data, present a method 

to assess this quality, and evaluate this method by experiments. 

© 2018 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

1.1. Problem setting 

During the last decade or so, Boolean matrix factorization (BMF, also Boolean matrix decomposition) became a thoroughly

explored direction in data analysis. Most of the existing research contributions focused on development of new approaches

and algorithms. Performance of the developed algorithms has been observed, but its evaluation has remained on intuitive

grounds or has been conducted in a simple way using the matrix distance function (we review the current approaches

below). No systematic treatment of quality assessment of BMF algorithms has been pursued so far and this important topic

thus remains underdeveloped. The primary aim of the present paper is to examine quality assessment of BMF algorithms in

detail. 

Throughout this paper we use the following notation. The set of all n ×m Boolean matrices shall be denoted by

{0, 1} n ×m and the particular matrices by I, J , etc. These matrices are primarily interpreted as describing a relationship be-

tween n objects and m attributes. In particular, the entry I ij corresponding to i th row and j th column indicates whether the

object i has (in which case I i j = 1 ) or does not have ( I i j = 0 ) the attribute j . The i th row and j th column of I are denoted by

I i _ and I _ j , respectively. 

The basic problem in BMF, several variants of which are considered in the literature (see below), consists in finding for

a given Boolean matrix I ∈ {0, 1} n ×m matrices A ∈ {0, 1} n ×k and B ∈ {0, 1} k ×m for which k is small and 

I (approximately) equals A ◦ B. (1)
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In such a decomposition, k represents the number of factors (i.e. discovered hidden variables, hence the term “factorization”)

and ◦ represents the Boolean matrix product, which is defined by the formula 

(A ◦ B ) i j = 

k 
max 

l=1 
min (A il , B l j ) . 

The thus introduced factor model provides us with a natural interpretation. A decomposition of a Boolean matrix I into

A ◦B corresponds to discovery of k factors which explain, exactly or approximately, the data represented by I . In particular,

the model given by (1) is described as follows: the matrices A (the object-factor matrix) and B (the factor-attribute matrix)

explain the object-attribute matrix I as follows: the object i has the attribute j iff among the factors there is a factor l such

that l applies to i and j is one of the particular manifestations of l . 

The approximate equality ≈ in (1) is measured using the well-known matrix norm ( L 1 -norm) || · || defined by 

|| C|| = 

∑ m,n 
i, j=1 | C i j | , 

and the corresponding metric E , which is given for Boolean matrices C, D ∈ {0, 1} n ×m by 

E(C, D ) = || C − D || = 

∑ m,n 
i, j=1 | C i j − D i j | . (2)

1.2. Illustrative example 

Consider the following 5 × 5 Boolean matrix I : ⎛ 

⎜ ⎜ ⎝ 

0 1 1 0 0 

1 1 1 0 0 

0 1 1 1 0 

0 1 1 1 1 

0 0 0 1 1 

⎞ 

⎟ ⎟ ⎠ 

One may verify that I may be (exactly) factorized by the 5 × 4 and 4 × 5 matrices A and B , i.e. I = A ◦ B, as follows: ⎛ 

⎜ ⎜ ⎝ 

0 1 1 0 0 

1 1 1 0 0 

0 1 1 1 0 

0 1 1 1 1 

0 0 0 1 1 

⎞ 

⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎝ 

1 0 0 0 

1 0 1 0 

1 0 0 1 

1 1 0 1 

0 1 0 0 

⎞ 

⎟ ⎟ ⎠ 

◦

⎛ 

⎜ ⎝ 

0 1 1 0 0 

0 0 0 1 1 

1 1 1 0 0 

0 1 1 1 0 

⎞ 

⎟ ⎠ 

Since the inner dimension in the matrix product is 4, the decomposition involves 4 factors. These factors correspond to

4 rectangles in that rectangle l ∈ {1, 2, 3, 4} is represented by the product A _ l ◦ B l _ of the l th column of A and the l th row of

B . The 4 rectangles involved in our factorization are: 

and I equals the ∨ -superposition (i.e. max-superposition) of these rectangles, i.e. I = A _ 1 ◦ B 1 _ ∨ A _ 2 ◦ B 2 _ ∨ A _ 3 ◦ B 3 _ ∨ A _ 4 ◦
B 4 _ . 

If errors are acceptable, one may ask whether there exists an approximate factorization I ≈ A ◦B for which the error

E ( I, A ◦ B ) is not too large. The following is such an approximate factorization involving two factors: ⎛ 

⎜ ⎜ ⎝ 

0 1 1 0 0 

1 1 1 0 0 

0 1 1 1 0 

0 1 1 1 1 

0 0 0 1 1 

⎞ 

⎟ ⎟ ⎠ 

≈

⎛ 

⎜ ⎜ ⎝ 

1 0 

1 0 

1 1 

1 1 

0 1 

⎞ 

⎟ ⎟ ⎠ 

◦
(

0 1 1 0 0 

0 0 0 1 1 

)
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Again, the two factors, l ∈ {1, 2}, correspond to the product of the l th column of A and the l th row of B : 

The matrix I may be regarded as an approximate ∨ -superposition of these rectangles, i.e. 

It is now easily seen that E(I, A ◦ B ) = 2 : The factorization commits overcovering ( I 35 = 0 but (A ◦ B ) 35 = 1 ) as well as under-

covering ( I 21 = 1 but (A ◦ B ) 21 = 0 ). 

1.3. Relevant work 

Since matrix decomposition in general represents a large subject, we directly restrict to work on Boolean matrix factor-

ization. Motivations for exploring Boolean matrix decomposition are diverse and come from various fields. In data analysis,

the interest comes from the ease of interpretation of the obtained factorization and the superiority of Boolean decomposi-

tion methods over methods designed for real-valued data, whose results for Boolean data are difficult to interpret [27] . Let

us also remark that various aspects regarding Boolean matrices and their decompositon appeared in the literature on graph

theory, theory of binary relations, and formal concept analysis; see for instance [5,9,12,25] . Note also that closely related

to BMF is the problem of biclustering which is thoroughly studied in the field of bioinformatics, see e.g. [24] , and that an

exploration of the relationships of BMF and biclustering is worth further exploration. 

The first work on the use of BMF in data analysis is provided by Nau [21] and Nau et al. [22] , in which the authors have

already been aware of the provable computational difficulty, namely NP-hardness, of the decomposition problem due to the

NP-hardness of the set basis problem [26] . An early algorithm, not very well known at present though, is 8M which was

developed as part of the statistical software package BMDP in the late 1970s. The interest in BMF in current data mining

research is mainly due to the work of Miettinen et al. In particular, the discrete basis problem explained below, complex-

ity results, and the now classic Asso algorithm, which we discuss later, are due to [18] . The Asso algorithm and various

problems regarding BMF are further discussed in several other papers co-authored by Miettinen, e.g. [19] and the references

therein. In [10] , the authors examine “tiling” of Boolean data and various related problems, their complexity, and algorithms.

Another significant work, [2] , showed that formal concepts (which are fixpoints of the Galois connections associated to the

input matrix) are natural and in fact optimal factors of Boolean matrices, described transformations between attribute and

factor spaces, and proposed the GreConD algorithm discussed below. A deeper insight into approximate and exact BMF and

a new algorithm, GreEss , which we use, is presented in [4] . The other recent BMF algorithms we use in our evaluation

include Hyper [29] and PaNDa [14] . Let us also mention that other aspects regarding Boolean matrix factorization have been

discussed in numerous other papers, including [8,13,16,17,19,20,23,28] . 

The above literature contains numerous experimental evaluations of the existing algorithms and also provides numerous

examples of testing datasets, both real and synthetic. 

1.4. Structure of our paper 

In Section 2 , we present our view of quality assessment as a complex problem involving a variety of aspects, and pro-

vide basic information on computational aspects, namely computational complexity and approximability. Our main empha-

sis is on quality assessment of individual factors and of the computed factorizations and these are examined in Section 3 .

Section 3.1 explores what we call a knowledge-discovery view of quality assessment: We discuss interpretability of individ-

ual factors and critically examine usage of the minimum description length principle in BMF. In Section 3.2 , we discuss the

reduction-of-dimensionality view, i.e. the possible applications of BMF in embedding problems involving a certain Boolean

space into a Boolean space with a lower dimension. Section 3.3 examines the explanatory view, i.e. the ability of Boolean

factorizations to explain the factorized Boolean data. Two basic variants of this view are employed, which are inspired by

two basic factorization problems examined in the literature, and a quality metric is proposed which reflects both these

variants. The explanatory view and, in particular, the proposed quality metric is experimentally evaluated in Section 4 .

Section 5 concludes the paper and presents topics for future research. 
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2. Quality assessment as a multifaceted problem 

The assessment of quality of algorithms for Boolean matrix factorization is a complex issue because it involves a variety

of aspects. In addition to the usual ones involved in assessments of algorithms in general, there are aspects connected to

the particular nature of the factorization problem. In our view, the essential aspects may be categorized as follows: 

• computational complexity , i.e. time complexity and space complexity of BMF problems and algorithms; 

• approximation quality and possibly other characteristics regarding the algorithms’ capability to compute optimal and sub-

optimal solutions; 

• quality of factors and factorizations obtained by the algorithms, which itself is a complex issue. 

Even though quality of factors and factorizations is our main subject in this paper, which is dealt within the rest of our

paper, we now provide a brief overview and comments on computational complexity and approximation quality. 

As far as computational complexity of the basic BMF problem and its variants is concerned, a fundamental finding

was obtained by Stockmeyer [26] , who proved that deciding for a given input matrix I ∈ {0, 1} n ×m and a positive integer

k whether there exist two matrices A ∈ {0, 1} n ×k and B ∈ {0, 1} k ×m with I = A ◦ B is NP-hard as a decision problem. As a con-

sequence, the problem to find for an input matrix I ∈ {0, 1} n ×m two matrices A ∈ {0, 1} n × k and B ∈ {0, 1} k ×m with I = A ◦ B

such that k is as small as possible is NP-hard as an optimization problem. NP-hardness then applies to several variants of

the basic factorization problem, including the discrete basis problem and approximate factorization problem mentioned be-

low. Therefore, unless P = NP, an algorithm with polynomial time complexity that computes optimal factorizations does not

exist. 

As a consequence, the available factorization algorithms rely on various heuristics. The question of how well a solution

obtained by a particular algorithm approximates the optimal solution(s) to a given problem, that is the question of approxi-

mation factor of a particular algorithm, is therefore of great importance. Recall that an approximation factor of an algorithm

represents a guarantee of suboptimality of solutions obtained by the algorithm [11] . For example, approximation factor equal

to 2 means that the algorithm is guaranteed to find a factorization with no more than 2 k factors where k is the Boolean rank

of the given input matrix (i.e. the least number of factors possible). Except for [2,10] , almost no results on approximation

factors of the proposed factorization algorithms are available in the literature. This situation is in a sense explained by a

recent negative result on approximability [6] according to which the basic factorization problem is NP-hard to approximate

within factor n 1 −ε . This bound is certainly discouraging. For example, a linear approximation factor, n , implies that we only

have the following guarantee: When factorizing, say, a 10 0 0 × 10 0 0 matrix with Boolean rank 50 (i.e. we have n = 10 0 0 ),

the algorithm computes a decomposition with at most n × 50 = 50 0 0 0 factors, which is a way more than what one would

consider acceptable. On the other hand, the available factorization algorithms perform much better on benchmark data com-

pared to the above approximability bound. Hence, practical significance of obtaining approximation factors of the algorithms

is limited. Nevertheless, analyses of approximation factors of the available algorithms are needed because such analyses are

likely to provide us with further knowledge of these algorithms as well as of the factorization problem itself. 

As far as computational complexity is concerned, both time and space complexity certainly represent basic properties of

factorization algorithms of crucial practical significance. Clearly, one prefers algorithms that require less time and space, i.e.

those with smaller complexity. A common practice is that new algorithms presented in the literature are accompanied with

information about their time complexity in terms of big-O-notation. Because the big-O-notation hides practically significant

nuances of complexity and because the estimates of time complexity found in the existing literature are not tight as a rule,

it seems more indicative to perform comparative experimental evaluations of the various algorithms. This enables to provide

relative comparison of algorithms as e.g. in [4] , and to say that a particular algorithm is on average, say, three times faster

than another algorithm when evaluated on a certain collection of datasets. For a majority of the present BMF algorithms,

neither time nor space complexity seems to be a critical problem in that from the viewpoint of the current applications

of BMF, the factorizations are computed by the algorithms quickly enough. Typically, factorizations of benchmark datasets

computed on an ordinary PC are computed in terms of seconds or a few tens of seconds [4] . The Tiling algorithm [10] and

the conceptually similar Algorithm 1 of [2] represent notable exceptions because they need to compute first a large set of

candidate factors. 

3. Quality of factors and factorizations 

We now consider quality of factors and factorizations, which is the main objective of our paper. The issue itself of

whether and to what extent a set of factors delivered for a particular input data by a particular factorization algorithm

involves several aspects, which are not properly discussed in the literature. We propose to recognize three basic aspects,

which we address in the following order. In Section 3.1 , we examine interpretability of individual factors, which pertains

to knowledge-discovery view . The next two aspects concern the whole set of extracted factors rather than individual factors,

and are discussed in Sections 3.2 and 3.3 . The first is the reduction-of-dimensionality view , whose substance is the question

of whether the factors may be thought of as new attributes using which the original data may be embedded to a lower

dimensional space and which enables efficient processing of the data. The second is the explanatory view , whose substance

is the question of whether and to what extent do the factors explain the input data well. 
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3.1. Knowledge-discovery view 

3.1.1. Interpretability of individual factors 

Interpretability of factors, arguably the most important aspect from knowledge-discovery view of factor analysis, is an

important issue in general and pertains to every factorization method: If useful knowledge is to be obtained by means of

factor analysis, the factors must first of all be well interpretable and comprehensible by users. Relevant to factorization of

Boolean data is the following geometric view of the factor model. 

The view was made explicit e.g. in our paper [4] and asserts that a decomposition of a Boolean matrix I ∈ {0, 1} n ×m may

be thought of (in a one-to-one manner) as a coverage of the entries of I containing 1s by rectangles (cf. Section 1.2 ). Recall

that by a rectangle we mean a matrix in which the entries containing 1s form a rectangle, or may be brought to the shape

of a rectangle by permuting rows and columns. That is, a rectangle is a matrix J ∈ {0, 1} n ×m , for which there exist vectors

C ∈ {0, 1} n × 1 and D ∈ {0, 1} 1 ×m such that J = C ◦ D . With the notion of rectangle at hand, it is easy to verify that a Boolean

product A ◦B of Boolean matrices A ∈ {0, 1} n × k and B ∈ {0, 1} k ×m may alternatively be regarded as a max -superposition of

rectangles J l = A _ l ◦ B l _ , l = 1 , . . . , k, i.e. 

(A ◦ B ) i j = 

k 
max 

l=1 
(J l ) i j . 

In these expressions, A _ l and B l _ denote the l th column of A and the l th row of B , respectively. The thus established geometric

view, rarely recognized in the literature on BMF, tells us that finding a decomposition (exact or approximate) of I into A ◦B

using k factors means finding a coverage (exact or approximate) of the 1s in I by k rectangles full of 1s and is of great

practical significance for understanding the logic of Boolean factorization. 

The geometric view also tells us that no matter how one computes factors (i.e. independent of any particular algorithm),

every particular factor , say factor l, may be identified with a rectangle J l full of 1s, or alternatively, as a pair 〈 A _ l , B l _ 〉 of

the above-mentioned vectors, for which J l = A _ l ◦ B l _ . Such a factor may therefore rather naturally be interpreted as a new,

abstract attribute (or property), generally distinct from the m original attributes. This new attribute is characterized by those

of the m original attributes j for which B l j = 1 . These attributes j are viewed as particular manifestations of factor l and may

be used as descriptors of the factor. If, for instance, the attributes j of factor l are 2, 5, and 6, then factor l may be described

as an attribute which applies to a given object exactly when the object possesses all the attributes 2, 5, and 6. 

The above considerations demonstrate that factors in Boolean matrix factorization may easily be interpreted. This repre-

sents a considerable advantage over other matrix factorization methods which are sometimes employed for Boolean data.

This is confirmed by our experience and several existing studies including [27] in which the problem of interpretability of

factor analysis of Boolean data using methods originally developed for real-valued matrices is critically examined. 

3.1.2. Criticism of BMF methods based on the MDL principle 

While the above considerations on interpretability have not been addressed explicitly so far, they have to a certain extent

been partially addressed in the literature. On the other hand, the following important aspect has not been addressed at all

and seems currently not properly understood. 

Namely, some authors such as those of the PaNDa algorithm [14] aim for finding factors with small description length in

the hope to obtain good factorizations. Such approach is inspired by the well-known minimum description length principle

(MDL) which itself goes back to Ockham’s razor. Translating to BMF, this principle says that factorizations with small total

description length of its factors are preferable. In our notation, the description length of factor 〈 A _ l , B l _ 〉 is defined as the

sum 

dl (A _ l , B l _ ) = || A _ l || + || B l _ || , 
of the height and width of the corresponding rectangle, which is the sum of the number || A _ l || of 1s in A _ l and the number

|| B l _ || of 1s in B l _ . The PaNDa algorithm actually employs minimizing the sum of description lengths of all the computed

factors as part of its cost function. 

We claim that this view is flawed and that, instead, well interpretable factors correspond to maximal rectangles rather

than to rectangles with a small description length. Put succinctly, it is generally not a good idea to remove attributes or

objects from factors to shorten their description length because then, interpretability of factors suffers. This rationale stems

from formal concept analysis [9] , in which the basic patterns employed, called formal concepts, are in fact maximal rectangles

of 1s. Our preference of maximal rectangles, articulated already in [2] , derives from our experience with analyses of many

datasets. We do not claim that the MDL approach is a priori wrong. But we do claim that it should be justified by concrete

data analyses. Otherwise it remains a theoretical construct—an unverified hypothesis regarding usefulness of factors. Our

argument against the MDL approaches in BMF is explained by the following generic example. 

Example 1. Consider two taxa: Taxon A, which is characterized by 10 attributes, and taxon B, which is a subtaxon of taxon

A and which is characterized by the 10 attributes of taxon A plus 5 additional attributes. That is, a natural description of

taxon A is a conjunction of the 10 attributes which characterize A, while a description of taxon B is a conjunction of the 15

attributes (10 of taxon A and 5 additional ones) characterizing B. Suppose the dataset I consists of 50 exemplars of taxon A

of which 25 are also exemplars of taxon B and that there are 20 attributes in total. Such a dataset is depicted in Fig. 1 (a).

There is a natural factorization of the 50 × 20 matrix I by two overlapping factors, which is depicted in Fig. 1 (b): The first
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Fig. 1. (a) Dataset I from Example 1 ; (b) natural factorization of I by two taxa as factors; (c) and (d) factorization of I according to the MDL principle 

(factors do not correspond to taxa). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

corresponds to the 50 × 10 rectangle representing taxon A; the second to the 25 × 15 rectangle representing taxon B. Both

factors are easily interpretable: the first is characterized by the 10 attributes characteristic of taxon A and the second by the

15 attributes characteristic of taxon B. 

Now, according to MDL, this set of two factors is not good because it has overly large description length, namely

(50 + 10) + (25 + 15) = 100 . Instead, MDL suggests using, as the first factor, the 50 × 10 rectangle representing taxon A and,

as the second factor, the 25 × 5 rectangle representing the exemplars of taxon B and their 5 additional attributes. This factor-

ization is depicted in Fig. 1 (c): The total MDL of these two factors is (50 + 10) + (25 + 5) = 90 . The second factor, however,

is difficult to interpret: one may not interpret it as taxon B because among the characteristic attributes of this factor, there

are only 5 attributes, hence there are 10 attributes missing from description of taxon B. Alternatively, MDL suggests using

the 25 × 15 rectangle as factor representing taxon B and the 25 × 10 rectangle representing the exemplars of taxon A not in-

cluded in B and the 10 attributes of taxon A, resulting in total description length (25 + 15) + (25 + 10) = 75 —even a smaller

description length. This factorization is depicted in Fig. 1 (d). Again, however, interpretability suffers because the 25 × 10

rectangle may not be interpreted as taxon A for it does not cover the 25 missing exemplars of taxon B. 

3.2. Reduction-of-dimensionality view 

As is clear from the above discussion, a factorization of an input n × m Boolean matrix I using k factors can be regarded

as a discovery of k new Boolean variables, i.e. new attributes. If I ≈ A ◦B , then A describes the n given objects, originally

described in I by the m input attributes, in terms of k factors (new attributes) and B describes a relationship between the

k factors and the m original attributes. Therefore, the n objects may either be described in the m -dimensional space of

the original attributes or in the k -dimensional space of factors. If k < m , then switching from the attribute space to the

factor space actually represents what is commonly referred to as reduction of dimensionality, or, more precisely, reduction

of dimension. In this case, the simple ratio m −k 
m 

may be taken as a measure of such a reduction. 

An important aspect justifying the usefulness of various factorization methods for real-valued data derives from the pos-

sibility to process data in the less-dimensional factor space rather than the original space involving possibly a high number

of variables (attributes in the case of Boolean data). The original variables (attributes) represent the directly observable fea-

tures and as such they may be mutually redundant, impaired by error or otherwise flawed. On the other hand, good factors

obtained from data should capture the fundamental aspects of the data and should be free of the flaws manifested by the

original attributes. Then, processing of the data in the factor space proves to be more efficient than processing the data

in the original attribute space. Put conversely, if the factor space provides us with a considerably better processing of data

compared to the original attribute space, we may regard the factors as good ones. This perspective allows us to compare

the quality of sets of factors delivered by particular factorization algorithms. 

Even though much effort has been devoted to the design of new algorithms for factorization of Boolean data, virtually

no attention has been paid to how the factorization methods may further be utilized in processing Boolean data, e.g. in

machine learning, which is a rather surprising and strange situation. For one, this situation is in sharp contrast to that

with factorization methods for real-valued data, which are being commonly employed in several fields including machine

learning. Furthermore, the lack of studies on possible utilization of dimensionality reduction due to BMF implies a lack of

the much needed feedback for quality assessment of the various BMF algorithms. 

An exception is, nevertheless, represented by [23] in which the author employs the transformation formulas between the

factor and attribute spaces proposed in [2] in the problem of classification of Boolean data. Put briefly, the idea is to first

factorize the classified Boolean data using a BMF algorithm and then to do classification in the factor space rather than in
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the original attribute space. Interestingly, such an approach results in a significant increase of classification accuracy. In [3] ,

the authors asked the question of which factorization methods perform well in the described scenario. It turned out that

there are significant differences between the various factorization methods employed. That is to say, with respect to this

particular employment of BMF, some algorithms turn out as good ones while some as not so good. We omit the details of

[3] due to limited scope but also because our main point here is to point out the fact that studies on employment of BMF

in machine learning and other areas may not only demonstrate usefulness of BMF in general but also provide a useful, very

concrete feedback regarding quality of BMF algorithms. Without such feedback, research in BMF algorithms might easily

become a speculative theorizing. 

3.3. Explanatory view 

The explanatory view, as we propose to call it, pertains to the fact that knowledge regarding the data that is provided by

the individual factors may be considered valuable only if the set of factors as a whole explains the data well. In this regard,

we propose two basic views, which we call the DBP view and the AFP view. These views are inspired by two well-known

problems in BMF, namely the discrete basis problem (DBP) and the approximate factorization problem (AFP). Before we discuss

these problems and the corresponding views, we turn to the question of quantitative explanation of data by factors. 

A straightforward way to assess how the given data represented by a matrix I ∈ {0, 1} n ×m is explained by a set of k factors

represented by object-factor and factor-attribute matrices A ∈ {0, 1} n × k and B ∈ {0, 1} k ×m , respectively, is via the distance

function E ( I, A ◦B ) defined by (2) , i.e. 

E(C, D ) = 

∑ m,n 
i, j=1 | C i j − D i j | . 

Furthermore, we employ the following function of A ∈ {0, 1} n ×l and B ∈ {0, 1} l ×m to measure the quality of decompositions

computed by the algorithms, and call this function the coverage quality of the first l factors delivered by the particular

algorithm: 

c(l) = 1 − E(I, A (l) ◦ B (l)) / || I|| , (3)

where A ( l ) and B ( l ) denote the n × l and l ×m matrices that correspond to the first l factors. Let us note that analogous

functions are used, e.g., in [2,4,10,18] . The various modifications of the coverage function that appeared in the literature may

be regarded as predecessors of our attempt to address comprehensively the problem of quality assessment. For our purpose,

we shall observe how the value of c increases when adding additional factors, i.e. observe the values c ( l ) for l = 0 , . . . , k,

where k is the number of factors delivered by a particular algorithm. 

3.3.1. The DBP view—The importance of the first few factors 

The explanatory view involves two basic particular views. We call the first one the DBP view because it is connected to

the well-known DBP problem: 

• Discrete Basis Problem [18] : 

Given I ∈ {0, 1} n ×m and a positive integer k , find A ∈ {0, 1} n × k and B ∈ {0, 1} k ×m that minimize || I − A ◦ B || . 
The DBP view thus emphasizes the importance of the first few factors, which are assumed to be the most important

ones. From this viewpoint, good BMF algorithms are those with high values of coverage, c ( l ), for small numbers l of factors

(say l = 2 , 5 , 10 ). 

3.3.2. The AFP view—The importance of explaining a large portion of data 

The second view we recognize is the AFP view because it is connected to the AFP problem: 

• Approximate Factorization Problem [2] : 

Given I ∈ {0, 1} n ×m and prescribed error ε ≥ 0, find A ∈ {0, 1} n × k and B ∈ {0, 1} k ×m with k as small as possible such that

|| I − A ◦ B || ≤ ε. 

The AFP view stresses out the need to cover (and in this sense to explain) a large portion of the input data. From this

viewpoint, good BMF algorithms are those which are able to attain a high coverage c ( l ), say c(l) = 0 . 8 , 0 . 9 , 1 . 0 , with a small

number l of factors. 

3.3.3. Combined view—A proposed quality metric 

Examination of the existing literature reveals that no commonly accepted prospect of what it means that a BMF algorithm

performs well from the explanatory point of view is available. A natural criterion, which we propose and examine below,

may be derived from the following intuitive requirement. 

Both the DBP view and the AFP view in fact represent two boundary views. The DBP view is particularly relevant when

one seeks a few important factors. Since Boolean factors are naturally interpreted as clusters (cf. the above section on

interpretability of factors), a typical situation of this kind is when a small number of informative clusters are sought in the

data. On the other hand, the AFP view is actually present when one desires a good representation of the whole data by

factors. This is, for example, the case in the above-mentioned application of BMF as preprocessing method in classification
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Fig. 2. Coverage quality function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of Boolean data. If only the DBP view was taken into account, one could end up with an algorithm that is not capable

of computing highly accurate factorizations; on the other hand, taking only the AFP view into account could result in an

algorithm delivering as its first couple of factors some factors that are not very significant in that they do not have a high

coverage. 

A natural, more general view than the DBP and the AFP view is therefore a combined view, which reflects both these

views. According to this combined view, a good algorithm computes a set of factors such that the first couple of them have

a reasonably high coverage and, conversely, a high coverage, possibly close to 1, is obtained with a reasonably small number

of factors. For a good BMF algorithm, therefore, the coverage c as a function of the number l (the first l factors produced by

the algorithm) is required to be increasing in l , have reasonably large values even for small values of l (i.e. c needs to grow

steeply in the beginning), and have the value c ( k ) equal or close to 1 for a reasonably small number k of factors computed

by the algorithm. 

The measure of quality of BMF algorithms we propose therefore reflects the combined view and is based on the coverage

quality function c ( l ) defined by (3) . A typical shape of c ( l ) is depicted in Fig. 2 . By means of this measure we attempt to

“capture” the desired properties of the coverage quality function c demanded by the DBP and the AFP. 

According to the definition of DBP above, a BMF algorithm should, for a given number l of factors, minimize the error

E ( I, A ◦B )/|| I || of decomposition, i.e. maximize the coverage c ( l ). Thus, for a good BMF algorithm, the function c should be

increasing in l and should be increasing steeply, in particular for small values of l . We propose to evaluate the increase

of c as follows. For a particular l ∈ { 1 , . . . , k } , where k is the final number of factors delivered by the given algorithm, the

increase of coverage c due to the l th factor is c(l) − c(l − 1) ; for l = 3 , see Fig. 2 . The requirement that such increase is

more significant for small values of l is reflected by weights which are greater for small values of l than for large values

of l . We use the weights 1/ l assigning the weight 1 to the first factor, 1/2 to the second factor, and so on. Hence, the gain

q ′ 
DBP 

(l − 1 , l) in quality due to factor l ∈ { 1 , . . . , k } reflecting the DBP view is naturally quantified by 

q ′ DBP (l − 1 , l) = 

c(l) − c(l − 1) 

l 
. (4) 

The quantification of the gain reflecting the AFP view is analogous (DBP and AFP are in a sense dual), only a little more

technically involved. According to the definition of AFP, a BMF algorithm should, for a given admissible amount ε of error,

minimize the number l of factors using which the computed decomposition satisfies E ( I, A ◦B )/|| I || ≤ ε. Thus, for a good BMF

algorithm, the number l of factors, considered as a function of E ( I, A ◦B )/|| I ||, should be decreasing in E ( I, A ◦B )/|| I || and should

be decreasing steeply for low values of E ( I, A ◦B )/|| I ||. Put in terms of the coverage quality function c = 1 − E(I, A ◦ B ) / || I|| , the

number l of factors considered as a function of c , should be decreasing as its argument c decreases and should be decreasing

steeply, in particular for high values of c . However, while we evaluate the increase of c in the DBP view in the discrete steps

from l − 1 to l between the individual factors, see (4) , we now need to choose discrete steps, i.e. intervals in the values

of c , to evaluate the decrease of l . We choose the intervals to correspond to weights, which we again use to reflect the

significance of the decrease of l for higher values of c . Naturally, the weights should be greater for higher values of c than

for lower values of c . Similarly to the DBP view above, we use the weights 1 / ((1 − c) · 100) for c ∈ { 0 . 99 , 0 . 98 , . . . , 0 } . This
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assigns the weight 1 to 1% decrease of c (from c = 1 . 0 to c = 0 . 99 ), 1/2 to 2% decrease (from c = 1 . 0 to c = 0 . 98 ), and so on.

The decrease of l , as a function of c , in the interval [ c, c + 0 . 01] is then evaluated similarly as in the DBP view, namely as

l(c + 0 . 01) − l(c) ; for c = 0 . 83 , see in Fig. 2 in which l ( c ) is obtained as explained below. In order to express it relatively to

the final number k of factors delivered by an algorithm we divide it by k (notice that this is the same as with the increase

of c in the DBP view which is expressed relatively to the maximum c = 1 ). The value l ( c ) for c ∈ { 1 , 0 . 99 , . . . , 0 } is naturally

obtained from c ( l ) as the following approximation: 

l(c) = l − 1 such that c(l − 1) < c + 0 . 005 ≤ c(l) . (5)

The gain in quality, q ′ 
AFP 

(c, c + 0 . 01) , reflecting the AFP view, for an interval from c ∈ { ̃ c (k ) − 0 . 01 , . . . , 0 } to c + 0 . 01 ,

where ˜ c (k ) is c ( k ) rounded to hundredths, is then defined by 

q ′ AFP (c, c + 0 . 01) = 

c(k ) · (l(c + 0 . 01) − l(c)) 

k · (1 − c) · 100 

. (6)

Multiplying by c ( k ) is to reflect the requirement for AFP to have the final coverage value c ( k ) for the final number k of

factors delivered by an algorithm equal or close to 1: Lower values c ( k ) make q ′ 
AFP 

(c, c + 0 . 01) smaller. 

However, we still need to take into account the following aspect. While l (0) is always equal to 0, the value l( ̃ c (k )) is

equal to k which is varying for the various particular algorithms because different algorithms deliver different numbers k of

factors. To be able to reasonably compare different algorithms, we need to relate the numbers k of factors delivered by these

algorithms to a common value, i.e. calibrate. Relating them to the Boolean rank of the given relation is not computationally

feasible because computing the Boolean rank is NP-hard. A natural value to be used for our purpose is the number m of

attributes as we naturally expect k to be not higher than m . The smaller than m the number k of factors computed by the

algorithm, the better the algorithm, and vice versa. We thus quantify the ability of an algorithm to achieve the coverage

˜ c (k ) using a small number of factors by means of the quantity q ′′ 
AFP 

( ̃ c (k )) defined as 

q ′′ AFP ( ̃  c (k )) = 

{
c(k ) ·(m −k ) 

m ·(1 − ˜ c (k )) ·100 
for ˜ c (k ) � = 1 , 

(m −k ) 
m 

for ˜ c (k ) = 1 . 
(7)

Now, the functions proposed above evaluate the quality of a single decomposition consisting of the first l factors relatively

to a decomposition consisting of the first l − 1 factors (in the case of q ′ 
DBP 

) or having the coverage quality c + 0 . 01 relatively

to the decomposition having the coverage quality c (for q ′ 
AFP 

) delivered by a particular BMF algorithm. However, the quality

of the algorithm is expressed by the entire coverage function c as a function of l , i.e. is expressed by the graph of c . Hence,

to evaluate the quality of a BMF algorithm for a particular input data from both the DBP view and the AFP view, we need

to take into account all decompositions of the input data produced by the algorithm during its run. That is, we need to

consider q ′ DBP for l from 1 up to k , consider q ′ 
AFP 

for c from ˜ c (k ) − 0 . 01 down to 0, and consider q ′′ 
AFP 

( ̃ c (k )) . Moreover, to be

able to combine the DBP and the AFP views and to emphasize one or the other in our assessment, we use a weight w ∈ [0,

1]. Putting 

q DBP (l) = 

l ∑ 

l ′ =1 

q ′ DBP (l ′ − 1 , l ′ ) , (8)

q AFP (c) = 

∑ 

c ′ ∈{ ̃ c (k ) −0 . 01 , ... ,c} 
q ′ AFP (c ′ , c ′ + 0 . 01) + q ′′ AFP ( ̃  c (k )) , (9)

we therefore define the quality of a given BMF algorithm for a given input Boolean matrix as the number q given as 

q = w · q DBP (k ) + (1 − w ) · q AFP (0) . (10)

Remark 1. Note that while q DBP ( l ) ranges from 0 to 1, the value of q AFP ( c ) can be greater than 1 and can also be negative.

The former can happen when k < m and c ( k ) is close to 1 at the same time, i.e. for a good BMF algorithm. The latter can

happen when k > m , i.e. for a poor BMF algorithm. For the commonly used BMF algorithms, however, the value of q AFP ( c )

also lies between 0 and 1. 

For illustration, the graphs of q DBP ( l ) and q AFP ( c ) corresponding to the coverage function c ( l ) from Fig. 2 are depicted

in Fig. 3 (for m = 100 ). Note that the values of q AFP ( c ) are put on the horizontal axis used for l and that these values are

displayed in percents, i.e. we display q AFP ( c ) · 100 (hence the graph of q AFP ( c ) is flipped and rotated). 

4. Experimental evaluation 

We now present experimental evaluation of our quality metric for BMF algorithms. For space reasons, we restrict to the

best known factorization algorithms and to selected real datasets. We examine the algorithms’ performance with respect to

the DBP view, the AFP view, and the combined view as described above. 
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Fig. 3. Quality of decomposition reflecting the DBP view ( q DBP ( l )) and the AFP view ( q AFP ( c )). 

Table 1 

Datasets and their characteristics. 

Dataset Size Density Avg. assoc. Med. support 

DBLP 6980 × 19 0.130 0.175 0.101 

Domino 79 × 231 0.040 0.642 0.025 

Emea 3046 × 35 0.068 0.211 0.047 

Firewall 1 365 × 709 0.124 0.459 0.154 

Healthcare 46 × 46 0.702 0.818 0.619 

Chess 3196 × 76 0.487 0.480 0.470 

Mushroom 8124 × 119 0.193 0.193 0.074 

Paleo 501 × 139 0.051 0.092 0.042 

Zoo 101 × 28 0.305 0.298 0.233 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. Datasets used in experimental evaluation 

Our evaluation involves the datasets DBLP, 1 Domino [8] , Emea [8] , Firewall 1 [8] , Healthcare [8] Mushroom [1] , Chess [1] ,

Paleo, 2 and Zoo [1] . These datasets are well known and commonly used in the literature on BMF. Table 1 displays the basic

characteristics of our datasets: The number of objects × number of attributes (in the column labeled Size), the density, i.e.

percentage of 1s in the entries of the dataset (column Density), the average value in the association matrix of I [18] (column

Avg. assoc.), and the median of the attributes’ support (that is, the number of objects which have a given attribute; column

Med. support). 

4.2. Algorithms used in experimental evaluation 

8M is an early BMF algorithm which is part of the BMDP statistical software since the late 1970s. In our paper, we use

the version of 8M described in the 1992 edition [7] , which accompanies release 7 of BMDP. Asso [18] is a classic, probably

the most frequently discussed algorithm in the literature on Boolean matrix factorization. It performs a greedy search for

factors which are constructed using the so-called association matrix induced by the input dataset I . The algorithm has been

proposed to solve the discrete basis problem and commits both types of errors, i.e. the undercovering E u = |{〈 i, j〉; (A ◦ B ) i j <

I i j }| and the overcovering E o = |{〈 i, j〉; (A ◦ B ) i j > I i j }| . GreConD [2] (denoted Algorithm 2 in that paper) performs a particular

greedy search for factors which are in the form of formal concepts in the concept lattice associated to the input dataset I

and are computed “on demand”, avoiding thus the need to compute the whole concept lattice in advance. GreConD is
1 http://www.informatik.uni-trier.de/ ∼ley/db/ . 
2 NOW public release 030717, available from http://www.helsinki.fi/science/now/ . 

http://www.informatik.uni-trier.de/~ley/db/
http://www.helsinki.fi/science/now/
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Table 2 

Coverage of data by the first k factors (DBP view). 

Dataset k 8M Asso GreConD NaiveCol PaNDa Hyper GreEss PaNDa 
+ 

DBLP 1 0.033 0.111 0.131 0.111 0.122 0.111 0.111 0.122 

2 0.151 0.217 0.238 0.217 0.208 0.217 0.217 0.208 

5 0.305 0.475 0.468 0.475 0.217 0.475 0.475 0.217 

10 0.414 0.738 0.692 0.738 0.217 0.738 0.738 0.217 

Domino 1 0.019 0.553 0.548 0.286 0.548 0.286 0.286 0.548 

2 0.573 0.700 0.697 0.449 0.586 0.449 0.449 0.586 

5 0.729 0.837 0.834 0.801 0.678 0.766 0.801 0.633 

10 0.847 0.937 0.948 0.942 0.678 0.834 0.942 0.633 

Emea 1 0.199 0.168 0.163 0.077 0.142 0.077 0.077 0.132 

2 0.218 0.244 0.239 0.153 0.178 0.153 0.153 0.162 

5 0.287 0.443 0.423 0.347 0.184 0.347 0.347 0.169 

10 0.427 0.691 0.665 0.592 0.184 0.592 0.592 0.169 

Firewall 1 1 0.726 0.726 0.651 0.651 0.131 0.019 0.648 0.126 

2 0.743 0.818 0.804 0.804 0.491 0.027 0.801 0.145 

5 0.839 0.908 0.940 0.932 0.491 0.048 0.942 0.862 

10 0.909 0.917 0.981 0.976 0.491 0.083 0.981 0.862 

Healthcare 1 0.653 0.666 0.636 0.636 0.677 0.636 0.636 0.636 

2 0.779 0.901 0.910 0.910 0.871 0.656 0.910 0.910 

5 0.948 0.938 0.965 0.964 0.895 0.713 0.964 0.910 

10 0.953 0.941 0.988 0.991 0.895 0.795 0.994 0.910 

Chess 1 0.600 0.497 0.197 0.119 0.448 0.172 0.236 0.305 

2 0.610 0.574 0.340 0.177 0.511 0.178 0.297 0.426 

5 0.632 0.628 0.515 0.323 0.578 0.187 0.455 0.550 

10 0.652 0.703 0.655 0.461 0.612 0.281 0.605 0.635 

Mushroom 1 0.218 0.226 0.129 0.129 0.215 0.127 0.168 0.168 

2 0.319 0.323 0.234 0.234 0.291 0.129 0.260 0.258 

5 0.453 0.461 0.461 0.398 0.346 0.205 0.410 0.409 

10 0.508 0.555 0.582 0.512 0.346 0.339 0.546 0.518 

Paleo 1 0.007 0.027 0.027 0.027 0.018 0.027 0.027 0.013 

2 0.018 0.047 0.047 0.047 0.022 0.047 0.047 0.027 

5 0.070 0.105 0.106 0.105 0.040 0.105 0.105 0.042 

10 0.111 0.182 0.181 0.182 0.040 0.182 0.182 0.042 

Zoo 1 0.188 0.341 0.265 0.190 0.271 0.096 0.244 0.209 

2 0.457 0.507 0.427 0.353 0.357 0.189 0.406 0.303 

5 0.622 0.739 0.703 0.603 0.524 0.415 0.660 0.326 

10 0.665 0.856 0.853 0.834 0.539 0.676 0.849 0.326 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

designed to compute exact decompositions. However, the algorithm may be stopped after it computes the first k factors or

after the committed error E does not exceed ε, in which case it provides approximate solutions to DBP and AFP, respectively.

NaiveCol [8] is a simple algorithm which performs a straightforward greedy search for factors. The factors are the columns

in the input matrix I . The algorithm may be used for both AFP and DBP. PaNDa [14] is primarily designed for a modification

of the DBP problem. It employs the minimum description length principle in the criteria to select factors. PaNDa + [15] is an

enhanced version of PaNDa , which allows to incorporate various cost functions to select good factors. In particular, we use

the cost function proposed by the authors, which is the sum of the description length of the so far computed set of factors

and the error committed by this set of factors. Hyper [29] employs as factors the so-called hyperrectangles (in fact these are

rectangles in the input matrix I ) and computes an exact decomposition of the input matrix. GreEss [4] computes from the

input matrix I a smaller matrix (the so-called essential part of I ) to which one may restrict when computing a factorization.

Like GreConD , the algorithm employs formal concepts of I as factors and may be used for both AFP and DBP. 

Let us note that all the algorithms are deterministic, i.e. stop the computation for any inputs and always deliver the

same factorizations for the same inputs. Only some of them, however, are capable of computing exact decompositions,

which property is discussed as part of Section 4.3 . 

4.3. Assessment of quality 

The purpose of this section is twofold. For one, we intend to demonstrate on real datasets a typical behavior of the

algorithms selected for our evaluation as well as demonstrate that the DBP view and the AFP view represent two basic and

in a sense complementary views on the algorithms’ performance. Secondly, we intend to demonstrate that our metric may

reasonably be used to assess performance of a given algorithm from the DBP view, the AFP view, and the combined view. 

The algorithms’ performance from the DBP and the AFP point of view is illustrated in Table 2 and Table 3 , respectively.

In particular, Table 2 presents the values of the coverage function c ( k ) defined by (3) for the first k = 1 , 2 , 5 , and 10 factors.
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Table 3 

Number of factors needed for prescribed coverage c (AFP view). 

Dataset c 8M Asso GreConD NaiveCol PaNDa Hyper GreEss PaNDa 
+ 

DBLP 0.80 NA 12 13 12 NA 12 12 NA 

0.90 NA 15 17 15 NA 15 15 NA 

0.95 NA 17 19 17 NA 17 17 NA 

1.00 NA 19 21 19 NA 19 19 NA 

Domino 0.80 8 4 4 5 NA 7 5 NA 

0.90 NA 8 8 9 NA 26 9 NA 

0.95 NA 12 11 11 NA 45 11 NA 

1.00 NA NA 21 20 NA 79 20 NA 

Emea 0.80 NA 13 15 16 NA 16 16 NA 

0.90 NA 19 20 21 NA 21 21 NA 

0.95 NA 25 25 25 NA 25 25 NA 

1.00 NA NA 42 34 NA 35 34 NA 

Firewall 1 0.80 5 2 2 2 NA 193 2 4 

0.90 7 5 4 4 NA 223 4 NA 

0.95 NA NA 6 7 NA 239 6 NA 

1.00 NA NA 66 71 NA 365 64 NA 

Healthcare 0.80 3 2 2 2 2 11 2 2 

0.90 3 2 2 2 NA 18 2 2 

0.95 7 NA 4 4 NA 21 4 NA 

1.00 NA NA 17 16 NA 26 14 NA 

Chess 0.80 NA 21 20 29 NA 44 23 NA 

0.90 NA NA 33 39 NA 53 33 NA 

0.95 NA NA 47 46 NA 60 45 NA 

1.00 NA NA 124 72 NA 90 113 NA 

Mushroom 0.80 NA 47 29 32 NA 39 31 NA 

0.90 NA NA 46 47 NA 53 47 NA 

0.95 NA NA 62 62 NA 66 61 NA 

1.00 NA NA 120 110 NA 120 105 NA 

Paleo 0.80 NA 84 86 83 NA 83 83 NA 

0.90 NA 109 110 107 NA 107 106 NA 

0.95 NA 125 127 122 NA 122 122 NA 

1.00 NA NA 151 139 NA 139 145 NA 

Zoo 0.80 NA 7 9 9 NA 14 9 NA 

0.90 NA 16 13 13 NA 18 13 NA 

0.95 NA NA 17 17 NA 21 16 NA 

1.00 NA NA 30 25 NA 28 25 NA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These values are displayed for the selected real datasets. If a particular algorithm computed less factors than the value of

k , which happens particularly for PaNDa and PaNDa +, we display the value of c ( k ) corresponding to the collection of all

factors computed by the algorithm. Note that when observing results on real datasets, one has to keep in mind that some

datasets are very specific with respect to how the algorithms behave when factorizing them. For example, all the algorithms

except for 8M and PaNDa (+) obtain the same collection of the first k factors for k = 1 , 2 , 5 , and 10 on the Paleo data, which

is a very untypical behavior caused by the fact that this dataset “strongly offers” the factorization revealed by almost all

algorithms. Overall, however, one may observe that Asso performs best from the DBP viewpoint, which is natural because

Asso has been designed to solve the DBP. On the other hand, neither PaNDa nor PaNDa +, which are claimed by their authors

[14,15] to perform greatly for DBP, display a particularly good behavior. For some datasets, their performance is only slightly

worse than that of Asso ; in several cases, however, these two algorithms are considerably weak. As is seen from Table 2 , it

happens often that the coverage by PaNDa (+) stops to increase after only a very small number of factors is generated, hence

PaNDa (+) is not capable of explaining any larger portion of input data in general. In addition to Asso , the purely greedy

strategy employed by GreConD results in a performance which is slightly worse from the DBP view compared to Asso but

is comparable to it as a rule. A little worse than GreConD fares, on the one hand, the old 8M algorithm which displays a

specific behavior, and, on the other hand, the group of algorithms represented by GreEss , NaiveCol , and to some extent also

Hyper , which are basically designed for producing highly precise factorizations. 

Let us now consider Table 3 which focuses on the AFP view. For each of the examined algorithms, the table displays for

each particular dataset the number k of factors needed to achieve the prescribed value c of coverage for c = 0 . 8 , 0 . 9 , 0 . 95 ,

and 1. As is clearly seen, higher coverage values are practically unattainable by PaNDa and PaNDa +, which along with the

relatively poor behavior of PaNDa (+) from the DBP view leaves PaNDa (+) as the overall worst of the examined algorithms.

Another algorithm which is clearly not suitable from the AFP view is 8M . On the other hand, even though Asso has been

designed for the DBP, it performs reasonably well in computing highly precise decompositions. The results in the table

are indicative of an important property, namely the ability of an algorithm to compute exact decomposition for any input
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Fig. 4. Coverage quality of the first k factors on selected real-world datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

matrix. Which algorithms have this ability is shown in the following table; we refer the reader to the respective papers for

justification of this property: 

8M Asso GreConD NaiveCol PaNDa Hyper GreEss PaNDa 
+ 

no no yes yes no yes yes no 

The algorithms which are capable of computing exact decompositions all perform well from the AFP view and we refer

e.g. to [4] for a detailed comparison. 

The two tables above demonstrate our main point in this section, namely the fact that the DBP and the AFP view rep-

resent two basic views using which one may assess quality of BMF algorithms. While some algorithms perform well from

the DBP view but not so well from the AFP view, for some the situation is the opposite. This is also shown in Fig. 4 which

displays the graphs of the coverage function of the observed algorithms on four selected datasets: One may observe that

the coverage function of some of the algorithms grows steeply at the beginning (good performance from the DBP view)

but then stops, while for some other algorithms, coverage eventually reaches the value close to 1 representing full coverage

(good performance from the AFP view) but grows slowly at the beginning. 

Tables 2 and 3 thus present the characteristics relevant to the DBP view and the AFP view that may directly be observed

from a factorization of each individual benchmark dataset obtained by a given algorithm. Table 4 , however, still makes a

significant step forward: It presents for a given factorization of each individual dataset obtained by a given algorithm a

value of our quality metric. That is, instead of observing for a given factorization computed by a given algorithm a large

number of relevant values (i.e. the coverage values relevant to the DBP view and thus corresponding e.g. to k = 1 , ..., k = 10 ,

and the numbers of factors relevant to the AFP view, i.e. corresponding to e.g. to c = 0 . 8 , ..., c = 1 ), the metric aggregates

all these observed values into a single number—the value of the metric for the given factorization. Note that the metric

takes into account not only the values displayed in Tables 2 and 3 but rather all the observable values as explained in the

description of the design of our metric. The metric depends on the parameter w which says how much emphasis the metric

puts on the DBP view and the AFP view. We thus present three values corresponding to w = 1 (full emphasis is on the DBP

view), w = 0 (full emphasis on AFP), and w = 0 . 5 (both the DBP and AFP are taken into account). One would hence use

the setting with w = 0 . 5 of the metric when a factorization is sought which is good both from the DBP view and the AFP

view. For example, consider the factorizations of Domino obtained by Asso and GreConD . We see from Table 2 that Asso

and GreConD have comparable performances from the DBP view, and from Table 3 that GreConD performs considerably

better from the AFP view. In particular, Asso is not capable to compute exact factorization, which is indicated by N/A in its
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Table 4 

Quality metric: AFP view ( w = 0 ); DBP view ( w = 1 ); combined view ( w = 0 . 5 ). 

Dataset w 8M Asso GreConD NaiveCol PaNDa Hyper GreEss PaNDa 
+ 

DBLP 0.0 0.010 0.081 0.018 0.081 0.005 0.081 0.081 0.005 

0.5 0.081 0.183 0.158 0.183 0.086 0.183 0.183 0.086 

1.0 0.153 0.286 0.298 0.286 0.168 0.286 0.286 0.168 

Domino 0.0 0.087 0.303 1.083 1.090 0.037 0.221 1.090 0.027 

0.5 0.224 0.492 0.881 0.789 0.315 0.347 0.789 0.297 

1.0 0.361 0.680 0.680 0.488 0.593 0.474 0.488 0.567 

Emea 0.0 0.015 0.128 0.122 0.228 0.004 0.223 0.228 0.004 

0.5 0.138 0.219 0.213 0.226 0.082 0.224 0.226 0.075 

1.0 0.260 0.310 0.304 0.224 0.160 0.224 0.224 0.147 

Firewall 1 0.0 0.200 0.207 1.569 1.564 0.003 0.249 1.573 0.094 

0.5 0.483 0.504 1.171 1.167 0.067 0.148 1.172 0.207 

1.0 0.765 0.802 0.772 0.770 0.131 0.048 0.770 0.321 

Heatlhcare 0.0 0.122 0.100 1.135 1.154 0.142 0.602 1.173 0.034 

0.5 0.447 0.447 0.963 0.973 0.462 0.643 0.983 0.335 

1.0 0.771 0.794 0.792 0.792 0.782 0.684 0.792 0.636 

Chess 0.0 0.032 0.058 -0.150 0.325 0.028 0.053 -0.002 0.048 

0.5 0.323 0.313 0.101 0.277 0.265 0.133 0.172 0.234 

1.0 0.615 0.568 0.352 0.229 0.502 0.212 0.347 0.421 

Mushroom 0.0 0.020 0.050 0.344 0.408 0.009 0.324 0.413 0.027 

0.5 0.167 0.194 0.309 0.335 0.137 0.257 0.353 0.151 

1.0 0.314 0.338 0.274 0.263 0.264 0.190 0.292 0.274 

Paleo 0.0 0.006 0.070 0.027 0.089 0.001 0.089 0.075 0.001 

0.5 0.023 0.078 0.056 0.087 0.013 0.087 0.080 0.012 

1.0 0.041 0.085 0.085 0.085 0.025 0.085 0.085 0.024 

Zoo 0.0 0.028 0.086 0.212 0.350 0.018 0.204 0.353 0.008 

0.5 0.203 0.298 0.331 0.367 0.191 0.232 0.393 0.132 

1.0 0.377 0.510 0.451 0.383 0.364 0.259 0.432 0.256 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

entry for c = 1 . These observations are succinctly expressed by the corresponding metric’s values in Table 4 : for w = 1 (pure

DBP view), the metric’s values are the same, for w = 0 (pure AFP view), the value for GreConD is much higher than that

for Asso , and for w = 0 . 5 (combined view), the value for GreConD is correspondingly still significantly higher than that for

Asso . 

Note in addition that the values of our metric need to be interpreted relative to each particular data: While some datasets

are naturally amenable to factorization, other datasets are not. Hence, for some datasets the values of our quality metric are

considerably higher than for other datasets. As a consequence, it makes sense to compare the values of our metric for

the various algorithms only for a given particular dataset rather than across the datasets. Secondly, as with any metric,

our quality metric represents a kind of aggregation of several aspects of quality, and thus represents a simplification. If a

detailed comparison of the quality of factorizations by two particular algorithms on a given dataset is desired, one needs

to examine and compare these factorizations factor by factor. However, when a rough indication is sufficient, the values of

our quality metric will serve the purpose. Indeed, one may observe that the values of our quality metric for the particular

datasets nicely reflect the considerably more detailed description of the factorizations reported in Tables 2 and 3 . 

5. Conclusions 

In this paper, we addressed a grossly neglected problem, namely assessment of quality of BMF algorithms. In partic-

ular, we identified key aspects of this important problem and proposed a quantitative way to assess the quality of BMF

algorithms. We argued that quality assessment of BMF algorithms is not being paid proper attention in the BMF research

and that to a considerable extent a reason for this is a lack of research on applications of BMF in machine learning. This

observation is surprising in view of generally recognized usefulness of decomposition methods for real-valued matrices in

machine learning, and is also in contrast with the large amount of existing work on BMF algorithms. We identified two basic

views for quantitative assessment of quality. We proposed a particular metric based on these viewpoints, which expresses

a natural requirement for a good algorithm for factorizing Boolean matrices. The experimental evaluation we conducted

demonstrates that the proposed quality metric is reasonable in that it corresponds to prior experimental evidence as well

as to the expectations derived from the properties of various factorization algorithms. 

Further research in quality assessment of BMF algorithms is clearly desirable and should include examination of further

methods for quality assessment. Since employment of BMF in machine learning and other areas is an important source of

information regarding the quality of BMF algorithms, research on employment of BMF in these areas is needed. Last but not

least, development of quality assessment methods for further criteria, such as the frequently discussed ability to deal with

noise in Boolean data by BMF algorithms, should be explored. 
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