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Abstract— Formal concept analysis (FCA) is a method of
exploratory analysis of object-attribute data tables. The two
main outputs are a hierarchical structure of clusters (so-called
formal concepts) and a non-redundant basis of so-called attribute
implications. An important topic in FCA is to cope with a possibly
large number of resulting clusters. We propose a method to
control the number of clusters by means of specification of a
granularity level of attributes. A user selects an appropriate
level of granularity of each attribute. If the corresponding set of
clusters is too large, the user can select a lower level of granularity
for appropriate attributes. The resulting set of clusters is then
smaller and can be seen as a rougher version of the original set of
clusters. If the corresponding set of clusters is too small, the user
can select a finer level of granularity for appropriate attributes.
The resulting set of clusters is then larger and can be seen as a
refinement of the original set of clusters. The paper presents a
preliminary study on this topic. We describe the motivations, the
method, basic theoretical insight, and experiments demonstrating
the method. Formal concept analysis (FCA) is a method of
exploratory analysis of object-attribute data tables. The two
main outputs are a hierarchical structure of clusters (so-called
formal concepts) and a non-redundant basis of so-called attribute
implications. An important topic in FCA is to cope with a possibly
large number of resulting clusters. We propose a method to
control the number of clusters by means of specification of a
granularity level of attributes. A user selects an appropriate
level of granularity of each attribute. If the corresponding set of
clusters is too large, the user can select a lower level of granularity
for appropriate attributes. The resulting set of clusters is then
smaller and can be seen as a rougher version of the original set of
clusters. If the corresponding set of clusters is too small, the user
can select a finer level of granularity for appropriate attributes.
The resulting set of clusters is then larger and can be seen as a
refinement of the original set of clusters. The paper presents a
preliminary study on this topic. We describe the motivations, the
method, basic theoretical insight, and experiments demonstrating
the method.

I. INTRODUCTION AND PROBLEM SETTING

Formal concept analysis (FCA) [7], [8] is an exploratory
method of analysis of tabular data describing objects and
their attributes. One of the outputs of FCA is a hierarchical
structure of clusters from the input data table. The clus-
ters are called formal concepts and these are pairs 〈A,B〉
consisting of a collection A of objects and a collection
B of attributes. Formal concepts can be partially ordered
by a natural subconcept-superconcept relation. The resulting
partially ordered set, called a concept lattice, forms a complete
lattice and can be visualized by a labeled Hasse diagram.
Formal concepts 〈A,B〉 result from the idea (going back to
traditional Port-Royal logic) of a concept as consisting of
its extent A and its intent B. Alternatively, formal concepts
can be thought of as maximal rectangles contained in the
object-attribute data table. In the basic setting, the attributes

are binary presence/absence attributes and the data table is a
0/1-matrix. More general attributes are handled by so-called
conceptual scaling (see [8]), i.e. a suitable transformation
of a general data table into a 0/1-data table which respects
the meaning of attributes. Formal concepts are clusters of
data drawn together by having common attributes. FCA has
been applied in various fields, among others in software
engineering, reengineering problems (redesign of hierarchical
structures), text classification (analyzing e-mail collections,
classification of library items), browsing retrieval and database
views, psychology (study of development of concepts by
children), civil engineering (system for checking dependencies
in regulations), classification and systematizing of heuristic
methods, physiology (color perception), preprocessing of data;
see [7], [8] and the references therein.

A problem related to the direct user interpretation of a
concept lattice is very often caused the fact that the number of
extracted formal concepts is not satisfactory. On the one hand,
it may happen that the number of formal concepts is too large.
Too large a number of formal concepts provides an overly fine
granulation of the input objects and is difficult to interpret for
the expert. On the other hand, it may happen that the number
of formal concepts is too small. Too small a number of formal
concepts does not provide a sufficiently fine granulation of the
input objects for the expert.

In this paper, we present a method to control the number
of extracted formal concepts by means of selecting levels of
granularity of the attributes given in the input data. The
paper is organized as follows. Section II presents preliminaries
on formal concept analysis. In Section III we present our
approach. Section IV contains illustrative examples. Section V
presents conclusions and outlines future research.

II. PRELIMINARIES

Formal concept analysis deals with input data in the form
of a table with rows corresponding to objects and columns
corresponding to attributes which describes a relationship
between the objects and attributes. The data table is formally
represented by a so-called formal context which is a triplet
〈X, Y, I〉 where I is a binary relation between X and Y ,
〈x, y〉 ∈ I meaning that the object x has the attribute y. For
each A ⊆ X denote by A↑ a subset of Y defined by

A↑ = {y | for each x ∈ A : 〈x, y〉 ∈ I}.

Similarly, for B ⊆ Y denote by B↓ a subset of X defined by

B↓ = {x | for each y ∈ B : 〈x, y〉 ∈ I}.



That is, A↑ is the set of all attributes from Y shared by all
objects from A, and B↓ is the set of all objects from X sharing
all attributes from B. A formal concept in 〈X, Y, I〉 is a pair
〈A,B〉 of A ⊆ X and B ⊆ Y satisfying A↑ = B and B↓ = A.
That is, a formal concept consists of a set A of objects which
fall under the concept and a set B of attributes which fall
under the concept such that A is the set of all objects sharing
all attributes from B and, conversely, B is the collection of all
attributes from Y shared by all objects from A. This definition
formalizes the traditional approach to concepts which is due
to Port-Royal logic. The sets A and B are called the extent
and the intent of the concept 〈A,B〉, respectively. The set

B (X, Y, I) = {〈A,B〉 | A↑ = B,B↓ = A}

of all formal concepts in 〈X, Y, I〉 can be naturally
equipped with a partial order ≤ defined by 〈A1, B1〉 ≤
〈A2, B2〉 iff A1 ⊆ A2 (or, equivalently, B2 ⊆ B1). That is,
〈A1, B1〉 ≤ 〈A2, B2〉 means that each object from A1 belongs
to A2 (or, equivalently, each attribute from B2 belongs to
B1). Therefore, ≤ models the natural subconcept-superconcept
hierarchy under which dog is a subconcept of mammal, etc.
The structure of B (X, Y, I) is described by the so-called main
theorem of concept lattices [8]:

Theorem 1: (1) B (X, Y, I) is under ≤ a complete lattice
where the infima and suprema are given by∧

j∈J

〈Aj , Bj〉 = 〈
⋂
j∈J

Aj , (
⋃
j∈J

Bj)↓↑〉 ,∨
j∈J

〈Aj , Bj〉 = 〈(
⋃
j∈J

Aj)↑↓,
⋂
j∈J

Bj〉 .

(2) Moreover, an arbitrary complete lattice V = 〈V,≤〉 is
isomorphic to B (X, Y, I) iff there are mappings γ : X → V ,
µ : Y → V such that

(i) γ(X) is
∨

-dense in V, µ(Y ) is
∧

-dense in V;
(ii) γ(x) ≤ µ(y) iff 〈x, y〉 ∈ I .

III. GRANULARITY OF ATTRIBUTES

In the basic setting of FCA, no further information except
for the input data table T = 〈X, Y, I〉 is taken into account.
In this section, we present a possibility to have, instead of
〈X, Y, I〉, a more structured input data which allows us to
control the granularity of the object attributes. The main gain
is that this way we get a means to control the number of formal
concepts extracted from the input data.

Granulation is an important phenomenon performed suc-
cessfully by humans in everyday life. Basically, granulation
means considering a collection of pieces of the outer world
as a whole—a granule. For example, looking at a person,
we may distinguish her head, left arm, right arm, etc. Then,
the head, left arm, right arm, etc., are granules for us. The
granules might serve as basic units with which our reasoning is
concerned. Depending on a particular situation, we might want
to use finer or rougher granules, i.e. to increase or decrease a
level of granularity. A finer granularity usually leads to a more
precise reasoning at the cost of higher computational demands.

L R G
a × ×
b × ×
c × ×
d ×
e ×
f × ×
g ×

L R lG dG
a × ×
b × ×
c × ×
d ×
e ×
f × ×
g ×

TABLE I
DATA TABLES DESCRIBING OBJECTS (a,. . . , g) AND THEIR ATTRIBUTES (L

. . . LARGE, R . . . RED, G . . . GREEN, lG . . . LIGHT GREEN, dG . . . DARK

GREEN).

extent intent
1 {a,. . . ,g} { }
2 {a,b,c,f} {L}
3 {f,e} {R}
4 {a,b,c,d,e} {G}

5 {f} {L,R}
6 {a,b,c} {L,G}

7 { } {L,R,G}

extent intent
1 {a,. . . ,g} { }
2 {a,b,c,f} {L}
3 {f,e} {R}
4 {a,b,d} {lG}
5 {c,e} {dG}
6 {f} {L,R}
7 {a,b} {L,lG}
8 {c} {L,dG}
9 { } {L,R,lG,dG}

TABLE II
LEFT: FORMAL CONCEPTS OF THE LEFT TABLE FROM TAB. I. RIGHT:

FORMAL CONCEPTS OF THE RIGHT TABLE FROM TAB. I.

A rougher granularity leads to a less precise reasoning with
the benefit of being less computationally demanding. For
instance, we increase the level of granularity, if we distinguish
nose, ears, eyes, etc., instead of distinguishing only a head.
The importance of the phenomenon of granulation and its
role in data manipulation and reasoning has been repeatedly
emphasized by Zadeh [12].

Granulation and granularity levels naturally appear in tab-
ular data describing objects and their attributes. For instance,
consider the data depicted in Tab. I. The tables describe
objects a,. . . ,g. The left table describes the objects by means
of their attributes L (large), R (red), and G (green). The right
table, however, uses attributes lG (light green) and dG (dark
green) instead of a single attribute green. Attributes lG and
gG provide a higher level of granularity for the description of
the objects than a single attribute G. Namely, attributes lG and
dG may be seen as a refinement of G.

The left table of Tab. II shows all the formal concepts
extracted from the left table of Tab. I (denote this collection
of formal concepts by B1), the right table of Tab. II shows
all the formal concepts extracted from the right table of Tab. I
(denote this collection by B2). As one can see from Tab. II, the
increase of granularity level represented replacing attribute G
by attributes lG and dG leads to an increase in the number of
extracted formal concepts. Nevertheless, we can see that there
is a natural relationship between B1 and B2. Namely, B2 can
be seen as “refinement” of B1 in the sense that it contains
finer concepts than B1. For instance, instead of a “rougher”
formal concept no. 6 from B1 with its extent {a,b,c} and its
intent {L,G}, B2 contains two finer formal concepts, namely,



no. 7 with its extent {a,b} and its intent {L,lG} and no. 8 with
its extent {c} and its intent {L,gG}. Although the example is
an illustrative one (and simplifies some effects), it illustrates
well what happens if one increases the level of granularity of
attributes.

One can refine a given attribute according to a specified
hierarchy. For instance, an attribute “large” (representing dis-
tances, e.g., from 30km to 1000km) can be refined, resulting
into attributes “a bit large” (30–100km), “medium large”
(101–300km), “very large” (301–1000km). Furthermore, “very
large” can be refined, resulting into attributes VL1 (301-
600km) and VL2 (601–100km). The hierarchy in question can
be formally described as follows.

Definition 2: Let X be a set of objects. A gl-tree
(granularity-level tree) for attribute y is a rooted tree with the
following properties:

• each node of the tree is labeled by a symbol (denoted
usually by y, yi, z . . . and called an attribute); the root is
denoted by y;

• to each label z of a node there is associated a set {z}↓ ⊆
X; objects from {z}↓ are considered as objects to which
attribute z applies;

• if a node labeled by z has as its successors nodes labeled
by z1, . . . , zn, then {{z1}↓, . . . , {zn}↓} is a partition of
{z}↓.

Remark 1: (1) The fact that {{z1}↓, . . . , {zn}↓} is a parti-
tion of {z}↓ means that, first, each {zi}↓ is non-empty; second,
for i 6= j we have {zi}↓ ∩ {zj}↓ = ∅ (attributes zi and zj

are disjoint); third, {z1}↓ ∪ · · · ∪ {zn}↓ = {z}↓ (attributes
z1, . . . , zn cover {z}↓).

(2) The definition of a structure describing several levels
of granularity may be more general. We work with the above
definition for the sake of simplicity.

Example 1: Consider Tab. I. Then one may consider a
simple gl-tree for attribute G with a root labeled by G,
two successors of the root, labeled by lG and dG, and the
corresponding sets of objects given by {G}↓ = {a,b, c,d, e},
{lG}↓ = {a,b,d}, {dG}↓ = {c, e}.

A selection of an appropriate level of granularity can be
described by the following notion of a cut in a gl-tree.

Definition 3: A cut in a gl-tree for y is a set C =
{y1, . . . , yn} of labels of nodes of the gl-tree such that for
each leaf node u, there exists exactly one node v on the path
from the root to u such that the label of v belongs to C.

Remark 2: (1) In other words, C is a cut if and only if
{{y1}↓, . . . , {yn}↓} is a partition of {y}↓. In formally, a cut
is a refinement of attribute y which can be obtained by moving
down the paths of the tree, starting in the root.

(2) For example, {G} and {lG,dG} are the only cuts of
the gl-tree from Example 1.

The relation of a refinement induces a partial order on the
set of all cuts of a given gl-tree by putting for cuts C1 =
{y1, . . . , yn} and C2 = {z1, . . . , zm},

C1 ≤ C2

iff {{y1}↓, . . . , {yn}↓} is a subpartition of
{{z1}↓, . . . , {zm}↓}. For instance, {lG,dG} ≤ {G}, cf.
above.

Let now 〈X, Y, I〉 be an input data table. Suppose that we
have for each attribute y ∈ Y a gl-tree Ty for y. Let for each
y ∈ Y , Cy be a cut in Ty and denote by

C = {Cy | y ∈ Y }

the collection of all these cuts. Each such a collection C
induces a data table 〈X, YC , IC〉 such that

YC =
⋃

y∈Y

Cy

and we put for each z ∈ YC

〈x, z〉 ∈ IC iff x ∈ {z}↓.

That is, 〈X, YC , IC〉 results from 〈X, Y, I〉 by replacing each
attribute y ∈ Y by the corresponding collection Cy of
attributes (refinements of y).

Example 2: For the example from Tab. I, putting C1 =
{{L}, {R}, {G}} and C2 = {{L}, {R}, {lG}, {dG}}, the left
table of Tab. I is just 〈X, YC1 , IC1〉 and the right table of Tab.
I is just 〈X, YC2 , IC2〉.

Remark 3: It is easy to see that putting C = {{y} | y ∈ Y }
we have 〈X, Y, I〉 = 〈X, YC , IC〉, according to intuition.

Denote the concept lattice corresponding to 〈X, YC , IC〉 by
B(X, YC , IC) or simply by BC .

Each collection C of cuts represents a selection of levels
of granularity of the attributes under consideration. Now,
the main question we are interested in the following: given
two selections C1 and C2 of levels of granularity, what is
the relationship between the corresponding concept lattices
B(X, YC1 , IC1) and B(X, YC2 , IC2)? Due to the limited scope,
we restrict ourselves to the condition when C1 is a refinement
of C2, denoted by

C1 ≤ C2,

meaning that for each y ∈ Y we have C1y ≤ C2y for the
corresponding cuts C1y ∈ C1 and C2y ∈ C2.

Theorem 4: If C1 ≤ C2 then for each formal concept
〈A,B〉 ∈ B(X, YC2 , IC2) there are formal concepts 〈Ak, Bk〉 ∈
B(X, YC1 , IC1), k ∈ K, such that A =

⋃
k∈K Ak.

Proof: Omitted due to lack of space.
The previous theorem says that if we refine our attributes

then the extent (cluster of objects) of each formal concept
from the concept lattice of the “rougher attributes” is a union
of extents (clusters of objects) of the concept lattice of the
“finer attributes”. We omit further theoretical description of
the relationships due to lack of space.

IV. ILLUSTRATIVE EXAMPLES

We now present illustrative examples. We use Hasse di-
agrams and label the nodes corresponding to formal con-
cepts by boxes containing concept descriptions. For example,
({1, 3, 7}, {a, b}) is a concept with extent {1, 3, 7} and in-
tent {a, b}. Consider a data table described in Tab. III. The



cause day time
accident 1 speed thursday 9-10
accident 2 alcohol friday 23-24
accident 3 priority saturday 9-10
accident 4 priority monday 9-10
accident 5 brakes saturday 10-11
accident 6 steering thursday 12-13
accident 7 steering sunday 10-11
accident 8 brakes monday 10-11
accident 9 speed monday 1-2

TABLE III
FORMAL CONTEXT GIVEN BY ACCIDENTS AND THEIR PROPERTIES.

table represents data about nine car accidents (accident 1,
. . . , accident 9) and their three attributes (cause, day, time).
Attribute cause describes the cause of the accident, attribute
day describes the day the accident happened, and attribute time
describes the time interval when the accident happened.

The accidents represent the objects, i.e. X has nine ele-
ments. We denote the accidents by their numbers only, i.e.
X = {1, . . . , 9}. In order to obtain data tables with binary
attributes, we may consider the following binary attributes and
the corresponding gl-trees:

• Attributes related to cause: The most general attribute
(root of the tree) will be called “cause”, it is the label
of the root of the tree and we have {cause}↓ = X .
The root has two successors labeled by “technical cause”
and “driver fault” and we have {technicalcause}↓ =
{5, 6, 7, 8} and {driverfault}↓ = {1, 2, 3, 4, 9}. Refine-
ments of “technical cause” are the attributes “steer-
ing” and “brakes” with {steering}↓ = {6, 7} and
{brakes}↓ = {5, 8}. Refinements of “driver fault”
are the attributes “alcohol”, “speed”, and “priority”
with {alcohol}↓ = {2}, {speed}↓ = {1, 9}, and
{priority}↓ = {3, 4}. The corresponding gl-tree is de-
picted in Fig. 1.

• Attributes related to day: The most general attribute (root
of the tree) will be called “day” and it has attributes
“working day” and “weekend”, and “monday”, dots,
“sunday” as refinements (we omit details).

• Attributes related to time: The most general attribute (root
of the tree) will be called “time” and it has attributes
“daytime” and “night”, and “0–1”, . . . , “23–0” as refine-
ments (we omit details).

Consider first a selection of granularity levels given by a
collection C = {Cc, Cd, Ct} with Cc = {brakes, steering,
alcohol, speed, priority}, Cd = {monday,. . . ,sunday}, Ct =
{0–1, . . . , 23–0}. The corresponding concept lattice is depicted
in Fig. 2.

Suppose now the user find the formal concepts too fine and
their number too large. The user can select other granularity
levels, e.g. those represented by a collection C = {Cc, Cd, Ct}
with Cc = {technical cause, driver fault}, Cd = {working
day,. . . ,weekend}, Ct = {daytime, night}. The corresponding
concept lattice is depicted in Fig. 3.

Both of the concept lattices provide a classification of the

Fig. 1. A gl-tree of attribute cause.

Cause
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AlcoholSteering SpeedBrakes Priority
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accidents. One can see that the concept lattice corresponding
to a smaller level of granularity has a less number of formal
concepts and that these concepts can be seen as providing a
rougher granulation of the set of objects and thus provides a
rougher classification.

V. CONCLUSIONS AND FUTURE RESEARCH

The paper presents preliminary results on incorporating the
idea of granulations and levels of granularity into formal
concept analysis. The main practical effect of the presented
approach is a possibility to control, in a parameterized way,
the number of extracted formal concepts from input data and
to control the granulation by means of the formal concepts.

The future research will be focused on the following topics.
• Relationships to conceptual scaling. In the framework of

FCA, many-valued (non-binary) attributes are handled
by means of so-called conceptual scaling [8]. There is
an obvious connection between the levels of attribute
granularity considered in this paper and different scalings
of many-valued attributes which needs to be explored.

• In addition to formal concepts, the other output of FCA
is represented by so-called attribute implications [8]. The
effect of changing granularity levels of attributes on the
extracted attribute implications and interesting subsets of
attribute implications (like non-redundant bases) will be
investigated.

• The basic setting of FCA was generalized to fuzzy
attributes in several papers, see e.g. [1], [2], [6], [10].
Investigation of the topics presented in this paper is a
natural way to continue the state of art.

• We presented only basic theoretical insight; the next step
is to look at further relationships between concept lattices



Fig. 2. Concept lattice of a data table from Tab. III with C = {Cc, Cd, Ct} and Cc = {brakes, steering, alcohol, speed, priority}, Cd = {monday,. . . ,sunday},
Ct = {0–1, . . . , 23–0}.

{{5, 7, 8},{10-11}}{{1, 3, 4},{9-10}}

{{4, 8, 9},
{monday}}

{{6, 7},
{steering}}

{{3, 5},
{saturday}}

{{1, 6},
{thursday}}

{{3, 4},{priority,  
9-10}}

{{4},{priority,  
monday, 9-10}}

{{3},{priority,  
saturday, 9-10}}

{{1, 9},{speed}}

{{1},{speed, 
thursday,9-10}}

{{5, 8},
{brakes,10-11}}

{{8},{brakes, 
monday,10-11}}

{{5},{brakes, 
saturday,10-11}}

{{9},{speed, 
monday, 1-2}}

{{6},{steering,  
thursday,12-13}}

{{2},{alcohol,  
friday, 23-24}}

{{7},{steering,  
sunday, 10-11}}
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Fig. 3. Concept lattice of a data table from Tab. III with C = {Cc, Cd, Ct} and Cc = {technical cause, driver fault}, Cd = {working day,. . . ,weekend},
Ct = {daytime, night}.

{{1, 3, 4, 5, 6, 7, 8},

{daytime}}

{{1, 2, 4, 6, 8, 9},

{working day}}

{{1, 4, 6, 8},

{working 

day,daytime}}

{{1, 2, 3, 4, 9},

{driver}}

{{1, 3, 4},{driver,  

daytime}}

{{1, 2, 4, 9},{driver,  

working day}}

{{1, 4},{driver,  

working day, daytime}}

{{5, 6, 7, 8},

{technical,daytime}}

{{6, 8},{technical,  

working 

day,daytime}}

{{3, 5, 7},

{weekend,daytime}}

{{3},{driver, 

weekend,daytime}}

{{5, 7},{technical,  

weekend,daytime}}

{{2, 9},{driver,  

working day, night}}
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of data with a changed level of granularity.
• Algorithms. Design of algorithms enabling to compute

a new concept lattice corresponding to a data with an
increased level of granularity with the help of the original
concept lattice.
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Bělohlável acknowledges support by by institutional support,
research plan MSM 6198959214.

REFERENCES
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[2] Bělohlávek R.: Concept lattices and order in fuzzy logic. Ann. Pure
Appl. Logic 128(2004), 277–298.
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