
22

The 8M Algorithm from Today’s Perspective

RADIM BELOHLAVEK and MARTIN TRNECKA, Palacký University Olomouc

We provide a detailed analysis and a first complete description of 8M—an old but virtually unknown algorithm
for Boolean matrix factorization. Even though the algorithm uses a rather limited insight into the factorization
problem from today’s perspective, we demonstrate that its performance is reasonably good compared to the
currently available algorithms. Our analysis reveals that this is due to certain concepts employed by 8M
that are not exploited by the current algorithms. We discuss the prospect of these concepts, utilize them
to improve two well-known current factorization algorithms, and, furthermore, propose an improvement of
8M itself, which significantly enhances the performance of the original 8M. Our findings are illustrated by
experimental evaluation.

CCS Concepts: • Computing methodologies → Factorization methods; • Theory of computation →
Design and analysis of algorithms; • Information systems → Information extraction;

Additional Key Words and Phrases: Boolean matrix factorization, algorithms

ACM Reference format:

Radim Belohlavek and Martin Trnecka. 2020. The 8M Algorithm from Today’s Perspective. ACM Trans. Knowl.

Discov. Data 15, 2, Article 22 (December 2020), 23 pages.
https://doi.org/10.1145/3428078

1 INTRODUCTION

1.1 Content in Brief

Boolean matrix factorization (BMF), or decomposition, has been subject of extensive research dur-
ing the recent past. Even though the first applications and fundamental results regarding the com-
plexity of factorization appeared already in the 1970s [21, 23], a more comprehensive exploration
of BMF, which led to development of various new methods for analysis and processing of Boolean
data and improved our understanding of Boolean data as regards foundational aspects, has only
been performed during the past decade or so. Most of the respective contributions have been de-
voted to the design of new factorization algorithms. To name some of the best-known currently
available factorization algorithms, let us recall Tiling [11], the nowadays classic Asso [18], Gre-
ConD [6], Hyper [25], PaNDa [15], GreEss [4], as well as various modifications of these algorithms
and variants of the factorization problems discussed in the above-mentioned papers as well as in,
e.g., [3, 12, 14, 16, 17, 19, 24].

This study is supported by the grant JG 2020 of Palacký University Olomouc, No. JG_2020_003. R. Belohlavek acknowledges
support by grants IGA 2019 of Palacký University Olomouc, No. IGA_PrF_2019_034 and IGA 2020, No. IGA_PrF_2020_019.
Authors’ addresses: R. Belohlavek and M. Trnecka, Department of Computer Science, Faculty of Science, Palacký
University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic; emails: radim.belohlavek@acm.org, martin.
trnecka@gmail.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
1556-4681/2020/12-ART22 $15.00
https://doi.org/10.1145/3428078

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 22. Publication date: December 2020.

https://doi.org/10.1145/3428078
mailto:permissions@acm.org
https://doi.org/10.1145/3428078

22:2 R. Belohlavek and M. Trnecka

In view of the extensive research on algorithms, it comes as a surprising fact that there exists
an old BMF algorithm, namely, the 8M algorithm, which is virtually unknown in the present re-
search on BMF. This fact is remarkable particularly in view of our experimental evaluations which
demonstrate that the 8M algorithm performs reasonably well even from today’s perspective, as
well as in view of the ideas upon which 8M is based and which are not exploited by the current
BMF algorithms.

We learned about this algorithm from Hana Řezanková who used it in her various works on
comparison of various clustering and factorization methods. A list of such papers may be found
e.g., in the references of [2]. Even though the performance of 8M may be partially assessed from
those works, the principles of 8M have never been discussed in the literature. In addition, only
parts of 8M’s description are available, namely, in the BMDP manual mentioned below.

The goals of our article are as follows. First, we provide a complete description of the 8M al-
gorithm, including its pseudo-code, and the description of its principles from today’s perspective.
Second, we propose an improvement of the 8M algorithm, which is based on current knowledge of
BMF and which improves the performance of 8M considerably. Third, we utilize one of the prin-
ciples of 8M, namely, revisiting previously generated factors, to enhance the performance of two
standard algorithms, namely, Asso and GreConD. Note at this point that we discussed the 8M
algorithm in our recent article [5], in which we were solely interested in one particular property
of this algorithm which we exploited in [5].

Our article is organized as follows. Notation and preliminaries are summarized in Section 1.2.
Section 2 provides a detailed description of 8M and our comments on its design from today’s per-
spective. Sections 3 describes our proposed improvements to 8M (Section 3.1) and to the standard
GreConD and Asso algorithms (Sections 3.2 and 3.3) which are inspired by 8M. Section 4 pro-
vides a detailed experimental evaluation of the basic 8M algorithm, its improvement we proposed,
as well as the improvements of Asso and GreConD. Section 5 concludes the article and outlines
topics to be explored in the future.

1.2 Notation and Preliminaries

By a Boolean matrix we mean a matrix whose entries are either 0 or 1. Such matrices appear in
several contexts. Basically, a Boolean matrix represents a relationship between the entities repre-
sented by the rows and the entities represented by the columns. A Boolean matrix may equivalently
be represented by a binary relation between a set representing the rows and a set representing the
columns, or by a bipartite graph between two sets of nodes (again representing rows and columns).
In addition to the literature on Boolean matrices themselves, relevant results appear in the litera-
ture on binary relations and graph theory. A classic text on Boolean matrices is the book [13]; see
also [7] and, for a relationally-oriented view of aspects related to factorization of Boolean matrices,
see [10, 22].

We shall denote the particular Boolean matrices by I , J , and the like, and shall denote the set
of all n ×m Boolean matrices, i.e., matrices with n rows andm columns, by {0, 1}n×m . The ith row
and jth column vector of I is denoted by Ii_ and I_j , respectively.

An input matrix I shall primarily be interpreted as an object-attribute incidence matrix (hence
the symbol I): The entry Ii j corresponding to the row i and the column j equals 1, i.e., Ii j = 1, or 0,
i.e., Ii j = 0, depending on whether the object i does or does not have the attribute j, respectively.
This is the basic interpretation used in applications of Boolean matrices.

The basic goal in BMF is to find for a given Boolean matrix I ∈ {0, 1}n×m two Boolean matrices,
A ∈ {0, 1}n×k and B ∈ {0, 1}k×m , for which

I ≈ A ◦ B, (1)

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 22. Publication date: December 2020.

The 8M Algorithm from Today’s Perspective 22:3

where ◦ is the Boolean matrix product, i.e.,

(A ◦ B)i j =
k

max
l=1

min(Ail ,Bl j),

and ≈ denotes equality or an appropriate approximate equality.
Note that a decomposition of I into A ◦ B may be interpreted as a discovery of k factors that ex-

actly or approximately explain the data. Interpreting I , A, and B as object-attribute, object-factor,
and factor-attribute matrices, model (1) reads: The object i has the attribute j if and only if there
exists factor l such that l applies to i and j is one of the particular manifestations of l . The least k
for which an exact decomposition I = A ◦ B exists is the well-known Boolean rank of I . The ap-
proximate equality ≈ in (1) is commonly assessed in BMF by the metric E (·, ·) defined for matrices
C,D ∈ {0, 1}n×m by

E (C,D) =
m,n∑
i, j=1

|Ci j − Di j |. (2)

Note that E is just the metric induced by the matrix L1-norm.
The above, somewhat ambiguously described goal of BMF to find an approximate decomposition

I ≈ A ◦ B naturally leads to two concrete variants of the BMF problem, which are considered in
the literature. First, one prescribes the number k of factors and attempts to find the most precise
decomposition using at most k factors. This problem is called the

Discrete Basis Problem (DBP) [18]: Given I ∈ {0, 1}n×m and a positive integer k , find
A ∈ {0, 1}n×k and B ∈ {0, 1}k×m that minimize E (I ,A ◦ B).

The second problem results by prescribing a required precision ε and attempting to find a de-
composition involving as few factors as possible which is at least ε-precise. This is called the

Approximate Factorization Problem (AFP) [6]: Given I and prescribed error ε ≥ 0, find
A ∈ {0, 1}n×k and B ∈ {0, 1}k×m with k as small as possible such that E (I ,A ◦ B) ≤ ε .

The DBP and the AFP reflect two important views of BMF. While the DBP emphasizes the
importance of the first few (presumably most important) factors, the AFP emphasizes the need to
account for (and thus to explain) a prescribed portion of data (prescribed by ε).

The following view of the committed error, E (I ,A ◦ B), is important for our considerations be-
low: E (I ,A ◦ B) has two parts, namely,

E (I ,A ◦ B) = Eu (I ,A ◦ B) + Eo (I ,A ◦ B), (3)

where Eu (I ,A ◦ B) = |{〈i, j〉 | Ii j = 1 and (A ◦ B)i j = 0}| and Eo (I ,A ◦ B) = |{〈i, j〉 | Ii j = 0 and
(A ◦ B)i j = 1}| are the so-called undercovering error and overcovering error, respectively.

Example 1.1. In our running example, we shall use the following 5 × 5 Boolean matrix:

I =

�������
�

0 0 0 1 1
1 1 1 0 0
1 0 0 1 0
1 1 1 1 1
0 1 0 0 1

�������
�

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 22. Publication date: December 2020.

22:4 R. Belohlavek and M. Trnecka

One easily observes that the matrix decomposes exactly into the product of the following matrices
A and B:

A =

�������
�

0 1 0 0
1 0 0 0
0 0 1 0
1 1 1 1
0 0 0 1

�������
�

, B =
�����
�

1 1 1 0 0
0 0 0 1 1
1 0 0 1 0
0 1 0 0 1

�����
�

,

i.e., I = A ◦ B. In fact, this decomposition, which uses 4 factors, has been found by the GreConD
algorithm mentioned above.

2 DESCRIPTION OF THE 8M ALGORITHM

2.1 History of 8M

The 8M method is one of the many data analysis methods available in an old and widely used
statistical software package known as BMDP. The acronym “BMDP” stands for “Bio-Medical Data
Package” (some sources say “BioMeDical Package”).1 The package was developed primarily for
biomedical applications since the 1960s at the University of California in Los Angeles (UCLA)
under the leadership of W. J. Dixon.2 BMDP was originally available for free, later through BMDP
Statistical Software, Inc., and then by its subsidiary, Statistical Solutions Ltd. As of 2017, BMDP is
no longer available.3

BMDP and its methods are described in several editions of manuals, starting with a 1961 manual
of BMD, a direct predecessor of BMDP. In our description of 8M, we use the 1992 edition [8], which
accompanies release 7 of BMDP. There, 8M is described in chapter “Boolean factor analysis” on
pp. 933–945, written by M.R. Mickey, L. Engelman, and P. Mundle, and in Appendix B.11 on pp.
1401–1403. The name “8M” is just a catalogue code of the method in BMDP (for instance, “4M”
denotes classical factor analysis in BMDP).

The 8M method has been added to BMDP in the late 1970s: it was not part of the 1979 manual
but it is part along with other new methods in the next version, whose revised printing appeared
in 1983. In addition to 8M, the 1983 manual contains 41 other methods of BMDP. According to this
edition, 8M is based on research done by the statistician M. Ray Mickey of the UCLA, was designed
by Mickey with contributions from Laszlo Engelman, and was programmed by Peter Mundle and
Engelman.4

2.2 Description of 8M

The description of 8M in the manual [8] is reasonably detailed. Nevertheless, the description is
aimed at the users of the method. It is far from offering a possibility to implement the method,
does not provide a comprehensible rationale of the method, and some parts of the algorithm are
missing in the description. As to the procedural details, we therefore examined the step-by-step
program behavior on various data to figure out the unclear parts until our own implementation
of 8M yielded the same results as the implementation of 8M in the BMDP software, which we

1The package grew out from an older computer program BIMED, which was developed for biomedical applications, and
was first called BMD. Since the implemented methods allowed a parameterized format, the letter “P” was added. Later, “P”
was interpreted as standing for “Package.”
2Wilfrid Joseph Dixon (1915–2008) was an American mathematician and statistician who made notable contributions to
nonparametric statistics.
3We crosschecked our implementation against the version of BMDP we purchased in 2015 from Statistical Solutions Ltd.
4The references of the BMDP manual include some papers by Mickey but none of them concerns 8M and Boolean factor
analysis.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 22. Publication date: December 2020.

The 8M Algorithm from Today’s Perspective 22:5

purchased from from Statistical Solutions Ltd. in 2015. As to the rationale of 8M, we provide our
explanation of the particular steps of 8M below.

Basic Idea. The basic idea of 8M may be described as follows. The algorithm takes as its input
four parameters: An n ×m Boolean matrix I (the object-attribute matrix to be decomposed), a
number k of desired factors, and two auxiliary parameters, a number init of initial factors, and a
number cost used to refine the factors being computed. The desired output consists of n × k and
k ×m Boolean matrices A (object-factor matrix) and B (factor-attribute matrix).

The algorithm starts by computing the initial factors, the number of the initial factors is init.
Then the algorithm iteratively computes new factors until k desired factors are obtained. The
way 8M computes the factors is very different from the current BMF algorithms in two respects.
The first consists in the way the new factors are generated. The second, more significant difference
consists in the fact that the previously generated factors are revisited and some of them are possibly
dropped. The corresponding procedures are described in detail below.

Remark 2.1. 8M’s revisiting of the previously generated factors is an interesting property. Even
though the way 8M revisits the factors is rather straightforward and—as we shall see in Section 4—
may considerably be improved, it directly relates to a topic of fundamental importance that is not
properly addressed in the existing papers, namely the behavior of the parts Eu and Eo of the error
function E; see (3).

In particular, while the undercovering and overcovering error, Eu and Eo , seem symmetric, they
are not symmetric from the viewpoint of BMF algorithm design. Namely, due to the NP-hardness
of the various variants of the decomposition problem [23], most of the current factorization algo-
rithms are heuristic approximation algorithms computing the factors one-by-one until a satisfac-
tory factorization is obtained.

It is immediate from the definitions that Eu is nonincreasing and Eo is nondecreasing in that
as new factors are successively computed by a given algorithm, Eu may only decrease or have
the same value and Eo may only increase or have the same value. Now, by computing a certain
number, say k , factors, an algorithm commits a certain undercover error Eu and certain overcover
error Eo . It thus follows from the properties just mentioned that while committing the Eu error may
be repaired by adding further factors, committing the Eo error will never be repaired by adding
further factors and must thus be carefully considered. Parts (a), (b), and (c) of Figure 1 illustrate this
property: They display graphs of Eu and Eo in dependence on the number of factors successively
generated by the classic Asso algorithm [18] when factorizing the Chess, DNA, and Mushroom
data (see Section 4). Notice also part (d) of Figure 1 which displays such a graph for GreConD. As
is well known, GreConD along with several other algorithms does not commit Eo at all due to its
design. As we show below in Section 3.3, revisiting and dropping factors makes sense even in this
case.

It is clear from this perspective that revisiting and possibly dropping previously generated fac-
tors is a natural procedure to cope with the problem of nondecreasing Eo error. It is therefore
interesting that while the current algorithms do not use any kind of revisiting, the old 8M already
used this idea.

Detailed Description and Pseudocode of 8M (algorithm 1). To compute n × k and k ×m Boolean
matrices A and B given the input n ×m Boolean matrix I , the prescribed number init of initial
factors, the desired number k of factors, and the parameter cost, the algorithm 8M (algorithm 1)
proceeds as follows.

Note first that the computed factors are represented by the Boolean matrices A and B in the
following way, which is standard in BMF: every factor, say factor l , is represented by the column l

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 22. Publication date: December 2020.

22:6 R. Belohlavek and M. Trnecka

(b) on DNA

(c) on Mushroom

(a) on Chess

(d) on Mushroom

Fig. 1. Typical behavior of Eu and Eo .

of matrix A and the row l of matrix B. As new factors are computed and added to matrices A and
B, the matrices A and B grow in their number of columns and rows, respectively. At the end, after
the algorithm finishes its computation of the final k factors, the algorithm therefore outputs an
n × k matrix A and a k ×m matrix B.

To start the process of computing and adding new factors, the algorithm needs to initialize the
matrices A and B. This is done by computing init initial factors. These factors are used to initialize
A and B on l. 1 as follows: A is set to the n × init matrix 0n×init full of 0s; and B is set to a init ×m
matrix computed by the procedure ComputeInitialFactors, which is described below. Note at
this point that by default, init = k − 2, but in general, init is set by the user. The variable f storing
the number of the currently computed factors is set accordingly (l. 2). The matricesA andB are then
refined (l. 3) by the procedure RefineMatricesAB described below. The algorithm then enters a
loop (l. 5–17) whose purpose is to add new factors and remove some of the previously generated
ones until the desired number k of factors is reached for the second time or all 1s in I are covered
by A ◦ B, i.e., we have Ii j ≤ (A ◦ B)i j for all i, j (l. 5).

A new factor is computed and added to the previously computed factors in l. 6–8 of 8M by
computing first the positive part Δ+ of the discrepancy matrix Δ = I −A ◦ B: One adds to A as

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 22. Publication date: December 2020.

The 8M Algorithm from Today’s Perspective 22:7

ALGORITHM 1: 8M
Input: Boolean n ×m matrix I , desired number of factors k , number init of initial factors, number cost

Output: Boolean matrices A and B

1 B ← ComputeInitialFactors(init); A← 0n×init

2 f ← init

3 RefineMatricesAB(A,B, I , cost)

4 kReached ← 0

5 while kReached < 2 or I ≤ A ◦ B do

6 foreach 〈i, j〉 do if Ii j > (A ◦ B)i j then Δ+i j ← 1 else Δ+i j ← 0

7 add column j of Δ+ with the largest count of 1s as new column to A

8 add row of 0s as new row to B and set entry j of this row to 1

9 f ← f + 1

10 RefineMatricesAB(A,B, I , cost)

11 if another two new factors were added then

12 remove column A_(f −2) from A and row B(f −2)_ from B

13 f ← f − 1

14 RefineMatricesAB(A,B, I , cost)

15 end

16 if f = k then kReached ← kReached + 1

17 end

18 return A,B

new column the column j of Δ+ containing the largest number of 1s, and adds to B a row of 0s
with 1 at position j in this row. The variable f is then incremented in l. 9.

The addition of new factor described in the previous paragraph ensures that all 1s in the column
j of I that are not covered by the factors computed so far get covered by the new factor; since the
column j contains the largest number of such uncovered 1s, the selection of a new factor represents
a greedy strategy.

Whenever a new factor is added or a previously computed factor is removed,A and B are refined
(in l. 10 after addition, in l. 14 after removal). Adding and removing factors is performed according
to the following scheme. One starts with f = init factors, adds two factors so that f + 2 factors
are obtained, then removes the factor generated two steps back, i.e., the f th factor, adds another
two factors, removes a factor generated two steps back, and so on. Hence, starting with init = 2
factors, one successively obtains

2, 3, 4, 3, 4, 5, 4, 5, 6, 5, 6, 7, 6, 7, 8, . . .

factors. One stops when the desired number k of factors is obtained the second time. For instance,
if k = 6 one computes the sequence of

2, 3, 4, 3, 4, 5, 4, 5, 6, 5, 6

factors, and the last six factors are the final factors output by the algorithm (provided the algorithm
does not stop due to the second condition in l. 5).

The initial factors are computed by ComputeInitialFactors (Algorithm 2) as follows. First, an
m ×m matrixC is computed in whichCi j = 1 iff column i is included in column j in I (i.e., Iqi ≤ Iqj

for each q) and column i is not empty (i.e., contains at least one 1). Second, one removes duplicate
rows from C: If C contains several identical rows, one keeps just the first of them and removes
the others. One then goes through the rows i of C , i = 1, 2, . . . , and adds them as new rows of B

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 22. Publication date: December 2020.

22:8 R. Belohlavek and M. Trnecka

ALGORITHM 2: ComputeInitialFactors
Input: n ×m Boolean matrix I and the number ofinitial factors init
Output: init ×m Boolean matrix B

1 C ←m ×m Boolean matrix with all entries equal to 0

2 foreach Ci j do

3 if I_i ≤ I_j and |I_i | > 0 then

4 Ci j ← 1

5 end

6 end

7 remove all duplicate and empty rows from C

8 f ← 0

9 foreach row i ∈ 1, . . . ,m of matrix C do

10 if Cki = 0 for all k � i then

11 f ← f + 1

12 add row Ci_ as a new row to B

13 end

14 if f = init then

15 return B

16 end

17 end

until init rows have been added: row i ofC is added to B provided no other row ofC contains 1 at
position i .

Remark 2.2. Initialization of the factors is an important step in 8M in that the quality of the
computed factorization depends on it. As we shall see in Section 4.1, the original initialization of
8M may significantly be improved. A new initialization is part of our improvement of 8M.

Let us point out an interesting observation. Computing the association matrix in the classic
Asso algorithm [18] is a kind of initialization. In particular, the vectors of the association matrix
serve as the candidate B-parts of factors. Now, it is easy to observe that to select the rows of the
association matrix, Asso uses basically the same strategy as 8M, except that its strategy is more
general in the following sense (we disregard the technical difference in how 8M and Asso handle
empty columns): Where 8M tests inclusion of columns i and j (l. 3 of Algorithm 2), Asso tests
partial inclusion rather than (full) inclusion. More precisely, Asso tests whether the degree of
partial inclusion of column i in column j, defined by

incl (i, j) =
|{k ; Iki = 1 and Ik j = 1}|

|{k | Iki = 1}| , (4)

is greater than or equal to a user-specified threshold τ (equivalently, in terms of association rules,
whether the confidence of the association rule {i} ⇒ {j} is ≥ τ). For τ = 1, partial inclusion be-
comes (full) inclusion, hence setting τ = 1 would yield the same vectors in the association matrix
of Asso as what 8M uses as the rows in matrix C , i.e., as the B-parts of potential initial factors.
We demonstrate in Section 4.1 that the more general initialization strategy using partial inclusion
yields better results (both for Asso and 8M).

Refining of A and B by RefineMatricesAB (Algorithm 3) consists in performing a cycle until
A and B do not change with the additional condition that the cycle is run at most three times.
In each cycle, A is computed from I , B, and the parameter cost by a so-called Boolean regression

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 22. Publication date: December 2020.

The 8M Algorithm from Today’s Perspective 22:9

ALGORITHM 3: RefineMatricesAB
Input: Boolean matrices A, B, I , number cost

1 repeat

2 RefineMatrixA(A,B, I , cost)

3 RefineMatrixB(A,B, I , cost)

4 until loop executed 3 times or A and B did not change

described in RefineMatrixA (Algorithm 4), followed by computing symmetrically B from I , A,
and cost using RefineMatrixB (Algorithm 5).

We now describe the so-called Boolean regression employed in 8M, and explain how this pro-
cedure is implemented in RefineMatrixA (Algorithm 4); RefineMatrixB is symmetric. The es-
sential idea of Boolean regression consists in that given matrices I and B, and the parameter cost,
one determines the matrix A in such a way that a desired measure of quality gets maximized. For
this measure, one considers

n,m∑
i=1, j=1

Mi j =

n,m∑
i=1, j=1

(
Ii j

f
max
l=1

Ail · Bl j − cost · (1 − Ii j) ·
f

max
l=1

Ail · Bl j

)
.

Since max
f

l=1
Ail · Bl j = 1 iff (A ◦ B)i j = 1, one easily observes that

∑n,m
i=1, j=1 Mi j is the number of

entries 〈i, j〉 for which Ii j = 1 and (A ◦ B)i j = 1 (the factorization model, represented by A and B,
makes a correct prediction of existing incidence Ii j = 1) minus cost times the number of entries
〈i, j〉 for which Ii j = 0 and (A ◦ B)i j = 1 (the model makes a wrong prediction of non-existing in-
cidence Ii j = 0). To determine A, one proceeds row by row (l. 1 in RefineMatrixA). Notice that
since B and I are fixed, one attempts to set the row i of A so that the measure

∑n,m
i=1, j=1 Mi j , or

equivalently—since only row i is considered at this point—that the measure Mi =
∑m

j=1 Mi j is max-
imized. Appropriate initializations are made in l. 2: y is set to the ith row of I , Z is set to B, and all
entries in the ith row Ai_ of A are set to 0. In the loop in l. 3–16, one attempts to select the best
entry p in the row Ai_ to be set to 1, i.e., Aip = 1 (l. 9), until no such setting brings improvement in
Mi (l. 16). Note that mp denotes the best value Mi possible by such setting and that the candidate
valuesml are obtained in l. 5 according to the rationale described above. After p is determined and
Aip set to 1, one updates Z and y in the loop in l. 10–14 to make possible the choice of the next
best entry (keeping Z and y would prevent us from finding another entry p).

Notice that this form of regression may be modified according to one’s preference regarding the
significance of the four possible possibilities of prediction by the model, namely Ii j = 0 or Ii j = 1
and (A ◦ B)i j = 0 and (A ◦ B)i j = 1.

2.3 Illustrative Example

Consider again the matrix I in Example 1.1. Suppose we run 8M with I as the matrix to be de-
composed with the requirement that the number of desired factors be k = 4, the number of initial
factors be init = 2, and the parameter cost = 1.

To compute the initial factors, the algorithm first computes the auxiliary matrixC , which in this
case turns to be

C =

�������
�

1 0 0 0 0
0 1 0 0 0
1 1 1 0 0
0 0 0 1 0
0 0 0 0 1

�������
�

.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 22. Publication date: December 2020.

22:10 R. Belohlavek and M. Trnecka

ALGORITHM 4: RefineMatrixA
Input: Boolean matrices A, B, I and cost
Output: Refined matrix A

1 foreach row i ∈ {1, . . . ,n} do

2 y ← Ii_; Z ← B; Ai_ ← 0

3 repeat

4 foreach factor l ∈ 1, . . . , f do

5 ml ←
∑m

j=1 yj · Zl j − cost ·∑m
j=1 (1 − yj) · Zl j

6 end

7 select p for whichmp = maxl ml

8 if mp > 0 then

9 Aip ← 1

10 foreach j ∈ {1, . . . ,m} do

11 if Zpj = 1 then

12 Z_j ← 0; yj ← 0

13 end

14 end

15 end

16 untilmp ≤ 0

17 end

ALGORITHM 5: RefineMatrixB
Input: Boolean matrices A, B, I and cost
Output: Refined matrix B

1 foreach column i ∈ {1, . . . ,m} do

2 y ← I_i ; Z ← A; B_i ← 0

3 repeat

4 foreach factor l ∈ 1, . . . , f do

5 ml ←
∑n

j=1 yj · Z jl − cost ·∑n
j=1 (1 − yj) · Z jl

6 end

7 select p for whichmp = maxl ml

8 if mp > 0 then

9 Bpi ← 1

10 foreach j ∈ {1, . . . ,n} do

11 if Z jp = 1 then

12 Z j_ ← 0; yj_ ← 0

13 end

14 end

15 end

16 untilmp ≤ 0

17 end

Recall that Ci j = 1 iff column i is included in column j in the input matrix I . We therefore have,
e.g., C31 = 1, because the third column in I is included in the first. Since C does not contain any
duplicate rows or empty rows, the algorithm proceeds by computing the matrix B representing
the initial factors, and obtains

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 22. Publication date: December 2020.

The 8M Algorithm from Today’s Perspective 22:11

B =

(
1 1 1 0 0
0 0 0 1 0

)
.

Note that B consists of the third and the fourth rows of C; the first two rows of C are not selected
as rows of B because the entries j with 1 in these rows contain 1 in the third row as well.

Given this matrix B and the matrixA full of zeros (l. 1 in Algorithm 1), one proceeds with refining
matrices A and B in l. 3. This proceeds in an iterative manner by computing first the matrix

A =

�������
�

0 1
1 0
0 1
1 1
0 0

�������
�

,

then computing

B =

(
1 1 1 0 0
0 0 0 1 1

)
,

followed by

A =

�������
�

0 1
1 0
0 0
1 1
0 0

�������
�

,

and

B =

(
1 1 1 0 0
0 0 0 1 1

)
,

after which the refinement ends. A new factor is added to A and B based on Δ+, resulting in

A =

�������
�

0 1 0
1 0 0
0 0 1
1 1 0
0 0 0

�������
�

, B = ��
�

1 1 1 0 0
0 0 0 1 1
1 0 0 0 0

��
�
.

A refinement of these matrices results in

A =

�������
�

0 1 0
1 0 0
0 0 1
1 1 0
0 0 0

�������
�

, B = ��
�

1 1 1 0 0
0 0 0 1 1
1 0 0 1 0

��
�
.

Adding a new factor one obtains

A =

�������
�

0 1 0 0
1 0 0 0
0 0 1 0
1 1 0 0
0 0 0 1

�������
�

, B =
�����
�

1 1 1 0 0
0 0 0 1 1
1 0 0 1 0
0 1 0 0 0

�����
�

.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 22. Publication date: December 2020.

22:12 R. Belohlavek and M. Trnecka

At this point, f = 4, hence the required number of factors is reached for the first time. Subse-
quently, the second factor (namely, 2 = f − 2 at this point) is removed from A and B and the ma-
trices are refined again, resulting in

A =

�������
�

0 0 0
1 0 1
0 1 0
1 0 1
0 0 0

�������
�

, B = ��
�

0 0 0 1 1
1 0 0 1 0
1 1 1 0 0

��
�
.

A new factor is added and refinement is performed, resulting in

A =

�������
�

1 0 0 0
0 0 1 0
0 1 0 0
1 0 1 0
0 0 0 1

�������
�

and B =
�����
�

0 0 0 1 1
1 0 0 1 0
1 1 1 0 0
0 1 0 0 1

�����
�

.

Since the algorithm reached the required number of factors for the second time, it ends. Notice
that in this case, 8M obtained an exact decomposition, i.e., I = A ◦ B.

3 IMPROVEMENTS OF ALGORITHMS BASED ON 8M

3.1 Improving 8M

Initialization. Our first improvement of the 8M algorithm consists in replacing the 8M’s compu-
tation of initial factors in l. 1 of Algorithm 1. As mentioned in remark 2.2, the matrix C computed
as part of the initialization in 8M may be regarded as a particular case of what Asso uses as its
association matrix, namely, a case with the user-specified parameter τ equals 1. Our experience
with Asso shows that setting τ = 1, i.e., refraining to full subsethood in computing associations
of attributes, does not yield particularly good results compared to when τ is set to lower values
such as around 0.8. A similar trend is observed when the matrix C in 8M’s original initialization
is computed using partial inclusion in dependence on a parameter τ , i.e., when the entryCi j is set
according to

Ci j =

{
1 if incl (i, j) ≥ τ
0 if incl (i, j) < τ

where incl (i, j) is the degree of partial inclusion of the column i in the column j of the input matrix
I defined by (4). This behavior is illustrated in Section 4.1.

Nevertheless, instead of computing the init initial factors by the procedure ComputeIni-
tialFactors, as done by the original 8M, or the above-described improved version via partial
inclusion, one may compute the first init initial factors by the simple and efficient GreConD
algorithm, which results in an even better factorization. This enhanced version of 8M shall be
denoted 8M+ here and in Section 4, in which we provide experimental comparison of 8M and
8M+. The initial factors are computed by GreConD in time that does not impair the overall
computation time of the resulting algorithm considerably. Importantly, since the first factors
computed by GreConD are generally the most important ones (of all the factors computed by
GreConD) due to the design of GreConD, and since these factors appear to be good factors in
terms of their coverage of the input data (see e.g., [4, 6]), using these factors as initial factors
provide a better choice compared to the initialization of the original 8M, which is somewhat

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 22. Publication date: December 2020.

The 8M Algorithm from Today’s Perspective 22:13

simplistic. Another advantageous property of the initial factors obtained by GreConD consists
in the fact that these factors commit no overcovering error Eo ; see (3).

Revisiting previously generated factors. In Section 4.4, we moreover examine yet another modifi-
cation of 8M, which consists in employing a different strategy of dropping the previously generated
factors. This modification is inspired by the fact that the strategy used by 8M appears somewhat
rigid (after computing two new factors, one factor must always be removed) and, moreover, 8M
completely ignores the quality of the factor to be removed and its relationship to the other com-
puted factors (when a factor is to be removed, it is always the one computed two steps back).

3.2 Improving Asso

As was mentioned above, the idea of revisiting and possibly dropping the previously generated
factors, which is utilized in a particular way by 8M, is not employed by the current BMF algorithms.
This idea appears rather natural in view of remark 2.1, particularly for algorithms which generate
factors one-by-one and commit the overcovering error Eo , such as Asso: Since Eo never decreases
by adding further factors, it makes sense to inspect, at every moment a new factor is generated,
previous factors and remove one whose significance is small in view of all the factors generated up
to the moment. In the worst case, there may exist a previously generated factor which contributes
to the overcovering error by a large extent and which does not contribute to a decrease of the
undercover error Eu at all (the latter occurs when all the ones in the factorized matrix I are covered
by the other factors). Such a bad factor is a candidate for being removed from the set of the factors
computed so far.

The pseudocode of the modified Asso algorithm is detailed in Algorithm 6 along with the aux-
iliary Algorithm 7. Since the algorithm is generally known, see e.g., [18], we restrict to noting that
the procedure of revisiting and possibly dropping the computed factors is included in l. 19–27.
Note that a factor l is removed if the condition on l. 25 is satisfied. This requires that the increase
in error, E (I ,X ◦ Y) − E (I , S ◦ B), which results by dropping the factor, does not exceed p · |C |, i.e.,
does not exceed the proportion of the number |C | of 1s in the input matrixC given by the parame-
ter p. Note also that as usual in considerations on Asso, the input n ×m Boolean matrix is denoted
C , the association matrix by A, and the matrices to which C is to be decomposed by S and B, and
that by ¬ we denote the binary complement, i.e., ¬0 = 1 and ¬1 = 0.

3.3 Improving GreConD

A similar modification to the one described in the previous section for Asso may be applied to the
GreConD algorithm. Again, since GreConD is described and widely used in the literature, see e.g.,
[4], we restrict our description of the modified algorithm (Algorithm 8 along with Algorithm 9).
The modification consists in adding in l. 15–23 a loop in which the previously generated factors
are revisited and those satisfying the condition on l. 20 are removed, according to an analogous
logic used for Asso in the previous section. A difference compared to our modification of Asso
consists in that the factors are revisited only when all of them are computed, rather then after
computation of every particular factor. Revisiting the factors each time a new factor would also be
possible but as it yields comparable results, we do not discuss it further.

4 EXPERIMENTAL EVALUATION

Our evaluation involves the real-world datasets Apj [9], DNA [20], Emea [9], Chess [1], Firewall
1 [9], Firewall 2 [9], Mushroom [1], and Paleo5. These datasets are well known and commonly used

5NOWpublic release 030717, available from http://www.helsinki.fi/science/now/.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 22. Publication date: December 2020.

http://www.helsinki.fi/science/now/

22:14 R. Belohlavek and M. Trnecka

ALGORITHM 6: Modified Asso algorithm

Input: n ×m Boolean matrix C , a desired number of factors k , a threshold value τ ∈ (0, 1], real-valued
weights w+, w− and a parameter ϵ

Output: Boolean matrices S and B

1 for i = 1, . . . ,m do

2 for j = 1, . . . ,m do

3 if confidence of association rule {i} ⇒ {j} is ≥ τ then

4 Ai j = 1

5 else

6 Ai j = 0

7 end

8 end

9 end

10 S ← empty matrix

11 B ← empty matrix

12 for l = 1, . . . ,k do

13 foreach row Al_ in A do

14 〈cl , el 〉 ← Cover(Al_,C,S,B,w
+,w−)

15 end

16 select i for which ci is maximal

17 add column ei as new column to S

18 add row Ai_ as new row to B

19 foreach factor j = l , . . . , 1 do

20 X ← S

21 Y ← B

22 remove column X_j from X

23 remove row Yj_ from Y

24 if E (I ,X ◦ Y) − E (I ,S ◦ B) ≤ p · |C | then

25 remove column S_j from S and row Bj_ from B

26 end

27 end

28 end

29 return S and B

in the literature on BMF. Their characteristics are provided in Table 1. Note that in Table 1, size
refers to the number of objects × number of attributes and that density is the percentage of the
entries with 1 of the dataset, i.e., the ratio |I |

n ·m , in which

|I | = |{〈i, j〉 | Ii j = 1}| (5)

is the number of 1s in the matrix I . Moreover, we used two collections, X1 and X2, of synthetic
datasets. Each collection includes 1,000 randomly generated matrices obtained as Boolean products
A ◦ B of 1, 000 × 40 and 40 × 500 matrices A and B which are randomly generated. The average
densities of datasets included in X1 is 0.15. In the case of X2, the average densities are 0.2.

We use the algorithms mentioned in Section 1, namely, Tiling, Asso, GreConD, Hyper, and
PaNDa, and we compare them with the original 8M algorithm.

To assess the quality of the algorithms, we use the commonly employed coverage c of the input
data I by the first l computed factors, i.e., by the n × l and l ×m matrices A and B, defined by

c (l) = 1 − E (I ,A ◦ B)/|I |,
ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 22. Publication date: December 2020.

The 8M Algorithm from Today’s Perspective 22:15

ALGORITHM 7: Cover function of Asso algorithm

Input: A candidate row row , Boolean matrices C , S , B, w+, w−

Output: A pair 〈cover , s〉 where cover is the value of cover function for candidate row and column s
computed for the candidate

1 uncovered ← 1n×m

2 s ← 0n×1

3 foreach 〈i, j〉 do

4 if (S ◦ B)i j = 1 then

5 uncoveredi j ← 0

6 end

7 end

8 foreach row Ci_ in C do

9 costi = w
+∑m

j=1 row j · uncoveredi j −w−
∑m

j=1 ¬row j · uncoveredi j

10 if costi < 0 then

11 costi ← 0

12 else

13 sj ← 1

14 end

15 end

16 cover =
∑n

i=1 costi
17 return 〈cover , s〉

in which |I | is the number of 1s in I (5). For 8M we used the default recommendation cost = 1 and
used various values for init.

4.1 Evaluating 8M and Its Improvement 8M+

8M vs. other BMF algorithms. We first consider how the original 8M algorithm compares with
the selected existing BMF algorithms described above in this section. The results are displayed in
Figure 2. The graphs depict the coverage c (l) of the first l factors generated by the algorithms.
One may observe that 8M compares fairly well with the current algorithms. It even outperforms
PaNDa on all datasets and on most of those we experimented with. On some data, 8M outperforms
Asso and very often it outperforms Hyper in its coverage by the first few factors.

Initialization of 8M via partial inclusion. Next, we illustrate the role of full inclusion and partial
inclusion in initialization of 8M as described in remark 2.2 and the first part of Section 3.1. The left
part of Figure 3 illustrates the effect of τ on the coverage by factors of Asso; the right part illustrates
such an effect of τ on 8M. The observed behavior is typical and appears in a fairly similar manner
on other datasets as well. It is seen that τ = 1 represents the worst choice of the parameter τ . For
8M, this means that the generalized intitialization via partial inclusion indeed represents a natural
improvement of the original algorithm.

Evaluation of 8M +. Next we compare the original 8M to 8M+, i.e., to our improvement based on
the initialization inspired by GreConD, as described in Section 3.1. This initialization fares even
better than the one based on partial inclusion examined in the previous paragraph. The results
are displayed in Figure 4. One may observe from the graphs that the improvement is significant.
The 8M+ algorithm delivers factors with larger coverage for the smaller numbers of factors than
8M. Additionally, the overall coverage of input data obtained via 8M+ is (sometimes significantly)
bigger than coverage in case of 8M. Moreover, taking into account Figure 2, one can see that this
improvement makes the new algorithm an interesting rival to the current algorithms.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 22. Publication date: December 2020.

22:16 R. Belohlavek and M. Trnecka

(a) Chess (b) Firewall 1

(c) Firewall 2 (d) Mushroom

(e) Set X1 () Set X2

Fig. 2. Coverage quality of the first l factors on real and synthetic data.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 22. Publication date: December 2020.

The 8M Algorithm from Today’s Perspective 22:17

ALGORITHM 8: Modified GreConD algorithm

Input: n ×m Boolean matrix I and parameter ϵ
Output: Boolean matrices A and B

1 A← empty matrix

2 B ← empty matrix

3 while |I −A ◦ B | > 0 do

4 D ← 01×m

5 v ← 0

6 while there is index j such that D j = 0 and Cover(D, j, I ,A,B) > v do

7 j ← arg maxj,D j=0 Cover(D, j, I ,A,B)

8 D j ← 1

9 D ← D↓↑

10 v ← Cover(D, j, I ,A,B)

11 end

12 add column D↓ as new column to A

13 add row D as new row to B

14 end

15 foreach factor l = k, . . . , 1 do

16 X ← A

17 Y ← B

18 remove column X_l from X

19 remove row Yl_ from Y

20 if E (I ,X ◦ Y) − E (I ,S ◦ B) ≤ p · |C | then

21 remove column A_l from A and row Bl_ from B

22 end

23 end

24 return A and B

ALGORITHM 9: Cover function of GreConD algorithm

Input: A candidate row D, an index j, Boolean matrices I , A, B
Output: A number of elements in I covered by A ◦ B

1 D j ← 1

2 add column D↓ as new column to A

3 add row D as new row to B

4 cover ← ∑n,m
i=1, j=1 (A ◦ B)i j

5 return cover

4.2 Evaluating the Improved Asso Algorithm

We now consider the improvement to the Asso algorithm inspired by 8M, as described in
Section 3.2. The results are presented in Table 2. The columns represent the results for the original
Asso and the improved Asso for various values of parameter p, namely, p = 0, 0.01, . . . , 0.05 (see
Section 3.2). The rows labeled “k” represent the number of factors obtained by the particular algo-
rithm on the given dataset. The number k is the number of factors for which the algorithm obtains
the most precise factorization (i.e., the smallest error E, or, equivalently, the largest coverage c).
Therefore, due to the logic of the algorithms, k is the number of factors after which the algorithm
stops producing further factors. The rows labeled “c” contain the coverage of the computed fac-

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 22. Publication date: December 2020.

22:18 R. Belohlavek and M. Trnecka

Table 1. Datasets and Their Characteristics

dataset size density
Apj 2,044 × 1,164 0.003
Chess 3,196 × 76 0.487
DNA 4,590 × 392 0.015
Emea 3,046 × 35 0.068
Firewall 1 365 × 709 0.124
Firewall 2 325 × 590 0.190
Mushroom 8,124 × 119 0.193
Paleo 501 × 139 0.051

(a) (b) 8M with initialization via partial inclusion

Fig. 3. Factorization of the Chess dataset for selected values of τ .

Table 2. Improvements to the Asso Algorithm

Dataset orig. Asso improved Asso with parameter p
p = 0 p = 0.01 p = 0.02 p = 0.03 p = 0.04 p = 0.05

Apj k 455 454 408 380 362 344 327
c 0.975 0.975 0.965 0.955 0.945 0.935 0.925

Chess k 53 53 33 28 25 22 21
c 0.848 0.848 0.839 0.831 0.821 0.809 0.804

DNA k 280 280 213 186 167 153 141
c 0.912 0.912 0.902 0.892 0.882 0.872 0.862

Emea k 32 32 27 25 24 23 22
c 0.972 0.972 0.965 0.956 0.949 0.942 0.933

Firewall 1 k 48 47 11 5 4 3 3
c 0.924 0.924 0.914 0.906 0.899 0.887 0.887

Firewall 2 k 8 8 4 4 4 4 3
c 0.999 0.999 0.998 0.998 0.998 0.998 0.958

Mushroom k 95 94 68 62 57 51 47
c 0.837 0.837 0.827 0.818 0.808 0.845 0.831

Paleo k 130 130 127 123 120 117 114
c 0.975 0.975 0.966 0.955 0.945 0.936 0.926

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 22. Publication date: December 2020.

The 8M Algorithm from Today’s Perspective 22:19

(a) Chess (b) Firewall 1

(c) Mushroom (d) DNA

(e) Paleo () Apj

Fig. 4. Coverage quality of the first l factors on real data: 8M vs. 8M+.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 22. Publication date: December 2020.

22:20 R. Belohlavek and M. Trnecka

(a) Chess (b) DNA

Fig. 5. Normalized overcover error of Asso and its improvement.

torization using k factors. Thus, for instance, when factorizing the Emea data, the original Asso
needs 32 factors to obtain a very precise factorization, namely, with c = 0.972. Our modification
with p = 0.02 requires only 25 factors for computing a factorization which is highly accurate as
well, namely one with coverage c = 0.956. From Table 2, one may easily observe that the reduction
of factors is significant while the overall coverage is only slightly affected. These results confirm
that the idea of revisiting and dropping factors, which is inspired by 8M, is natural for the reasons
described in Section 3.2, and that the idea is also significant from a practical point of view.

Since the properties of the the Eo-part of the overall error may be regarded as the principal
justification of revisiting the previously generated factors (see remark 2.1), Figure 5 displays (a
zoom of) the graph of Eo on the Chess and the DNA data of the original Asso algorithm and its
improvement for seleced values of the parameter p (in fact, the graph depicts the values of the
normalized overcover error, Eo

|I |). As is apparent, Eo is smaller for the improved Asso than for the
original Asso, and, as expected, larger values of p lead to smaller Eo .

4.3 Evaluating the Improved GreConD Algorithm

We now present the results of the improvement of the original GreConD algorithm described in
Section 3.3. Table 3 provides a comparison of the original GreConD algorithm and its modified
version in a similar manner we did for the improved Asso algorithm in the previous section. Note
that GreConD always attains an exact factorization of its input matrix. We can see in the table
that, for instance, when factorizing the Mushroom data, the original GreConD needs 120 factors
to obtain an exact factorization. Our modification with p = 0 requires only 113 factors for exact
factorization and only 61 factors for computing a highly accurate factorization, namely, with cov-
erage c = 0.951. Table 3 demonstrates that the reduction in the number of factors is in most cases
quite significant even for small values of p. As in the case of Asso, revisiting of the previously
generated factors turns out to be useful from a practical viewpoint.

4.4 Improvement of 8M+ via New Revisiting Strategy

The key idea, borrowed from the 8M algorithm, in the improvements of Asso and GreConD con-
sists in revisiting and possibly dropping the already computed factors. However, the original 8M as
well as 8M+ utilize only a limited instance of this idea. Namely, the number of revisited factors is
limited to three and, in addition, one always drops a factor that has been computed two steps back.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 22. Publication date: December 2020.

The 8M Algorithm from Today’s Perspective 22:21

Table 3. Improvements to the GreConD Algorithm

Dataset orig. GreConD improved GreConD with parameter p
p = 0 p = 0.01 p = 0.02 p = 0.03 p = 0.04 p = 0.05

Apj k 464 464 413 384 363 346 330
c 1.000 1.000 0.990 0.980 0.970 0.960 0.950

Chess k 124 119 72 62 55 51 47
c 1.000 1.000 0.991 0.981 0.970 0.962 0.952

DNA k 496 496 341 313 282 264 250
c 1.000 1.000 0.990 0.980 0.970 0.960 0.950

Emea k 42 34 29 26 25 24 23
c 1.000 1.000 0.992 0.981 0.975 0.963 0.956

Firewall 1 k 66 65 17 10 8 7 6
c 1.000 1.000 0.990 0.981 0.972 0.964 0.953

Firewall 2 k 10 10 4 4 4 4 3
c 1.000 1.000 0.998 0.998 0.998 0.998 0.958

Mushroom k 120 113 81 73 69 65 61
c 1.000 1.000 0.990 0.980 0.970 0.960 0.951

Paleo k 151 139 137 135 131 128 124
c 1.000 1.000 0.991 0.981 0.970 0.961 0.951

Table 4. Improvements to the 8M+ Algorithm

Dataset orig. 8M+ improved 8M+ with parameter p
p = 0 p = 0.01 p = 0.02 p = 0.03 p = 0.04 p = 0.05

Apj k 150 150 147 141 136 130 124
c 0.731 0.731 0.725 0.717 0.710 0.703 0.695

Chess k 67 67 57 49 43 40 38
c 0.965 0.965 0.955 0.946 0.936 0.926 0.916

DNA k 350 350 282 243 213 192 173
c 0.955 0.955 0.945 0.935 0.925 0.916 0.906

Emea k 30 30 28 26 25 24 27
c 0.970 0.970 0.962 0.954 0.942 0.936 0.923

Firewall 1 k 57 57 30 11 8 10 7
c 0.999 0.999 0.990 0.980 0.970 0.960 0.955

Firewall 2 k 9 8 4 4 4 4 3
c 1.000 1.000 0.992 0.992 0.992 0.964 0.958

Mushroom k 114 114 93 82 70 65 60
c 0.981 0.981 0.971 0.961 0.952 0.942 0.933

Paleo k 130 130 128 125 121 118 115
c 0.953 0.953 0.943 0.936 0.925 0.915 0.907

We therefore modified 8M+ in a similar vein we did for Asso and GreConD, i.e., we allowed for
revisiting of all previously generated factors. A comparison of 8M+ and the present modification is
presented in Table 4. One may see, like in the cases of Asso and GreConD that the new algorithm
is capable of achieving almost the same coverage with a significantly smaller number of factors.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 22. Publication date: December 2020.

22:22 R. Belohlavek and M. Trnecka

5 CONCLUSIONS

We provided a complete pseudocode and a detailed description of the 8M algorithm along with an
experimental evaluation of 8M and its comparison to selected algorithms for BMF. Our analysis,
which was long overdue, revealed ideas utilized by 8M but not used by the current factorization
algorithms. The most interesting is the idea of revisiting and possibly dropping the previously
computed factors. This idea is appealing particularly for algorithms performing general factoriza-
tion, i.e., those committing overcovering error. Namely, unlike the symmetric undercovering error,
overcovering may only increase in the course of computation of factors if the algorithm does not
revisit and modify the previously computed factors. We used this idea to improve the Asso and
the GreConD algorithms, resulting in new algorithms with a significantly better performance.
Revisiting of the previously generated factors is a natural general idea that may be applied to any
factorization algorithm which computes factors in a consecutive manner. A further exploration of
this idea and its application to the design of factorization algorithms remain a promising future
topic.

ACKNOWLEDGMENT

The article is an extended version of Belohlavek, R., Trnecka, M., The 8M algorithm from today’s
perspective. Proc. CLA 2018, pp. 167–178.

REFERENCES

[1] K. Bache and M. Lichman. 2013. UCI Machine Learning Repository. Irvine, CA: University of California, School of
Information and Computer Science. Retrieved from http://archive.ics.uci.edu/ml.

[2] E. Bartl, R. Belohlavek, P. Osicka, and H. Řezanková. 2012. Dimensionality reduction in boolean data: Comparison of
four BMF methods. In Proceedings of the International Workshop on Clustering High-Dimensional Data. 118–133.

[3] R. Belohlavek, J. Outrata, and M. Trnecka. 2014. Impact of Boolean factorization as preprocessing methods for clas-
sification of Boolean data. Annals of Mathematics and Artificial Intelligence 72, 1–2 (2014), 3–22.

[4] R. Belohlavek and M. Trnecka. 2015. From-below approximations in Boolean matrix factorization: Geometry and new
algorithm. Journal of Computer and System Sciences 81, 8 (2015), 1678–1697.

[5] R. Belohlavek and M. Trnecka. 2015. A new algorithm for Boolean matrix factorization which admits overcovering.
Discrete Applied Mathematics 249 (2018), 36–52.

[6] R. Belohlavek and V. Vychodil. 2010. Discovery of optimal factors in binary data via a novel method of matrix de-
composition. Journal of Computer and System Sciences 76, 1 (2010), 3–20.

[7] R. A. Brualdi and H. J. Ryser. 1991. Combinatorial Matrix Theory. Cambridge University Press.
[8] W. J. Dixon (ed.). 1992. BMDP Statistical Software Manual. University of California Press, Berkeley, CA.
[9] A. Ene, W. Horne, N. Milosavljevic, P. Rao, R. Schreiber, and R. E. Tarjan. 2008. Fast exact and heuristic methods for

role minimization problems. In Proceedings of the 13th ACM Symposium on Access Control Models and Technologies.
1–10.

[10] B. Ganter and R. Wille. 1991. Formal Concept Analysis: Mathematical Foundations. Springer, Berlin.
[11] F. Geerts, B. Goethals, and T. Mielikäinen. 2004. Tiling databases. In Proceedings of the 2004 International Conference

on Discovery Science. 278–289.
[12] S. Karaev, P. Miettinen, and J. Vreeken. 2015. Getting to know the unknown unknowns: Destructive-noise resistant

Boolean matrix factorization. In Proceedings of the 2015 SIAM International Conference on Data Mining. 325–333.
[13] K. H. Kim. 1982. Boolean Matrix Theory and Applications. M. Dekker, NY.
[14] H. Lu, J. Vaidya, V. Atluri, and Y. Hong, 2012. Constraint-aware role mining via extended Boolean matrix decompo-

sition. IEEE Transactions on Dependable and Secure Computing 9, 5 (2012), 655–669.
[15] C. Lucchese, S. Orlando, and R. Perego. 2010. Mining top-k patterns from binary datasets in presence of noise. In

Proceedings of the 2010 SIAM International Conference on Data Mining. 165–176.
[16] C. Lucchese, S. Orlando, and R. Perego. 2014. A unifying framework for mining approximate top-k binary patterns.

IEEE Transactions on Knowledge and Data Engineering 26, 12 (2014), 2900–2913.
[17] P. Miettinen. 2010. Sparse Boolean matrix factorizations. In Proceedings of the 2010 IEEE International Conference on

Data Mining. 935–940.
[18] P. Miettinen, T. Mielikäinen, A. Gionis, G. Das, and H. Mannila, 2008. The discrete basis problem. IEEE Transactions

on Knowledge and Data Engineering 20, 10 (2008), 1348–1362.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 22. Publication date: December 2020.

http://archive.ics.uci.edu/ml

The 8M Algorithm from Today’s Perspective 22:23

[19] P. Miettinen and J. Vreeken. 2011. Model order selection for Boolean matrix factorization. In Proceedings of the 17th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 51–59.
[20] S. Myllykangas, J. Himberg, T. Böhling, and B. Nagy. 2006. DNA copy number amplification profiling of human

neoplasms. Oncogene 25, 55 (2006), 7324–7332.
[21] D. S. Nau, G. Markowsky, M. A. Woodbury, and D. B. Amos. 1978. A mathematical analysis of human leukocyte

antigen serology. Mathematical Biosciences 40, 3–4 (1978), 243–270.
[22] G. Schmidt. 2011. Relational Mathematics. Cambridge University Press.
[23] L. Stockmeyer. 1975. The Set Basis Problem is NP-complete. Technical Report No. RC5431, IBM, Yorktown Heights, NY.
[24] J. Vaidya, V. Atluri, and Q. Guo. 2007. The role mining problem: Finding a minimal descriptive set of roles. In Pro-

ceedings of the 12th ACM Symposium on Access Control Models and Technologies. 175–184.
[25] Y. Xiang, R. Jin, D. Fuhry, and F. F. Dragan. 2011. Summarizing transactional databases with overlapped hyperrect-

angles. Data Mining and Knowledge Discovery 23 (2011), 215–251.

Received December 2019; revised September 2020; accepted October 2020

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 22. Publication date: December 2020.

