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The Discrete Basis Problem and Asso Algorithm for
Fuzzy Attributes

Radim Belohlavek @, Senior Member, IEEE, and Marketa Trneckova ®

| Abstract—We present an extension of the discrete basis problem,
. recently a profoundly studied problem, from the Boolean setting
. to the setting of fuzzy atiributes, i.e., a setting of ordinal data. Our
| problem consists in finding for a given object-attribute matrix 1
‘ containing truth degrees and a prescribed number k of factors the
| best approximate decomposition of I into an object-factor matrix
. A and a factor-attribute matrix B. Since such matrices represent
fuzzy relations, the problem is related to but very different from
that of decomposition of fuzzy relations as studied in fuzzy re-
lational equations because neither A nor B are supposed to be
known in our problem. We observe that our problem is NP-hard
as an optimization problem. Consequently, we provide an approx-
imation algorithm for solving this problem and provide its time
complexity in the worst case. The algorithm is inspired by the Asso
algorithm, which is known for Boolean attributes and is based on
new considerations regarding associations among fuzzy attributes.
We provide an experimental evaluation on various datasets and
demonstrate that our algorithm is capable of extracting informa-
tive factors in data. We conclude with a discussion regarding future
research issues.

Index Terms—Decomposition of matrices/relations, factor anal-
ysis, fuzzy attribute, fuzzy concept lattice, ordinal data.

I. INTRODUCTION

A. Problem Description

ONSIDER an n x m matrix I whose entries I;; are el-

ements of an ordered scale L (this shall be denoted by
I € L"*™), We assume that L represents a scale of truth degrees
and that the matrix [ represents a fuzzy (or graded) relation be-
tween n objects (matrix rows) and m attributes (columns). The
entry I;; is thus interpreted as a degree to which the object ¢ has
the attribute j. We are interested in finding for a given number k
of factors and a given distance function an approximate decom-
position (or, a factorization) of I into a sup-®-product Ao B
of an n X k object-factor matrix A and a k x m factor-attribute
matrix B, i.e., in finding
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in such a way that [ and A o B are as similar (i.e., close w.r.t,
the given distance) as possible.

The sup-®-product A o B of A and B is the operation, well
known in fuzzy logic, defined by

(AOB);_? = V?zlAéf ®BIJ (2)

where \/ is the supremum in L (maximum if L is a chain) and
& is a suitable many-valued conjunction on L.

In particular, we assume that L is equipped with a partial order
< with respect to which it forms a complete lattice bounded by
0 and 1, and that the operation ® is commutative (i.e.,a ® b =
b ® a), associative [ie, a® (b®¢c) =(a®b) ®c], has 1 as
its neutral element (i.e., a ® 1 = a = 1 ® a), and is distributive
over arbitrary suprema [i.e., a ® (\/;.; b;) = V;c;(a® b))l
Such assumptions are standard in modern fuzzy logic [13], [14].
From a logical point of view, ® is considered a truth function of
(many-valued) conjunction [13], [14]. Importantly, & induces
another operation, —, called the residuum of ®, which plays the
role of the truth function of implication and is defined by

a®c < b} 3)

Many examples of such scales are known in fuzzy logic [13],
(14], among them those where L is the real unit interval [0, 1]
or its finite equidistant subinterval L = {0, 1,...,2=1,1}, and
where ® is the Lukasiewicz, minimum, product, or other con-
tinuous t-norm. In what follows, we assume that the scale L is
equipped with the operation ® satisfying the properties men-
tioned earlier. Moreover, we assume for simplicity that L is a
finite linearly ordered scale in the rest of this paper.

Remark 1:

1) An important special case results when L is the two-
element scale {0,1} and ® represents classical conjunc-
tion. Then, the matrices I, A, and B are Boolean matrices
and the product (2) is the Boolean matrix product. Our
setting then becomes the setting of Boolean matrix factor-
ization/decomposition, which enjoys substantial interest
in recent data mining.

2) The interest in our problem from a data analysis view-
point is explained in the following as part of experimental
evaluation (Sections II-B, IV, and V).

To define our problem precisely, we need a notion of closeness
of matrices over L. Let s, : L x L — [0,1] be an appropriate
function measuring closeness of degrees in L (see the follow-
ing). For matrices I, J € L"*™, put

i je1 Soijy Jij)
n-m

a—b=max{ec L

a(l, . J)= (4)
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i.e., 8(I,J) € [0,1] is the normalized sum over all matrix en-
tries of the closeness of the corresponding entries in I and
J. In general, we require sz (a,b) =1 if and only if a = b,
and sz (0,1) = s1,(1,0) =0, in which case s(I, J) =1if and
only if I = J. We furthermore require that a < b < ¢ implies
s1,(a,¢) < s (b,c). For the important case of L being a sub-
chain of [0, 1], s, may be defined by

sp(a,b)=a b

where a « b = min(a — b, b — a) is the so-called biresiduum
(many-valued equivalence) of a and b; here, — is the residuum
(3) of ®. For the Lukasiewicz operations, ie., a®b=
max(0,a +b—1) and a —» b=min(l,1-a+ b), which we
use in our examples, we obtain sz (a,b) = 1 — |a — b| this way.
Note that we use closeness because of its natural logical inter-
pretation as a many-valued equivalence but, clearly, one could
alternatively use the complementary notion of distance instead
of closeness. One casily observes that if sy (a,b) = a + b, the
normalized Hamming distance e(I, J) of Boolean matrices I

and 7, which is defined by e(I, J) = Zhi=t =24l anq ig of.

ten used for Boolean matrices, is just e(I, J) = 1 — s(, J).
We now present an exact formulation of our problem, the

discrete basis problem over scale L equipped with @, which we

denote as DBP(L):

problem DBP(L)

input matrix I € L"*", positive integer k;
output  matrices A € L"** and B € L**™ that maximize
s(I,AoB).
Remark 2:

1) For L = {0,1}, the problem DBP(L) coincides with the
well-known DBP for Boolean matrices as defined in [18].
Since each n X m matrix I with entries in L in fact repre-
sents a binary L-fuzzy relation Ry between an n-element
and an m-element universe, our problem DBP(L) may
equivalently be described as a problem of finding a de-
composition of Ry into a product of fuzzy relations R,
and Rp. Note, however, that DBP(L) is very different
from that of fuzzy relational equations (FREs) because
in FREs, two fuzzy relations represent the input of the
problem, either Ry and Ry, or BR; and Rp.

2)

B. Contributions of This Paper

In this paper, we first observe that DBP(L) is NP-hard as an
optimization problem. Then, we argue that similarly as in the
Boolean case, the problem is highly relevant from data analy-
sis viewpoint. In particular, solving the problem corresponds to
performing a factor analysis of the data represented by I. In our
setting, the analyzed data are of ordinal type, rather than Boolean
one. We argue and demonstrate by examples that the extension
from Boolean to ordinal data greatly enhances applicability of
the decompositions. Since the problem is provably hard, we
provide an approximate algorithm inspired by the classic ASS0
algorithm [18] and discuss the various challenges presented by
the extension of this algorithm to ordinal setting. We also present
experimental evaluation of our algorithm and observe its com-
putational efficiency as well as its data-analytical effectiveness.
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We conclude by presenting challenges opened by the current
findings.

C. Related Work

Due to the great extent of the various works on matrix de-
composition, we limit ourselves to the most relevant work and
refer to [7] and [18] for further material and references. A di.
rect predecessor of our work is the previous work in Boolean
matrix decomposition. NP-hardness of the basic decomposition
problem was established in [21]—one of the earliest papers on
this topic. An increase in interest in Boolean matrix decomposi-
tions in data mining is due to Miettinen’s work, which includes
[18] presenting the Boolean version of the DBP and the classic
Ass0 algorithm, as well as several subsequent papers examining
Boolean CX and CUR decompositions [16], sparsity issues [17],
and selection of the number of factors [19]. Note also the influ-
ential papers [11] and [7], which deal with restricted decomposi-
tions using so-called tiles and formal concepts in Boolean data.

As regards matrices with entries in scales L, these have been
examined in several works, such as works on matrices over
semirings and similar algebraic structures [12] and works on
binary fuzzy relations [4], [13].

The closest to our problem is the problem of solving FREs;
see e.g., [13] as well as [2] and [3] for more recent contribu-
tions. Note, however, that the problem of FREs is fundamentally
different from the DBP(L) problem, because in FRESs, we are
given two fuzzy relations (or matrices with grades upon obvious
identification or fuzzy relations and matrices with grades), I and
A (or I and B) and the goal is to determine 3 (or A) such that
I is equal, or approximately equal, to A o B. This difference
reflects itself in that FREs have a very different purpose from
that of DBP(L) but also in the difficulty of solving: While—as
we show in Section II—solving DBP(L) is provably hard (NP-
hard in technical terms) and one has to resort to approximation
algorithms, solving FREs is done in polynomial time and, in
fact, very quickly.

Directly relevant to DBP(L) are the papers [5] and [8], in
which the role of so-called formal concepts of I is examined for
exact decompositions I = A o B, and an algorithm GRECOND(
is proposed for this purpose. Even though GRECOND/, has pri-
marily been designed for computing exact and almost exact
decompositions, it may be easily adopted for computing ap-
proximate decompositions as well as for solving the DBP(L).
GRECOND, represents the only available algorithm to which
our new algorithm, Ass0;, may be compared. Let us also men-
tion the possibility of scaling the fuzzy attributes in I to Boolean
attributes and using Boolean decomposition algorithms and fur-
ther insight to eventually obtain an approximate decomposition |
of I. Such option, which was examined in [6], leads to a consid- |
erably worse performance as regards both the quality of decom- |
position and computation time and we therefore do not consider
it here and refer the reader to [6]. The work presented in [6]
also provides factor analyses of various ordinal datasets using
GRECOND.

Note also that the role of order-theoretic structures in
data analysis is extensively examined in [10] (formal con-
cept analysis of Boolean data), [22] (ordered and combinatorial
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tructures), and [4] (closure structures in the setting of fuzzy
ogic and structures over scales). Ordinal data and the meth-
ds for data analysis of such data appear in the literature on
\athematical psychology. However, the tools employed there
re basically modifications of classical factor analysis methods.
n these approaches, grades (truth degrees) are represented by
nd treated like numbers. Such approaches lead to loss of in-
erpretability, similarly as in the case of Boolean data, which is
ell documented e.g., in [24]. Note, however, that factor anal-
sis of data with fuzzy attributes is still an open research field:
Broadly conceived, our new algorithm represents a particular
ossible approach. Other approaches shall likely be obtained
by combining the ideas from classical factor analysis and its
variants on the one hand, and the ideas from fuzzy logic on the
other hand, and are worth further examination.

II. HARDNESS AND SIGNIFICANCE OF DBP(L)

In this section, we observe that DBP(L) is provably hard. In
addition, we also demonstrate that DBP(L) is significant from
data analysis point of view, hence designing such approximation
algorithms is worth pursuing.

A. NP-Hardness of DBP(L)

Recall that NP-hardness of a computational problem essen-
tially means that the problem cannot be solved with full guar-
antee by any efficient algorithm, i.e. an algorithm which runs
in time polynomial with respect to the size of the input. Con-
sequently, proving that a problem is NP-hard means that when
solving this problem one must resort to approximation algo-
rithms, Technically, “NP-hard” means “nondeterministically-
polynomial-hard™; for definitions of the concept of NP-hardness
of decision problems and optimization problems we referto [1].

NP-hardness of various problems related to decompositions
of Boolean matrices derives from the important result of Stock-
meyer [23] claiming NP-hardness of the sct basis problem. The
following theorem adds to the negative results regarding fea-
sibility of fast exact solvability of decomposition problems; in
particular it generalizes the hardness of the Boolean version of
DBP [18].

Theorem 1: DBP(L) is an NP-hard optimization problem.

Proof: By the definition of NP-hardness of optimization

iroblems, we need to show that the decision version of DBP(L),

which we denote TT(L) in the following, is NP-hard as a decision
. |problem. Note that IT(L) consists in deciding for I and k [i.e.,
- Ithe inputs to DBP(L)] and an additional input ¢ € L whether
| here exist matrices A and B such that s(I, Ao B) > t.
.| One way to establish the claim consists in reducing the set ba-
1 §is problem to TI(L). However, since the NP-hardness is already
. lsstablished for the Boolean DBP, we utilize this fact as follows.
- IThe Boolean DBP may clearly be identified with our problem
r !for L = {0,1}, i.e., with DBP({0, 1}), taking into account the
] {fact mentioned earlier in this paper that instead of the Hamming
g distance E(A o B, I) used in the Boolean DBP, the DBP(L) uses

the closeness s(A o B, I) and that the correspondence between
n these two functions is E(A o B,I)/(nm)=1—s(AoB,I)
- [hence, instead of minimizing E in the Boolean DBP, one max-
il imizes s in DBP(L)].
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Consider now the proof of NP-hardness of the Boolean DBP
[18]. When reducing the set basis problem to the decision ver-
sion of the Boolean DBP, i.e., to II({0, 1}) modulo the earlier
identification, the instances of the set basis problem are actu-
ally assigned instances of the Boolean DBP with t = 1 only.
These assigned instances therefore consist of a Boolean matrix
I € {0,1}"*™, a positive integer k, and ¢ =1 [note that the
question s(AoB,I) > 1, ie., s(AoB, I) =1, is equivalent
to E(Ao B,I) <0,ie.,to E(AoB,I)=0interms of Ham-
ming distance]. Clearly, it is now enough to assign to every such
instance (in a polynomial time) (I, k,0) an instance (I, 810
of the decision version II(L) of DBP(L) in such a way that the
answer to (I, k, 0) as an instance of T1({0, 1}) is yes if and only
if the answer to (I', k', t') as an instance of TI(L) is yes. This
is, however, easy as it suffices to take (I',k',t') = (L, k, 0).
Namely, the answer yes to (I,k,0) as an instance of TI(L)
means that there exist matrices A € L"** and B € L¥*™ such
that s(A o B, I) = 1, which means A o B = I. Now, since I;j
equals 0 or 1 only and since one always has a @ b=1iffa=1
and b = 1, it is not difficult to verify that matrices A € s
and B € L¥*™ for which Ao B = I exist if and only if there
exist matrices C € {0,1}"** and D € {0,1}**™ for which
C oD = I. That is, the answer to (I, k,0) as an instance of
TI(L) is positive iff the answer to (I,k,0) as an instance of
I1({0,1}) is positive. This completes the proof.

B. Significance of DBP(L)

The interest in our problem from a data analysis viewpoint
derives from the fact that an approximate decomposition (1)
provides an explanation of the input data I describing n objects
via a possibly large number m of attributes by means of a pos-
sibly small number k of factors, which may be considered as
newly discovered fundamental attributes. Moreover, the expla-
nation has a simple transparent semantics, which is a significant
aspect in the realm of factor an alysis. Namely, due to the basic
principles of fuzzy logic, our factor model (1) has the following
interpretation: The degree I;; to which object i has attribute
4 equals the degree of the following proposition—there exists
factor [ such that [ applies to i and j is one of the particular
manifestations of [.

Note that the kind of data we consider, i.e., data in which
objects are described by attributes whose values are in a cer-
tain scale L of grades, commonly appear in many fields. The
grades in L, such as 0, 0.5, and 1, are often described verbally,
such as “not at all.” “to some extent,” and “fully,” respectively.
Examples of such data include questionnaires and surveys in
which respondents answer questions by selecting grades (e.g.,a
respondent is asked to select the level of his satisfaction with the
company’s customer service from “not satisfied at all,” “satis-
fied to some extent,” and “fully satisfied”); performance data in
which the objects are evaluated by means of attributes express-
ing the extent to which the object meets a certain criterion; or
encyclopedic data (corpus data) in which a collection of objects
in a certain domain of interest is described by certain graded
attributes such as in the following example.

We now present a small example illustrating that the decom-
positions of ordinal data involved in DBP(L) provide us with
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TABLE I
FIveE MOST POPULAR DOG BREEDS

German shepherd
Bacnl A

THHAA
i % nHHHHEE

i E E CIRAE
Labrador Retdevers || 5 | 6 | S [ 6 | 6 [ 3 |4 [ 6| 6513
Golden Retrievers || 4 | 6 | 6 | 6 | 6 | 3 |4 |6 | 6 | 4 | 4
Yorkshire terriers YIS 3[4 3]2[2]4]3[06]5
A3z |3 (& |6 |S[a[6[6]3
446|662 4|62 |52

— ™
i

Fig. 1. 5 x 11 matrix I representing the data in Table L.

1
g
g
1.

Friend. towards other pets
Protection ability

k]
ediiililil
HIIEImI'

R B

Labrador Retrievers =1
Golden Retrievers =] n i
Yorkshire terriers e 2]
German shepherds E‘E = ---‘“--
Beagles o i v e
Fig.2, Approximate decomposition of matrix [ into A (bottom-left matrix)

and B (top matrix).

useful information from data analysis point of view. The data
in Table I describes 5 most popular dog breeds and their 11
attributes' (we analyze the full set of 151 breeds in Section IV).

We transform the original scale {1, ..., 6} to the six-element
chain L = {0,0.2,0.4,0.6,0.8,1} and use the Lukasiewicz
connectives ® and — (Section [-A). We represent the grades
in L by shades of gray as follows:

- .
06 08 10

The 5 x 11 object-attribute matrix I representing the data in
Table I is depicted in Fig. 1.

Fig. 2 presents an approximate decomposition of matrix I
using the first three factors obtained from I using our algorithm
AsSs0y, which is described in Section III. That is, the 5 x 11
object-attribute matrix I is decomposed using the set F consist-
ing of the first three obtained factors into the 5 x 3 object-factor
matrix Az (bottom-left matrix in Fig. 2) and the 3 x 11 factor-
attribute matrix By (top matrix in Fig. 2). The bottom-right

0.0 0.2 0.4

"hetp: / /www.petfinder.com/

maias cac  meemm omma

———
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E-ﬂ..--i.,li

Fig.3. V-superposition of factor concepts.

matrix in Fig. 2 represents the composition Ar o Bx of Ar ang
Bx. One may observe the apparent similarity of the input matriy
I and its approximation Az o By represented by the first three| |
factors obtained by our algorithm. For completeness, let us notg
that this particular decomposition was obtained by setting the
parameters of ASSOy, to wy = 3, wy = 1, and 7 = 0.85 (see i
the following for the meaning of these parameters).

Every factor Fj (I =1,2,3) is represented by the Ith cql.
umn in Ax and the lth row in Bz. The entries (Ax);; indica,
the degrees to which factor | applies to breed i, while (Br);
represents the degree to which attribute j is a particular manj.|
festation (is typical) of factor [. For example, F; is manifested|
by energy, playfulness, two kinds of friendliness, and affectio
(attributes with degree equal to 1 in the first row of Bx) and ap.|
plies in particular to Labradors and Golden Retrievers (breeds| !
with high degrees in the first column of Ar). The factor may ¢

]

hence be termed suitable for kids. On the other hand, the four
attributes with the highest degree in the row of Fj (protection|
ability, exercise, ease of training, and watchdog ability) tell v ¢
that this factor is naturally interpreted as guardian dog. The cor- | ¢
responding column shows that Iy applies to German shepherds
and separates them clearly from the other breeds.

Every factor may conveniently be represented by a 5 x 1l
matrix. For instance, the matrix representing the first factor
results by the crossproduct of the first column of Ax and the
first row of B, and is depicted as the first matrix in Fig. 3.

Comparing this matrix to the input matrix I, one easily ob
serves which parts of the input data are explained by this firs|
factor. Furthermore, by means of \/-superposition of factors,
one may combine the factors. For instance, adding the second
factor to the first, one obtains the second matrix in Fig. 3. Still
adding the third factor, one obtains the third matrix in Fig. 3|
Note also that the first, the first two, and the first three facton
explain 0.81%, 0.84%, and 0.85% of the input data. From this,
viewpoint, one may conclude that already the first three facton

explain the data very well. | 1

St

— —

ITI. Assop

ASsO;—our new algorithm for approximately solving the
DBP(L)—is inspired by Asso [18], the classic algorithm for th¢
Boolean DBP. As we shall see, its extension from the Boolea!
setting to the setting with fuzzy attributes over scales L is ndl
obvious. In the following text, we analyze the conceptual issués
involved and provide a description of ASSOy.

LT

—

|
A. Association Matrix l

The ordinary ASSO is based on using the rows of the assocl
ation matrix A of the input matrix I. These rows are then usél
as candidate basis vectors, i.e., as rows of the k x m facwf|
attribute matrix B. The ordinary association matrix A is & J

L - S S NP S
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m x m Boolean matrix such that

szl

where ¢(p, ¢) is the confidence of the association rule {p} =
| {g} given by I and 7 is a user-specified association threshold.

ix| The confidence c(p,q) may be understood as a conditional
¢¢| probability, namely the probability of

iff c(p,q)>7 5)

e object has attribute g provided it has attribute p

| given that objects, which represent elementary events, are
| equally probable. In presence of grades, we consider conditional

1e| probabilities ¢, (p, g) of

lj

- an object has attribute g provided it has
ad

m attribute p to degree at least a.

§s| In this sense, ¢, (p,q) represents our confidence that the pres-
ay| ence of p to degree at least a implies the (full, i.e., to degree 1)
ur| presence of g. Note that other options to conceive of logical as-
on| sociations are possible, but the one we choose is simple enough
us| and, as we shall see. leads to a good quality of the resulting
y- decompositions.
ds; Unlike the Boolean case, collections of objects sharing certain
attributes to prescribed degrees are naturally conceived as fuzzy
11/ sets rather than ordinary sets. Thus, according to the common
or usage, see e.g., [4], we denote by {"/p}* the collection of all
he objects sharing attribute p to degree at least ¢ and define it as
the fuzzy set to which object i = 1,...,n belongs to degree
b-| _
rst {*/p}(i) = a — I(i,p).
rs,
nd Here again, — is the residuum (many-valued implication) of the
till particular structure of truth degrees. Likewise, the collection of
3. objects having p to degree at least a and having ¢ is defined by
ns

1is {*/p,'/a}"(8) = (a — I(i,p)) A L(i,q)

s
because {*/p,'/q} (i) = [{*/p}U {*/a}I*(i) = {*/p}* (i) A
{!/a}'(3) = (a — I(3,p)) A (1 — I(i,q)) = (a — I(i,p)) A
I(i, q). These formulas may be obtained from considerations on
Galois connections induced by fuzzy relations [4], since these
he are the mathematical counterparts of assignments of objects
e sharing a given collection of attributes (the formulas may also
:al be obtained directly on intuitive grounds).
10t To evaluate the conditional probability that defines ¢, (p, g),
165 we deal with so-called fuzzy events and probabilities of fuzzy
events in the sense of Zadeh [25]. The probability measure
of fuzzy events, which is involved in our situation, is thus a
function P assigning to every fuzzy set A of objects a number
\P(A) € [0,1]—the probability of the fuzzy event A. As in the
IC"classical case, we assume that the objects (i.e., the rows of the
icdinput matrix [) represent elementary events and are equally
Of‘probablc. Zadeh’s formulas [25] for conditional probabilities
a1 pP(.|-) of fuzzy events then yield that the confidence in question
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is defined by
a/l A I1/.11
calp,0) = Papiefp) = 2L DL/
_ P{%/p,'/a¥) _ [/, "/a}
P({*/p}') {¢/pH|

where |A| denotes the cardinality of a fuzzy set A. With |A| =

i1 A(1), sometimes called the scalar cardinality of fuzzy
sets, we thus obtain

He/p, e} = D _{*/p,"/a} (i), and

i=1
1/} = D _{/p} ().
i=1

Notice that when deriving the formula for ¢, (p, ¢), we utilized
{“/p} n{/a} = {“/pr U {!/a})' = {*/p,"/q}*, whichisa
basic property of Galois connections [4].

Now, if we want to follow the basic logic of the ordinary,
Boolean ASSO algorithm, we need to transform the confidence
¢.(p, @) to a truth value A,, of the association matrix A by
means of a user-defined threshold 7 € [0, 1], and thus obtain
the candidate basis vectors A,_(rows of ,A). In the ordinary
case, this is simply done by a comparison of the confidence
¢(p, g)—which coincides with ¢; (p,q) in our notation in the
fuzzy setting—to 7, see (5).

When truth degrees are involved, we use again a user-defined
threshold 7 € [0, 1] to transform the confidence ¢, (p, ¢) & [0. 1]
to a truth value in L using a user-defined threshold 7 € [0, 1].
However, the thresholding process is more involved compared
to the Boolean case, because the result of the thresholding is no
longer either 0 or 1 as in the Boolean case, but rather any of the
multiple truth values in the scale L. We propose to use for this
purpose the following rounding function round. .

Put first for r € (0, 1]

ry = min{fa € L|a>r}

r-=max{ee L|a<r}

Thatis, ™ is the least truth value in L greater than or equal to r
and r~ is the largest truth value in L smaller than r. Furthermore,
define a rounding function round, as follows:

forr =0: round.(r) =0

rp if el >

forr > 0: round,(r) =
r_ otherwise.

The purpose of round; is to round off the confidence degree r
to its appropriate neighboring truth degree in L. Now, as it is
easy to see, r is in the interval [r~, "] and round, rounds off
rto r™ or r~, depending on whether r is in [t,rT] or [r,¢),
respectively, where t splits the interval [, 7] into its left and
right parts that comprise (1 — 7) - 100% and 7 - 100% of the
size of the interval.

Observe that this generalizes the Boolean version involved in
the classical ASSO, because there, trivially, [r~, 7" ] = [0, 1] and,



therefore, the interval [0, 1] is split by 7 into [0, 7) = [r™, ) and
[7,1] = [t,r*]. Then, the entry A,, of the association matrix
A is set according to where the confidence r = ¢(p, g) sits in
[0,1]: one puts Ay, = 1 if ¢(p,q) € [r,1] while A,, =0 if
c(p, q) € [0,7), cf., (5).

Since we deal—in our setting of associations between fuzzy
attributes—with confidence degrees ¢, (p, ¢), we may define for
every attribute p and every suitable grade a € L — {0} a candi-
date basis vector, i.e., arow A, ,) _of a prospective association
matrix A, by

A(i}u),j = l'()l.ll'ldf (ca (ps q})

Let us now pick a set K C L — {0} of suitable grades. We
then obtain an association matrix of dimension (m - |K|) X m,
ie., A€ LimKDxm because one entry, A(p.a).q» is Obtained
for every pair 1 < p,q < m of objects, and every truth value
a € K. One may verify that if L = {0,1} and K = {1}, then
A is just the ordinary m x m association matrix defined in [18].
The presence of intermediate grades allows us to broaden the set
of candidate basis vectors. Namely, in addition to the possible
choice K = {1}, we may pick K containing more grades, e.g.,
K = L — {0} which seems a natural choice, and thus enlarge
the search space for factorization.

B. Procedures COVER and Assoy,

The basic idea of our new algorithm, Assoy, may be de-
scribed as follows. The algorithm iteratively computes k factors
one by one, with the provision that it stops with less than k
factors if the addition of any new factor would only worsen the
error function, i.e., would decrease the value of the function s,
defined in (4), in our case. Let A and B denote the object-factor
and factor-attribute matrices computed so far. The next factor,
which is described by a new column and a new row to be added
to A and B, is computed as follows. For every candidate row
of B, i.e., the row of the association matrix .4, one determines
the best corresponding candidate column of A. “Best” means
that the value of a function COVER (see later) is maximized. The
candidate row of B and column of A with the highest value of
COVER are then added as a new factor to B and A.

The purpose of the function COVER is to yield a high value
for factors whose addition is likely to lead to good resulting
matrices A and B, i.e., with high value of s. In the Boolean
case, this is relatively straightforward: we want a high number ¢
of entries (i, j) for which I;; = 1and (Ao B);; = 1,i.e., Isin
I that are “covered” by the factors, and a small number o of
entries for which I;; = O and (A o B);; = 1, i.e., are “overcov-
ered” by the factors. This reasoning leads to the formula

wrc—w -0
as the definition of COVER in the Boolean case. The weights re-
flect relative importance of c and o. Since “overcovering” cannot
be undone by adding further factors, the benefit of covering an
entry with 1 [i.e,, having I;; = 1 and (A o B);; = 1] reflected
by the weight w™ is smaller than the drawback due to overcov-
ering an entry with 0 [i.e., having I;; = 0 and (A o B);; = 1).

* is that the coverage of entry (i,7) of I is a matter of degree.

T
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As a consequence, one should set w™ larger than w™ as a rule
in practice.

In a fuzzy setting, the design of an appropriate COVER func-
tion is more delicate compared to the Boolean case. One reason

We therefore need to account for a partial coverage and a partial
overcoverage. For instance, if I;; = 0.5 and (A o B);; = 0.4,
then one may consider (i, j) almost covered and thus consider

Iﬁj b 4 (A o B)ij =05<04=0.9

as the degree to which (i, j) is covered. Likewise, if I;; = 0.5
and (A o B);; = 0.6, then (i, j) is slightly overcovered and

~(Iij & (Ao B)ij) = =(0.5 < 0.6) = 0.1

may be thought of as a degree to which (i, j) is overcovered,
Analogously to the Boolean case, one could obtain the value of
CoVER by adding the degrees corresponding to the first type of
entries, multiply them with w™ and subtract from this number
the w™-multiple of the sum of the degrees corresponding to the
second type of entries.

This, however, would not yet be an appropriate approach,
Consider a situation in which I;; = 0.5, w™~ is even five
times larger than w™, and the so-far computed matrices A |
and B yield (A o B);; = 0.3. Suppose we now have two op-
tions. First, adding a factor resulting in A; and B, with
(A; o By)ij = 0.4; second, adding a factor resulting in Ay and | ©
By with (Ag o By);; = 0.52. Intuitively, the second choice is | C
preferable because the factor commits only a slight overcover-
ing of I;; = 0.5. However, the function COVER described ear-
lier would lead to the selection of the first factor. Namely (for
simplicity, we disregard entries other than (i, 5)), the first fac-
tor contributes by w™ - (I;; « (4; 0 By);;) = w* - 0.9, while
the second one contributes by —w™ - ~(Ij; « (Az 0 By);j) =
—w™ - 0.02, i.e., even represents a decrease in value of COVER. A

The point is that the entries which are overcovered, i.., [;; < (@
(Ao B);j, need to be looked at as follows: They need to be
penalized for overcovering by w™ - —(I;; « (A o B);;) but at
the same time rewarded for full covering by w™ - 1. This type
of problem is degenerated in the Boolean case. Namely, this
reward may be ignored because it would pertain to all entries
with [;; = 0, would be equal for all such entries, and would 'be
hence have no influence on the choice of factors. This explains be
why the function COVER for the ordinary Asso algorithm does
not contain any rewarding term for the overcovered entries.

The aforementioned reasoning leads to the following defini-
tion of COVER. Let F = {(Cy, Dy),...,(Ck, D), } denote a C
set of factors (with a fixed ordering of its elements), i.e., pairs
(Cy, Dy) where Cy € L'" and Dy € L'*™, Let Ay and By
denote the corresponding matrices obtained from the factors, C¢
That is, |

| E

4

(Ar)u = (C1); and (Bgr); = (Dy); (6) g

where C; forms the [th column of Ar and D; forms the Ith Sui
row of By for each | = 1,...,k. In accordance to the earlier M
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Algorithm1 COVER.

Input: matrix I € L™*™, set F of factors, w™,w™
Output: number COVER(F, I, w™,w™)

1 J+—AroBr;e+ 0
2fori=1,...,ndo

3 forj=1,...,mdo

4 if I;; > Ji; then

5 | c<—c+w+~(1,-_,- HJij}

6 else

7 I c+—c+w+—w*-{1—(1,rj<—}.}'ij)}
8 | end

9 | end

10 end

11 return c

Algorithm2 Assoy,

Input: matrix I € L™*™ k> 1, w*,w™, 7, K C L — {0}
Qutput: set F of factors

1 compute association matrix A

2 Fe 10

aforli=1,....,kdo

4 select (C, A(; q)_) maximizing
COVER('F u {(03 A(i‘u)_)}! I, w+: w_)

5 add (C, A q) ) to F

s end

7 return JF

considerations, we put

COVER(F,I,w" w™)

=w' .Y {Ij; & (Ar o BF)ij; Iij > (Ar 0 Br)ij}
+w”  [{(i,4); Iy < (Ar o Br)i;}|
—w™ Y {1=(Ij; & (Ar 0 BR)j); Ijj < (A 0 Br)ij}.

Algorithm 1 provides the pseudocode for computing COVER
F,Lw",w).
The aforementioned procedure for computing a set F of fac-
ors, and hence due to (6) for computing matrices Ar and B,
described by Algorithm 2.
Note that the selection in line 4 proceeds by finding for every
w A(; ). of A the best C w.r.t. COVER and then selecting the
st found pair (C, Ay, ,_). Due to the properties of COVER, the
stC foragiven A; ,)_is found efficiently in a componentwise
anner, i.e., by finding the best entry C, foreveryp =1,...,n
independently of the other entries C;, of C).

. Time Complexity

. We first derive the worst case of time complexity of ASSOy .
Constructing the association matrix takes O(n - m? - | K|) steps:
the matrix has m? - | K| entries and to compute the entry
4(;.0)¢» ONE needs to go over the n objects to evaluate ¢, (p, ¢)
d apply the rounding function round,. One then needs to ob-
gin % basis vectors. One may observe that a selection of one
ch vector takes O(n - m? - |K|) steps: One has to process
« | K| rows of A; for each row, one finds the corresponding
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TABLE II

REAL DATA
dataset size |L] 1Ml
Breeds 161 x 11 6 1963
Decathlon 28 x 10 5 266
IPAQ 4510 x 16 3 41624
Music 900 x 26 7 20377
MovieLens 1000 x 1000 6 361426

C in O(n x m) steps. Altogether, the algorithm AssSoy, is of
time complexity O(k - n. - m? - | K|) in the worst case. Note that
according to the work presented in [18], the time complexity of
the classical Asso algorithm is O(k - n- m?), i.e., in the fuzzy
setting, the complexity is essentially taking into account that
the association matrix has |K'|-times more rows compared to
the Boolean case. Note also that the formula O(k - n. - m?) de-
rives from our formula in the fuzzy setting because in Boolean
setting, ' = {1}.

In concrete terms, we ran our experiments on a PC with the
Intel Core i7-3517U processor and 8GB RAM. Computation of
each of the datasets involved in our experiments was completed
in the order of seconds. The actual running time of ASSOy, turns
out to be 0.45 of the time needed by GRECOND|, on average
over the data used in our experiments.

IV. ANALYZING REAL DATA

In this section, we present results of selected analyses of
real data which we used in our evaluation. Our primary aim is
to illustrate that the presented decomposition method makes it
possible to extract natural and easy-to-understand factors from
ordinal data. The datasets and their characteristics are described
in Table II, in which |L| denotes the number of truth degrees in
the scale L and ||7|| denotes the number of nonzero entries in
the input matrix I,

Dog Breeds® extends the dataset from Section II-B to 151
breeds. ASSO;, obtained ten factors from this data. These fac-
tors explain 83% of data. The most important ones could be
interpreted as excel in sports or hound since this factor contains
the attributes “playfulness,” “energy,” and “affection” to degree
1 and also “ease of train” to a high degree. This factor applies to
high degree to breeds such as American Cocker Spaniel, Amer-
ican Foxhound, Border Collie, Irish Setter, Brittany, or Pointer.
The second significant factor contains the attributes “protection
ability,” “exercise,” and “watchdog ability” to degree 1. Such a
factor may therefore be interpreted as the ability to serve as a
guardian dog and applies, e.g., to Australian Shepherd, Belgian
Sheepdog, and German Shepherd Dog. The other extracted fac-
tors may be also interpreted by looking at the attributes present
in the fuzzy sets of attributes of the respective factor but they
are less significant in terms of the added explanatory power.

Decathlon® extends the dataset from [8] and represents data
regarding performance of 28 athletes in the ten disciplines of
decathlon via a 28 x 10 matrix I over a five-element scale L.
Assoy, computed a set F of five factors from these data. These

2httz_:: v/ fwww . petfinder. com/
ﬂhttp + /S /www . sports-reference. com/
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factors reconstruct 79% of the input data, i.e., s(I, Ar o B) =
0.79. The most interesting of them is the most important one
in terms of coverage (explanatory power). This factor contains
“1500 m,” “100 m,” “400 m,” and “hurdles,” and may thus natu-
rally be termed running capability. The second most important
factor in terms of coverage may naturally be interpreted as ex-
plosiveness, since it contains the attributes “100 m,” “shot put,”
“hurdles,” and “discus throw” to high degrees. The factors found
were consulted with a decathlon coach who confirmed that they
indeed represent natural factors determining good performance
in decathlon.

IPAQ Data®* consists of international questionnaire data re-
garding physical activity of population and involves 4510 re-
spondents answering 16 questions using a three-element scale.
This questionnaire is considered important from the health man-
agement point of view, particularly as a source for making
government decisions regarding health policy. The questions
include those regarding age, sex, body-mass-index, health, to
what extent the person bicycles, walks, and other factors. ASSOL,
returned a set F of ten factors from these data. These factors
explain 78% of the input data and are naturally interpretable.
For instance, the first factor corresponds to and thus may be
interpreted as healthy people who cycle or walk on a regular
basis. The second factor may be interpreted as healthy people

with good education who cycle on a regular basis.
The Music Data comes from [9] and consist of results of a
study inquiring how people perceive a speed of song depending
of various characteristics of the songs. The data were collected
by questionnaires involving 30 participants who were presented
30 samples (29 complex music samples and one simple tone
of 528 Hz). The participants recorded their emotional experi-
ence using 26 attributes (such as “pleasant,” “happy,” “excit-
ing,” “restful,” “intelligible,” “ugly,” “valuable,” “interesting,”
“slow,” “meaningful,” “active,” “tense,” “predictable,” “closed,”
“violent,” “strong,” “known,” “variable,” or “like it""), each using
a six-element scale L, along with a retrospective time duration
and time passage judgement. The data are then represented by
a 900 x 26 matrix with entries in L.

ASSO; obtained ten factors from the data. These factors ex-
plain 83% of the data. The most significant are the first two
factors. The first factor contains songs rated as “meaningful” to
degree 1, and contains other positive attributes (such as “pleas-
ant,” “interesting,” or “satisfied”) to high degree. This factor
may be termed pleasing songs. The second one groups songs
rated as “ugly,” “tense,” or “violent,” and may thus be termed
unpleasant songs.

MovieLens® is a well-known dataset in the data mining com-
munity. It consists of two data tables. The first one represents a

set of users and their attributes such as “gender,” “age,” “sex,
“occupation,” while the second one represents a set of movies
and their attributes such as “production year” or “genre.” The last
part of this dataset is a relation between these datasets. This rela-
tion contains anonymous ratings of approximately 3900 movies

*http://www.ipag.ki.se/, Belohlavek er al, Inf Sciences
181(2011), 1774-1786.

Shttp://grouplens.org/datasets/movielens/

——
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made by 6040 MovieLens users who joined MovieLens in 2000,
Ratings are made by means of a five-element (five-star) scale,
The values are 1 to 5 with 1 indicating that the user does not like
the movie and 5 indicating that the user likes a movie a lot. We
analyzed the middle-sized version of the MovieLens dataset.

Assoy, found some interesting factors in these data. The most
significant in terms of explaining the data are the first two factors,
One of them is a factor that may be interpreted as recent action
movies as it contains to high degrees particularly action movieg
from the period 1991-2000. Another significant factor, whose
extent applies to a large group of users, may be interpreted ag
comedy and romance movies.

With respect to the experiments with the earlier mentioned
data, we performed their analyses with the GRECOND, algo.
rithm [6], [8] (see Section I-C). Our findings reveal (cf., also
the quantitative evaluation in Section V) that often, the first fac-
tors found by ASsOy, are similar to those found by GRECOND;,
On some datasets, however, one of the algorithms finds natu-
ral factors that are not found by the other algorithm but we do
not know whether this may be told in advance. Nevertheless,
ASSOy, in most cases has a better coverage by the first couple of
factors compared to GRECOND, which is clearly useful when
only a small number of highly significant factors is used. On
the other hand, GRECONDYy, is capable of very accurate factor-
ization in most cases, but it needs a higher number of factors
to achieve it. These features are congruent with the purpose of
both algorithms: To achieve high coverage by a small number
of factors in the case of ASSOy, and to achieve a highly accurate |
factorization in the case of GRECOND; .

V. EVALUATION OF ALGORITHMS

We now evaluate, on both real and synthetic data, the ability
of ASSO, to extract factors from data and to explain, i.e., recon-
struct, the input data. The ability to explain data is measured by |
the degree of similarity s(I, Ar o By), which is introduced by
(4), where F is the examined set of factors; F usually consists of
the first k factors obtained. Due to the nature of the problem, we
also speak of coverage of data by factors. In addition to ASSOy, |
we also include in our evaluation the algorithm GRECOND, for
comparison purposes. The purpose of GRECOND;, is different
from that of Asso;, (see Section [-C) and to evaluate the distinct
features of these algorithms is a part of our aim in this section.

|
A. Real Data

For the real data, described in Section IV, Table IIT provides |
the numbers of factors obtained by ASso;, and GRECOND, that |
achieve a given prescribed coverage. This means that we observe |
the least { for which s(I, Ax o Br) exceeds the prescribed cov- |
erage, where F is the set of the first { factors produced by the |
given algorithm. For instance, the second row corresponding t0
Decathlon shows that one needs two factors in order to have
s(I, Ar o B) > 0.85 with Assoy,, while for GRECOND,, on¢
needs four factors to account for 85% of Decathlon data. In this
table, we use “NA” to indicate that it is not possible to achieve the
prescribed coverage by the factors produced by Assoy, which
often happens for higher levels of coverage—similarly as with
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TABLEIII
QUALITY OF DECOMPOSITIONS (REAL DATA)

number of factors needed

dataset 8 ASSOL GRECOND 1
Breeds 0.75 2 3
0.85 3 5
095 NA 9
1 NA 16
Decathlon  0.75 1 1
0.85 2 4
095 NA 8
1 NA 15
IPAQ 0.75 1 8
0.85 1 12
095 NA 18
1 NA 32
Music 0.75 1 7
0.85 NA 13
0.95 NA 24
1 NA 36
MovieLens 0.75 1 419
0.85 2 727
095 NA 954
1 NA 1123
TABLE IV
SYNTHETIC DATA
dataset size [L]  k __distribution on L in A and B
Setl  50x50 3 10 I3 55
Set2  50x50 5 10 (k3331
Set3  100x50 5 25 Fiiid
Setd  100x100 5 20 kii: i
| the classical Asso algorithm for Boolean data. Note that “NA”
.| never appears for GRECOND, because GRECOND[ eventually
.| stops with an exact decomposition.
¢l The results reveal that ASsOy, has a good ability to achieve a

reasonably high coverage using the first few factors produced.

“| This ability is considerably better compared to GRECOND . On
the other hand, GRECONDY, is capable to achieve a very precise
decomposition, in most cases still with a reasonably small num-
ber of factors (the only exception to this is the MovieLens data,
for reasons not known to us).

| B. Synthetic Data

| The synthetic data we used are grouped in collections Set 1-
it 4. Each collection contains 500 n x m data matrices I and the
¢ characteristics of these matrices are given in Table IV. As usual,
.| every I is obtained as a matrix product of randomly generated
¢ matrices A and B of dimensions n x k and k x m. The entries
10| in A and B are the truth degrees in scale L and are selected to
e follow a prescribed probability distribution. For example, in Set
e 3 we employed a five-element scale L = {0, 1,1,3,1} with
is| the probabilities p(a) of the degrees a € L in A and B being
e p(0) = p(}) = & and p(}) = p(3) = p(1) = §. Observe that
+h! this scenario generalizes that from the Boolean setting, i.e., the
th usually considered densities of Boolean matrices. For instance,
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TABLE V
COVERAGE $ AND s BY THE FIRST k FACTORS

coverage s/s— by the first k factors

dataset k ASSOL GRECOND
Set 1 1 0.864/0.729 0.525/0.309
4  0.905/0.810 0.866/0.744
8 0.912/0.826 0.968/0.937
11° - 1/1
Set 2 1 0.861/0.525 0.620/0.253
4 0.865/0.539 0.893/0.666
8 - 0.981/0.929
10 - 11
Set 3 1 0.946/0.790 0.684/0.188
5  0.955/0.825 0.871/0.509
10 0.955/0.825 0.916/0.670
20 - 0.970/0.883
48 s 1/1
Set 4 1 0.943/0.829 0.648/0.205
5  0.961/0.850 0.881/0.580
10  0.961/0.850 0.947/0.795
20 - 0.991/0.979
37 - 11

— o Greord |

—— A
“in\nsamkamsnau
Fig. 4. Coverage s by the first k factors.

for L = {0, 1}, the distribution (3 31 corresponds to density
0.75.

Selected results in terms of the coverage s, see (4), by the
first k factors for the datasets are provided by Table V and
Fig. 4. In addition, we include the percentage s— of entries
(i, §) for which I;; equals (A7, o B, )i;. Here, i denotes the
set of the first k factors. Therefore, s— is a measure that is more
strict than s: it only considers equal entries, and does not take
into account closeness of the corresponding entries in I and
Az, o By, respectively. The character “~” for ASSOL indicates
that no additional factors have been produced with increasing k.

As one may see, the results for synthetic data confirm the
findings observed for real data: ASSOL is good at achieving a
reasonable coverage with the first few factors, while GRECOND,
outperforms AssOz, in achieving almost exact decompositions.
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TABLE VI
SYNTHETIC DATA
dataset size b 4] i distribution on L in A and B
Setl 150xIS0 3 10 (33 3
Set2  150x100 5 10 3i3id
Set3 100x150 11 10 [FEEEELiiiih
Setd  100x100 21 10 2 for all
Set5  100x100 101 10 15y for all
TABLE VII
COVERAGE § BY THE FIRST FACTOR/BY ALL FACTORS OBTAINED FOR
DIFFERENT VALUES OF T
dataset T=0.85 =09 T=0.95
Set 1 0.86/0.88 0.85/0.88 0.83/0.90
Set 2 0.77/0.78 0.78/0.79 0.79/0.80
Set 3 0.765/0.766 0.765/0.766  0.75T7/0.758
Set 4 0.774/0.775 0.774/0.775 0.774/0.775
Set 5 0.791/0.793 0.791/0.793 0.791/0.793

Let us mention that s tends to be large even for a small num-
ber of factors computed. The values of s are higher than what
one observes for Boolean data. The reason of this interesting
behavior is provided in Section V-D.

C. Role of T in Assor Algorithm

Interestingly, the setting of multiple truth values (that is to
say, instead of only 0 and 1, L involves several other truth
values) presents us with a new phenomenon, which is advan-
tageous from the data analysis viewpoint. For Boolean data, as
is well known, the particular choice of the threshold 7 influ-
ences grossly the performance of the classic ASSO. A clear and
intuitive explanation of this behavior is that if O and 1 are the
only possible matrix entries, the decision of whether to round
off the particular confidence value ¢(p,g) to 0 or | by means
of thresholding via 7 is significant: if ¢(p, ¢) is not rounded to
1, it is rounded to the completely opposite value, namely 0, and
vice versa, In the setting with several degrees, as we observed,
the actual value of 7 becomes less significant as the number of
degrees in scale L increases. Clearly, this is a good property
for a user who, as a consequence, need not pay much attention
to the choice of 7. Note that in the Boolean case, there are no
principles available as 1o how to choose T except for selecting
7 ad hoc.

To examine the phenomenon under investigation, we em-
ployed synthetic data whose characteristics are provided by
Table VI. The values of the coverage s as defined by (4) by
the first factor and by all the factors obtained by Asso; are
displayed in Table VIL These values are observed for different
values of 7 (we use values around 0.9 which is recommended in
the Boolean case and which also yields good results for fuzzy
attributes). As is clear from the results, the coverage values for
different values of 7 tend to be the same as the number of truth
values in L increases (i.e., as we go from Set 1 to Set 5). This
kind of behavior is also apparent from Table VIII in which we
observe the values of the stricter measure, s_, instead of s. Let

1
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TABLE VIII
COVERAGE 8- BY THE FIRST FACTOR/BY ALL FACTORS OBTAINED BY ASS0
FOR DIFFERENT VALUES OF T
dataset T = 0.85 =09 7 =0.95
Set 1 0.74/0.76 0.72/0.77 0.66/0.80
Set 2 0.36/0.37 0.37/0.38 0.38/0.41
Set 3 0.11/0.12 0.11/0.12 0.10/0.11
Set 4 0.049/0.063 0.049/0,063 0.049/0,063
Set 5 0.005/0.008 0.005/0.008 0.005/0.008

us mention that in this table, the low values for scales L with
a larger number of degrees, which correspond to low numbers
of entries for which the input and the reconstructed matrices
have equal values, correspond to the aim of ASSO;, to generate
approximate rather than exact decompositions (even with a low
number of exactly equal values, the matrices’s entries are very
similar and thus approximately equal).

D. Discussion and Conclusion

The experiments demonstrate that ASSo; performs well in
both approximately solving the DBP(L) problem as well as in
computing from the data natural, well-interpretable factors. In
comparison to the GRECOND;, algorithm, the experiments re-
veal that the first couple of factors produced by ASSO; have a
better coverage compared to the same number of factors pro-
duced by GRECONDy,. Beyond certain coverage, ASSOj, stops
producing factors and is not capable of computing exact decom-
position of the input matrix, as opposed to GRECOND/ , which
always achieves an exact decomposition and actually needs only
areasonably small number of factors to compute an almost exact
decomposition, This is congruent with the aims of both these
algorithms: While ASS0; is designed to solve the problem of
computing a given small number of factors with a high coverage
of data by these factors, GRECONDy, is designed to compute ex-
act or almost exact decompositions. Nevertheless, both Assoy,
and GRECONDy, produce natural and well-interpretable factors.
As described earlier, a factor revealed by one of these algorithms
need not be revealed by the other algorithm, which is a common
phenomenon in factor analysis broadly conceived. Both ASSOg
and GRECOND;, may therefore be regarded as effective factor-
ization algorithms which naturally complement each other in
accordance with the purposes the are designed for.

Except for the Eukasiewicz operations ® and —, we also did
experiments with other ones. We observed similar tendencies
when comparing ASsOy to GRECONDy. Let us also mention
that we did not explore the interesting and challenging problem
of how to select good operations @ and — based on the data,
which we will consider worth exploring in future.

Let us conclude by mentioning that employment of fuzzy
logic methods to factor analysis of ordinal data is at an initial
stage of exploration. Broadly conceived, further research on a
possible combination of classical factor analysis methods and
their variants developed for ordinal data on the one hand, and
methods based on fuzzy logic is highly desirable to exploit the
best of the two areas.




VI. FUTURE RESEARCH

In particular, future research shall include the following
topics:
1) Further theoretical progress in understanding factoriza-
tions and the corresponding matrix calculus of matrices
over scales with truth degrees; particular attention needs to
be paid to problems and issues degenerate in the Boolean
case such as closeness of matrix entries or the choice of
the aggregation operation .
Further development of factorization algorithms for ordi-
nal data, which includes algorithms inspired by the exist-
ing classical factorization algorithms for Boolean matri-
ces (BMF) algorithms, as well as exploitation of attribute
dependencies in ordinal data; and further exploration of
the present factorization scheme as regards its sensitiv-
ity to changes in the input data and in the choice of the
parameter 7.
Exploration of noise in ordinal data which we have not
considered here.
Development of real-case studies in factor analysis of
ordinal data and development of applications in machine
learning.
Let us also mention an interesting phenomenon in the
setting of fuzzy attributes that we observed.

For Boolean data, the values I;; in the input matrix I are
approximated by 0 or 1 of (Ax o Byr);; only. Hence, in case of

2)

3)

4)

5)

mismatch, the entry (i, j) contributes by I;; & (Ar o Br);; =
0 to the numerator in (4). As the number of truth degrees in L
lincreases, the situation is different. For instance, if L contains
jandif 0 «» § =1« § =}, then the trivial matrix Ar o Br
|with all entries equal to % always satisfies s(I, Ar o Bx) > %
(One therefore has to be aware of this effect of presence in L of
the “middle” degree (%) on the values of s. This issue needs to
be carefully examined in future research,
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