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Factorization of Matrices With Grades
With Overcovering

Radim Belohlavek , Senior Member, IEEE, and Marketa Trneckova

Abstract—We present a novel algorithm for factorization of
matrices with grades or, equivalently, for decomposition of fuzzy re-
lations. The algorithm is inspired by a recent factorization method
for Boolean matrices and develops two ideas in the setting of
ordinal attributes. First, it uses formal concepts associated with
the factorized matrix, or fuzzy relation, as essential components
around which factors are built. Second, it steps back when com-
puting new factors to check whether some computed factors may
be eliminated or improved given the subsequently generated fac-
tors. The new algorithm thus uses convenient properties of formal
concepts utilized by previous factorization algorithms. Still, unlike
the previous algorithms, our algorithm allows for more general and
therefore more precise factorizations due to a possible overcovering
of the input data, which our new algorithm admits. We provide an
experimental evaluation of the new algorithm and compare it to
some existing algorithms for factorization of data with grades. The
evaluation reveals that our new algorithm outperforms the current
algorithms in terms of quality of factorization. We also present ob-
servations and improvements for factorization of Boolean matrices.
We conclude with a discussion regarding open research topics.

Index Terms—Decomposition of fuzzy relations, factorization,
fuzzy concept lattice, fuzzy logic, fuzzy relation.

I. PROBLEM DESCRIPTION

A. Matrices With Grades

W E DEAL with n×m matrices I whose entries Iij are
elements of an ordered scale L; the set of all such

matrices shall be denoted Ln×m. We suppose that the elements
a in L represent truth degrees and hence the matrix I represents
a fuzzy relation (graded relation) between n objects (rows) and
m attributes (columns). The entry Iij ∈ L shall be interpreted
as the degree to which the object i has the attribute j. We
assume that in general, L is equipped with a partial order
≤ with respect to which it forms a complete lattice bounded
by 0 and 1, and that a binary operation ⊗ is defined on L,
which is commutative (i.e., a⊗ b = b⊗ a), associative (i.e.,
a⊗ (b⊗ c) = (a⊗ b)⊗ c), has 1 as its neutral element (i.e.,
a⊗ 1 = a = 1⊗ a), and is distributive over arbitrary suprema
(i.e., a⊗ (

∨
j∈J bj) =

∨
j∈J (a⊗ bj)). This allows one to re-

gard⊗ as a reasonable many-valued conjunction [10], [11]. Note
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that the assumed structure on L may be described in terms of
other well-known structures; e.g., L equipped with ∨ and ⊗
forms an integral commutative quantale.

The operation ⊗ and the supremum in L (maximum if L is a
chain) allow one to define the well-known sup-⊗-productA ◦B
of matrices A ∈ Ln×k and B ∈ Lk×m by

(A ◦B)ij =
∨k

l=1 (Ail ⊗Blj) . (1)

The grades in scales L are conveniently represented by num-
bers, such as the Likert scale {1, . . . , 5}. We assume that these
numbers are normalized and hence are in the unit interval [0,1].
Hence, the Likert scale is represented by L =

{
0, 1

4 ,
1
2 ,

3
4 , 1
}

.
Due to the well-known Miller’s 7± 2 phenomenon [13], small
scales with up to 7± 2 degrees are preferable to use because
humans can understand and use such scales easily.

Example 1: Examples of scales L equipped with operations
⊗ are known in fuzzy logic; among them L being the real
unit interval [0,1] or its finite equidistant subinterval, i.e., L ={
0, 1

n , . . . ,
n−1
n , 1

}
, which we use in our examples. In particular,

the Łukasiewicz operation ⊗ is given by

a⊗ b = max(0, a+ b− 1).

With the Łukasiewicz ⊗ one has, for instance⎛
⎜⎝1.0 0.5

0.5 1.0

0.5 0.5

⎞
⎟⎠ ◦

(
0.5 1.0 0.0

0.0 0.5 0.5

)
=

⎛
⎜⎝0.5 1.0 0.0

0.0 0.5 0.5

0.0 0.5 0.0

⎞
⎟⎠ .

�

B. Factorization Problem

We are interested in finding a good factorization of a given
object-attribute matrix I ∈ Ln×m into an object-factor matrix A
and a factor-attribute matrixB. Basically, this means to findA ∈
Ln×k and B ∈ Lk×m such that I approximately equals A ◦B,
i.e.,

I ≈ A ◦B (2)

and the number k of factors is small.
To assess approximate equality I ≈ J of matrices I, J ∈

Ln×m, it is common to use

I ≈ J =

∑n,m
i,j=1 Iij ↔ Jij

n ·m (3)
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where ↔ is the so-called biresiduum, which plays the role of
many-valued logical equivalence.1 The biresiduum measures
closeness of truth degrees and is defined by

Iij ↔ Jij = min (Iij → Jij , Jij → Iij)

with → being the residuum in L, i.e., the many-valued impli-
cation associated with ⊗ by a → b =

∨{c ∈ L | a⊗ c ≤ b};
see [10], [11].

Example 2: For the Łukasiewicz operation ⊗ (see above), we
have a → b = min(1, 1− a+ b) for any a, b ∈ [0, 1]. One then
obtainsa ↔ b = 1− |a− b|, hence I ≈ J may be interpreted as
the sum of approximate equalities of the corresponding entries
in I and J divided by the number of all entries.�

Remark 1: For L = {0, 1}, i.e., 0 and 1 are the only truth
degrees, our setting becomes the setting of factorization of
Boolean matrices. In particular, ⊗ and ↔ become classical
conjunction and classical equivalence, respectively, and A ◦B
becomes the Boolean matrix product. One easily observes
that I ≈ J = 1− E(I,J)

n·m , where E(I, J) =
∑n,m

i,j=1 |Iij − Jij |
is the Hamming distance of Boolean matrices I and J . �

Two particular problems—reflecting two basic views of the
factorization problem—are recognized in the literature: the dis-
crete basis problem (DBPL) and the approximate factorization
problem (AFPL) are as follows.
� DBPL: for a given matrix I ∈ Ln×m and a positive inte-

ger k, compute matrices A ∈ Ln×k and B ∈ Lk×m that
maximize I ≈ A ◦B.

� AFPL: for a given matrix I ∈ Ln×m and ε ∈ L, compute
matrices A ∈ Ln×k and B ∈ Lk×m with I ≈ A ◦B ≥ ε
such that k is as small as possible.

In DBPL, one prescribes the number k of factors and seeks the
best possible factorization involving k factors (emphasis is on a
good factorization by a limited number of factors); in AFPL, one
prescribes a required precision ε and seeks a factorization with
the least number of factors that satisfies the prescribed precision
(emphasis is on a very precise factorization).

C. Our Contributions

We provide a significant improvement of the idea of using
formal concepts of the input matrix I as factors for factorization
of I . The idea of using formal concepts appeared in previous
contributions to factorization of matrices with grades and leads
to well-behaving factorization algorithms. We argue, however,
that such an approach results in an unnecessarily restricted class
of factorizations. We analyze the error committed by general
factorizations and propose in Section II to use formal concepts
not as factors but rather as starting blocks from which factors
are computed by an iterative process. The new approach leads to
factorizations not restricted in the manner described previously.
In Section III we demonstrate that the new approach indeed
outperforms the previous approaches. In Section IV we discuss
future problems revealed by the present perspective.

1Alternatively, one may normalize using an appropriately defined size |I|
of I , i.e., use

∑n,m

i,j=1
Iij↔Jij

|I| instead of (3). We use this alternative in our
experiments and return to this question later.

II. GRECONDL+: THE NEW ALGORITHM

A. Preparatory Considerations

1) Formal Concepts of I as Possible Factors: Recall first
the rationale for using formal concepts of I as factors for
decomposition of I . Formal concepts in I ∈ Ln×m are defined as
fixpoints of certain operators associated with the object-attribute
matrix I [1]: Let

X = {1, . . . , n} andY = {1, . . . ,m}
represent objects (rows) and attributes (columns), respectively.
A formal concept of I is any pair 〈C,D〉 of fuzzy setsC ∈ LX of
objects and D ∈ LY of attributes satisfying C↑ = D and D↓ =
C, where the operators ↑: LX → LY and ↓: LY → LX (called
concept-forming operators) are defined as follows:

C↑(j) =
∧
i∈X

(C(i) → Iij) and D↓(i) =
∧
j∈Y

(D(j) → Iij)

for each i ∈ X and j ∈ Y . The set of all formal concepts of I is
denoted by B(X,Y, I). The fuzzy sets C and D are interpreted
as the extent and the intent of the formal conceptD, respectively.
Accordingly, C(i) ∈ L and D(j) ∈ L are interpreted as the
degree to which the concept applies to the object i and the degree
to which the attribute j is characteristic (is a manifestation) of
the concept.

One easily observes that due to (1), I ≈ A ◦B may rewritten
as

I ≈ A_1 ◦B1_ ∨ · · · ∨A_k ◦Bk_

where for each l = 1, . . . , k, A_l and Bl_ denote the lth column
of A and the lth row of B, respectively. Consequently, factor l in
a decomposition I ≈ A ◦B is naturally represented as the pair
〈A_l, Bl_〉.

The rationale of using formal concepts of I as factors consists
in the following property proved in [2].

Lemma 1: Let I ∈ Ln×m and let I = A ◦B be a decom-
position involving k factors. Then, there exists a set F =
{〈C1, D1〉, . . . , 〈CK , DK〉} consisting of K ≤ k formal con-
cepts of I such that for the matrices AF and BF defined by
(AF )il = Cl(i) and (BF )lj = Dl(j) one has

I = AF ◦BF .

In this sense, formal concepts of I are optimal factors for exact
factorizations of I .

2) Analyzing I ≈ A ◦B: Undercovering and Overcover-
ing: When it comes to approximate rather than exact factor-
izations, formal concepts still provide reasonable results; see
e.g., [3], [5], [6]. However, they no longer provide optimal
factorizations, since using formal concepts as factors leads to
a limited class of factorizations. The reason becomes apparent
when analyzing the approximate equality I ≈ A ◦B and, in
particular, when analyzing the committed error associated with
an approximate factorization.

When we desire exact factorization, using formal concepts as
factors proved to be beneficial. However, when an approximate
factorization is needed, a fundamental limitation of using formal
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concepts appears, namely that factorizations using formal con-
cepts never commit overcovering—one of two kinds of error:
For factor model (2) and matrix entry 〈i, j〉, we speak of

uncovering when Iij > (A ◦B)ij

and

overcovering when Iij < (A ◦B)ij .

For our present purpose, it is more natural to reason in terms
of error of decomposition rather than approximate equality (3);
see Remark 1. Defining the error E(I, A ◦B) naturally by

E(I, A ◦B) =

n,m∑
i,j=1

(1− (Iij ↔ (A ◦B)ij)) (4)

one obtains

I ≈ A ◦B = 1− E(I, A ◦B)

nm
.

Now, since with our assumptions we have

a ↔ b =

⎧⎨
⎩
a → b for a > b, and
b → a for a < b, and
1 for a = b,

we obtain

E(I, A ◦B) = Eu(I, A ◦B) + Eo(I, A ◦B)

where

Eu(I, A ◦B) =

n,m∑
i,j=1,Iij>(A◦B)ij

(1− (Iij → (A ◦B)ij))

(5)
and

Eo(I, A ◦B) =

n,m∑
i,j=1,Iij<(A◦B)ij

(1− ((A ◦B)ij) → Iij).

(6)
Clearly, Eu and Eo are parts of E due to uncovering and
overcovering, respectively. Note also that in (5) and (6), the
conditions Iij > (A ◦B)ij and Iij < (A ◦B)ij may be omit-
ted, because 1− (Iij → (A ◦B)ij) = 0 for Iij ≤ (A ◦B)ij
and (1− ((A ◦B)ij) → Iij) = 0 for Iij ≥ (A ◦B)ij .

Remark 2: In the Boolean case, i.e., L = {0, 1}, since Iij →
(A ◦B)ij and (A ◦B)ij → Iij can only be equal to 0 and 1,
one observes that Eu is the number of entries 〈i, j〉 for which
Iij > (A ◦B)ij andEo is the number of entries for which Iij <
(A ◦B)ij . In the general case involving intermediate grades,
the situation is more involved. Namely, 1− (Iij → (A ◦B)ij)
and 1− ((A ◦B)ij → Iij) represent degrees of uncovering and
overcovering, respectively.

The following lemma provides an important observation used
in the design of our new algorithm. Namely, as new factors are
added, Eu is decreasing while Eo may only increase.

Lemma 2: Let I ∈ Ln×m be a given object-attribute ma-
trix, A ∈ Ln×k and B ∈ Lk×m be an object-factor and factor-
attribute matrices, respectively. Let A′ ∈ Ln×(k+1) and B′ ∈
L(k+1)×m result by adding a column to A and a row to B (i.e.,

adding a (k + 1)th factor to the existing k factors). Then

Eu(I, A ◦B) ≥ Eu(I, A
′ ◦B′)

Eo(I, A ◦B) ≤ Eo(I, A
′ ◦B′).

Proof 1: The proof follows by a straightforward verification
using the facts that for each 〈i, j〉, we have (A ◦B)ij ≤ (A′ ◦
B′)ij and that for each a, a′, b ∈ L with a ≤ a′ we have a →
b ≥ a′ → b. �

B. GRECONDL+ Algorithm

1) Basic Idea: Our new algorithm, GRECONDL+, generates
factors one-by-one in a greedy manner that is based on a ge-
ometric insight into the factorization problem. This is due to
the NP-hardness of the factorization problem. Each factor is
generated by a process that has three steps. In the first step, a
formal concept 〈C,D〉 of the input matrix I is obtained by a
particular procedure as a basis of the constructed factor; this
basis is called the nucleus of the constructed factor in what
follows. Since, as argued previously, such a formal concept
does not commit any overcovering error, which may be severely
limiting when approximate factorizations are sought, the second
step consists in extending the nucleus to a candidate new factor
〈C ∪ E,D ∪ F 〉 by adding—to certain degrees—both objects
and attributes to C and D. In general, the extended candidate
factor 〈C ∪ E,D ∪ F 〉 commits both uncovering and overcov-
ering error, but commits a smaller overall error compared to
its nucleus 〈C,D〉. The third step is directly motivated by the
fact that the overcovering error, Eo, may never decrease when
computing factors (see Lemma 2). To alleviate this property,
and thus make possible a drop in the overcovering error, the
algorithm revisits and modifies the previously generated factors
in the third step. The latter idea was first used in an old, generally
unknown factorization algorithm 8M [8, pp. 933–945] and was
recently utilized in [4].

The above idea is expected to result in an algorithm able to
produce factorizations with small uncovering error Eu, because
formal concepts, which commit no Eo, are used as substantial
parts of the constructed factors, and a relatively small overcov-
ering error Eo, because overcover is allowed only as a part of
fine-tuning of the constructed factors.

2) Detailed Description: A pseudocode of our algorithm is
represented by Algorithms 1 and 2. In the following, we provide
a detailed description of the pseudocode. In the algorithm, F
represents the set of constructed factors (i.e., pairs 〈C,D〉 ∈
LX × LY ) and U stores the set of all entries 〈i, j〉 not covered
by the factors in that Iij > (AF ◦BF )ij .

The factors are consecutively generated within the main loop
in Algorithm 1 (l. 2–27). The loop ends when the undercover
error, Eu, reaches 0, i.e., when Iij ≤ (AF ◦BF )ij for each
entry 〈i, j〉, which corresponds to U = ∅. Clearly, the stopping
condition may be changed as desired, for example to ensure
that I ≈ AF ◦BF exceeds a prescribed precision threshold ε,
corresponding to the AFPL, or to end the loop after k prescribed
factors are generated, corresponding to the DBPL, cf. the end of
Section I-B.
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The first step, i.e., computing a formal concept 〈C,D〉 of I ,
which shall play the role of a nucleus of the constructed factor
(see Section II-B1) proceeds in l. 4–9. The initially empty fuzzy
set D is being extended to D ∪ {a/j} until the corresponding
formal concept 〈D ∪ {a/j})↓, (D ∪ {a/j})↓↑〉 stops having a
better coverage. This approach is borrowed from the GRECONDL

algorithm [7]. Here

D ⊕a j={〈k, l〉∈U | Ikl≤(D ∪ {a/j})↓(k)
⊗(D ∪ {a/j})↓↑(l)}

is the number of previously uncovered entries that are covered
by the formal concept corresponding to the examined extension
D ∪ {a/j}, and |D ⊕a j| denoted the number of these entries.

Note at this point that instead of maximizing the number of
covered entries in the above-mentioned construction of the nu-
cleus 〈C,D〉, i.e., instead of minimizingEu, one could minimize
Eu + Eo and thus take both the uncovering and overcovering
into account. However, since 〈C,D〉 is a formal concept, it
commits no overcovering, hence minimizing Eu is equivalent
to minimizing Eu + Eo.

In the second step, the resulting formal concept 〈C,D〉 is
considered as a nucleus, for which its expansion is computed in
l. 10 by EXPANSION (Algorithm 2) as explained in the following.
The expansion may commit overcovering, which is penalized
using a parameter w > 0—a weight of the overcover error. The
expanded pair 〈C ∪ E,D ∪ F 〉 is then stored in F as a new
candidate factor in l. 11.

The extension 〈E,F 〉 of the nucleus 〈C,D〉 proceeds as
follows. One computes the extension F of attributes by starting
with empty F (l. 1 in Algorithm 2) and subsequently adding
attributes j to degrees a that are higher than the present degrees
(D ∪ F )(j), until such addition is possible (l. 2–7). When
doing so, attribute j and degree a are selected with maximal
gain({a/j}). The value gain({a/j}) reflects a possible im-
provement of the approximate equality I ≈ A ◦B in that it
rewards positively a decrease of the undercover error Eu and
penalizes with weight w > 0 the increase in the overcover error
Eo.

The situation is conceptually more involved compared to the
extension proposed in [4] for the binary case. Namely, one needs
to distinguish three cases. For our purpose, let

cur ij = (AF ◦BF )ij ∨ Ci ⊗ (D ∪ F )j

i.e., cur ij is the value of entry 〈i, j〉 of the matrix reconstructed
from the factors in F computed so far and the currently consid-
ered factor 〈C,D ∪ F 〉. Moreover, let

new ij = (AF ◦BF )ij ∨ Ci ⊗ (D ∪ F ∪ {a/j})j
i.e., new ij is the analogous value with 〈C,D ∪ F 〉 extended
to 〈C,D ∪ F ∪ {a/j}〉. The three cases to distinguish are as
follows.

1) new ij ≤ Iij : In this case, since cur ij ≤ new ij , the
change from cur ij to new ij represents a decrease in
Eu. Hence, the entry 〈i, j〉 contributes to gain({a/j}) by
new ij − cur ij .

2) cur ij < Iij < new ij : In this case, the change involves a
decrease Iij − cur ij in Eu but also increase new ij − Iij
in Eo. The entry 〈i, j〉 thus contributes to gain({a/j}) by
Iij − cur ij − w(new ij − Iij).

3) Iij ≤ cur ij : In this case, Eo is increasing by new ij −
cur ij . The considered entry hence contributes to
gain({a/j}) by −w(new ij − cur ij).

The abovementioned considerations lead to the following
definition of gain({a/j}):

gain({a/j}) =
n∑

i=1,newij≤Iij

new ij − cur ij

+

n∑
i=1,curij<Iij<newij

(Iij − cur ij)

−w · (new ij−Iij)−w·
n∑

i=1,Iij≤curij

new ij−cur ij .

The loop in l. 12–15 ensures that all matrix entries covered
by this factor are removed from U .

The third step (l. 16–26) represents the revisiting and mod-
ification of the computed candidate factors stored in F . First,
in l. 16–18, if removing 〈C,D〉 from F does not make worse
the overall error, then 〈C,D〉 is removed from F , because it is
redundant.

If 〈C,D〉may not be removed in l. 16–18, one tries in l. 20–24
to reduce the candidate factor 〈C,D〉 in that degrees D(j) are
reduced to nucleus(D)(j), if possible, i.e., if the coverage due
to D(j) is achieved by the factors other than 〈C,D〉. Reducing
〈C,D〉 to its nucleus, i.e., to a formal concept of I , is moti-
vated by the fact that a formal concept does not commit any
overcovering error Eo, which is a consequence of the following
observation.

Lemma 3: For any formal concept 〈C,D〉 ∈ B(X,Y, I) we
have C(i)⊗D(j) ≤ Iij .

In particular, D(j) gets reduced to nucleus(D)(j) if this
reduction does not make worse the overall error.

III. EXPERIMENTAL EVALUATION

We now present an experimental evaluation of the new
GRECONDL+ algorithm, for which purpose we use both syn-
thetic and real data. Using synthetic data makes it possible
to test the compared algorithms on data with known char-
acteristics. Real data allow us to assess the compared algo-
rithms in terms of the interpretability of the computed factors.
In addition to GRECONDL+, we present for the purpose of
comparison two other factorization algorithms, namely
GRECONDL [7] and ASSOL [6], [12], which are representative
for solving the AFPL and DBPL problems, respectively. While
the principle of GRECONDL has been mentioned in Section II-B,
ASSOL proceeds by computing from an input matrix I ∈ Ln×m

a so-called association matrix A with m columns. To compute a
decomposition I ≈ A ◦B, ASSOL uses the rows of A as candi-
date rows of B. For each such candidate, the best corresponding
candidate column of A is computed; the best thus obtained pair
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Algorithm 1: GRECOND+.

Algorithm 2: EXPANSION.

of candidates is then added as a new column of A and a new row
of B.

In order to describe performance of the observed algorithms,
we utilize the error E(I, AF ◦BF ), see (4), which describes
closeness of the input n×m matrix I and the matrix AF ◦BF
reconstructed from the set F of computed factors with AF
and BF defined as in Lemma 1. For the reasons mentioned
in Section II-A2, we also use the uncover error Eu and the
overcover error Eo, see (5) and (6), respectively.

In particular, we use the normalized versions of the errors

e(I, AF ◦BF ) =
E(I, AF ◦BF )

|I|
eu(I, AF ◦BF ) =

Eu(I, AF ◦BF )
|I|

eo(I, AF ◦BF ) =
Eo(I, AF ◦BF )

|I|
where |I| is defined by

|I| =
n,m∑
i,j=1

Iij . (7)

If I is considered as a fuzzy relation, |I| is the so-called scalar
cardinality of this fuzzy relation. In the Boolean case, i.e., if
L = {0, 1}, |I| is the number of 1s in I and in the general case
|I| measures the size of the incidence relation represented by I .
Clearly, we have e = eu + eo. The reason for normalizing by |I|
rather than by n ·m is that for sparse matrices, normalization by
n ·m results in a very small values of relative error and tends to
be less informative.

We typically observe the previous kinds of error for sets F
consisting of the first computed factor, the first two computed
factors, etc., up to a set consisting of k computed factors, where
k is chosen, as described in the text.

A. Illustrative Example

We start with an illustrative example with data originally
presented in [6]. The purpose is to illustrate the typical features of
the factorization algorithms that we compare in the next sections,
as well as to demonstrate a general usefulness of factorizations.

The input data, presented in Table I, describe five most
popular dog breeds and their 11 attributes scaled to the matrix
with the degrees taken fromL = {0, 0.2, 0.4, 0.6, 0.8, 1}.2 Note
that the full set of 151 breeds is explored later. We consider
the Łukasiewicz operation ⊗ on L (see Example 1) in our
experiments due to their known convenient properties. For the
purpose of visualization, we represent the grades in L by shades
of gray as follows.

The degrees may naturally be assigned linguistic labels: “not
at all” to 0, “somewhat” to 0.2, “rather not” to 0.4, “rather yes”
to 0.6, “almost fully” to 0.8, and “fully” to 1.

2[Online]. Available: http://www.petfinder.com/
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TABLE I
FIVE MOST POPULAR DOG BREEDS

Fig. 1. GRECONDL: Decomposition I = AF ◦BF . I , AF , and BF are the bottom-right, bottom-left, and top matrix, respectively.

The data in Table I may thus be represented by a 5 × 11
object-attribute matrix I . This matrix, along with its decomposi-
tions into AF and BF into the object-factor and factor-attribute
matricesAF and BF , which are computed by the observed
algorithms, are shown below in this section.

In the following visualization, every factor Fl is represented
by the lth column in AF and the lth row in BF , as usual in
the literature. The entry (AF )il indicates the degree to which
factor l applies to breed i, while (BF )lj represents the degree
to which attribute j is a particular manifestation of factor l;
cf. Lemma 1.

1) Results for GRECONDL: The results of factorizing I by
the GRECONDL algorithm are displayed in Fig. 1.

The first computed factor, F1, is manifested significantly by
the three kinds of “Friendliness” and “Affection” (attributes with
high degrees in the first row of BF ) and applies in particular
to Labrador, Golden Retriever, and Beagle (breeds with high
degrees in the first column of AF ), and to some extent also to
Yorkshire. The factor may hence be termed friendliness. On the
other hand, the three attributes with the highest degree in the
row of F2 and a high degree of “Exercise” tell us that this factor
is naturally interpreted as guardian dog. The corresponding
column shows thatF2 applies to German Shepherd and separates
this breed clearly from the other breeds. Factor F3 may be
interpreted as dogs suitable for kids, because it is manifested to a

great degree by “Friendliness,” “Playfulness,” “Affection,” and
“Ease of training,” and applies to Golden Retriever (to degree
1) and Labrador Retriever (to degree 0.8).

The relative errors e committed by the first factor, the first
two factors, and the first three factors are 0.26, 0.14, and 0.07,
respectively. Since GRECONDL does not commit overcovering,
eo remains 0. If we let the algorithm compute further factors, we
obtain further error values 0.05, 0.04, 0.01, and 0, i.e., an exact
factorization is obtained in the end.

2) Results for ASSOL: In Fig. 2, we present the first three
factors obtained by ASSOL when the parameters of this algorithm
are set in such a way that the uncover and overcover arrow obtain
the same significance (e.g., by w0 = 1 and w1 = 1), and the
parameter controlling the matrix of associations is set to τ = 0.9.

The first factor, the first two, and the first three factors have the
relative error e equal to 0.28, 0.16, and 0.156, respectively. The
relative overcovering error eo obtains 0.0073, 0.0327, and 0.04,
respectively. While the error is reasonably small, a problem,
which often appears with ASSOL, is that the obtained factors
are difficult to interpret. For example, the first factor (i.e., the
most important from the point of view of the method) does not
carry any important information. Such factors tend to appear in
ASSOL because when |L| > 2 (non-Boolean case), the factors
correspond to rectangles with values “around the middle” in L,
such as 0.4 and 0.6. Such factors have a small error even though
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Fig. 2. ASSOL: Decomposition I ≈ AF ◦BF . AF ◦BF , AF , and BF are the bottom-right, bottom-left, and top matrix, respectively.

Fig. 3. GRECONDL+, w = 0.5 : Decomposition I ≈ AF ◦BF . AF ◦BF , AF , and BF are the bottom-right, bottom-left, and top matrix, respectively.

Fig. 4. GRECONDL+, w = 1 : Decomposition I ≈ AF ◦BF . AF ◦BF , AF , and BF are the bottom-right, bottom-left, and top matrix, respectively.

they are difficult to interpret; for more details of this property
see [6].

3) Results for GRECONDL+: We computed factorizations
for various values of the parameter w. For instance, with
w = 0.5 we obtained three factors with the error e of the first
factor, the first two factors, and the first three factors being
0.2, 0.12, and 0.1, respectively, and the corresponding eo being
(when rounded off) 0.1, 0.1, and 0.1, respectively. With these
three factors, the uncover error eu drops to 0. With w = 1, we
obtain four factors with which we eventually obtain eu = 0.

The error e of the first factor, the first two factors, the first three
factors, and the first four factors equals 0.19, 0.09, 0.05, and
0.04, and the corresponding eo being (when rounded off) equal
to 0.04, 0.04, 0.04, and 0.04. We thus observe that for both
values of w, the values of e are reasonably small. Nevertheless,
the higher value of w makes the overcover eo smaller, which is
in accordance with the intended role of w.

The computed factorizations for w = 0.5 and w = 1 are
shown in Figs. 3 and 4, respectively. As we can see in these
figures, the computed factors not only reasonably explain
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the input data in terms of having a high coverage but also are
easily interpretable and provide natural groupings of the dog
breeds and their attributes. For instance, the first two factors
produced both for w = 0.5 and w = 1 may be termed friend-
liness and guardian dog and are similar to the corresponding
factors obtained by GRECONDL.

This introductory example indicates that while both ASSOL

and GRECONDL+ produce general decompositions, i.e., may
commit both uncovering and overcovering, and produce rea-
sonably precise decompositions, GRECONDL+ does not suffer
the difficulty when interpreting factors, often encountered with
ASSOL. Moreover, as we shall see, unlike ASSOL, GRECONDL+
is able to compute very precise decompositions. In addition,
the example indicates that GRECONDL+ provides very precise
factorizations with smaller error when compared to GRECONDL.
These properties shall be examined in the rest of this
section.

B. Synthetic Data

In our experiments, we prescribe a value ε of error and observe
the minimum number of factors produced by a particular exam-
ined algorithm, which are necessary to obtain a factorization
whose error does not exceed ε. The prescribed values of error
and the obtained numbers of factors are provided in the tables
as follows.

In particular, we prescribe the part eu of the overall relative
error e, and observe the minimal number of factors needed to
obtain a factorization whose eu does not exceed the prescribed
value ε, for which factorization we display the actual errors eu,
eo, and e.

Our reason to prescribe a desired value of eu, rather than
e, consists in the fact that eu represents the extent of data yet
unexplained by the considered factorization. It also corresponds
to the purpose of our new algorithm, i.e., to explain all of the
input data or almost all of the input data (i.e., achieve small
eu) with a reasonably small number of factors, while possibly
committing a small eo.

Remark 3: Prescribing eu corresponds to a realistic scenario,
which we now describe in the Boolean setting (the kind of
application we use naturally extends to a setting with fuzzy
attributes). Suppose that Iij = 1/0 denotes that person i has/has
not passed test j. The tests may involve various parts re-
garding mathematical reasoning, logical reasoning, language
proficiency, factual knowledge, etc. The discovered factors
are expected to correspond to general skills, such as logical
skills, verbal intelligence, etc. A natural goal is to obtain a fac-
torization with eu = 0 because nonzero eu indicates that certain
successful results in the tests are left unexplained. Committing
eo does not matter that much because it might have been the
case that Iij = 0 because person i made a silly mistake but
actually has the skills needed to solve test j. While formally
symmetric, eu is considerably more important than eo in this
kind of application. This is why it is compelling to prescribe a
desired value of eu rather than e or eo.

We used synthetic data with varying size and other parameters.
The data we chose to display in our experiments were organized

TABLE II
SYNTHETIC DATA

in collections denoted Sets 1–4, each consisting of 500 n×m
matrices. The characteristics of these datasets are described in
Table II. Every matrix is obtained as a product of n× k and
k ×m randomly generated matrices A and B in which entries
from scale L are selected according to a prescribed probability
distribution. For instance, in Set 1 we used a five-element
scale L = {0, 1

4 ,
1
2 ,

3
4 , 1} with the probabilities p(a) of the de-

grees a ∈ L in A and B being p(0) = p
(
1
4

)
= 1

8 and p
(
1
2

)
=

p
(
3
4

)
= p(1) = 1

4 . The same distribution is used for Set 2,
while for Set 3 and Set 4 we used distributions represented by
vectors [

1

11

1

11

1

11

1

11

1

11

1

11

1

11

1

11

1

11

1

11

1

11

]
and [

2

17

2

17

2

17

2

17

2

17

2

17

1

17

1

17

1

17

1

17

1

17

]
respectively. The probability distributions generalize the com-
monly considered densities of Boolean matrices, e.g., for L =
{0, 1} the distribution

[
1
4

3
4

]
corresponds to density 0.75. The

table also contains the average number of nonzero entries (avg
|I > 0|) and average scalar cardinality (avg |I|) over all matrices
in the sets.

The results of our experiments with datasets Sets 1–4 are
displayed in Table III. As indicated previously, we present for
each Set i and for the prescribed values ε = 0.5, . . . , 0.00 of
eu the observed quantities for each algorithm we examined,
namely the smallest number of factors needed to obtain a factor-
ization whose eu does not exceed ε under which we display
the actual values of eu, eo, and e for this factorization. For
each Set i, all the observed numbers are actually averages over
the 500 matrices in the text; the number of factors is moreover
rounded to integers. Thus for instance, for Set 2, and ε = 0.1,
GRECONDL+ with w = 0.5 needs on average three factors, for
which the factorization obtains eu = 0.073, eo = 0.034, and
hence e = eu + eo ≈ 0.108.

One can see from the results in Table III that while ASSOL,
which we ran with its parameters w0 = w1 = 1 and τ = 0.8,
achieves the prescribed coverage with just one factor, it commits
a considerably large overcover error compared to the other al-
gorithms. Moreover, as in the case of the first factor described in
Section III-A2, a problem with this one factor is interpretability
due to a typically “flat shape” of the factor, as described in
that section. This confirms previous studies [6] observing that
ASSOL provides good dimensionality reduction at the expense
of mediocre interpretability.

In comparison, GRECONDL yields factorizations, which are of
expected quality and size given the previous studies. As apparent
from the table, the new algorithm GRECONDL+, which may be
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TABLE III
NUMBERS OF FACTORS NEEDED FOR PRESCRIBED VALUES OF eu (SYNTHETIC DATA)

TABLE IV
REAL DATA

regarded as an extension of GRECONDL, actually outperforms
GRECONDL. First, it needs less factors in most cases to achieve
the prescribed eu, i.e., the prescribed extent to which it explains
the data. Second, while GRECONDL commits no overcover error
eo due to its sole usage of formal concepts as factors, the usage
of extensions of formal concepts as factors by GRECONDL+
leads to overcover error eo, but this error is reasonably small.
Observe also that larger w typically leads to smaller eo, which
is the intended role of w. The ability of GRECONDL+ to pro-
vide factorizations with a small number of factors compared
to GRECONDL may even be observed for very small eu, i.e.,
for factorizations that are required to explain the input data
to a great extent. This is an interesting property given that
GRECONDL is particularly designed for exact and almost exact
factorizations.

C. Real Data

In this section we present factorization results for selected real
data, which are described in Table IV. In this table, |L| denotes
the number of truth degrees in the scale L for the particular data,
|I > 0| denotes the number of nonzero entries in the data matrix
I , and |I| denotes the scalar cardinality (7).

Dog breeds is a data,3 which describes 151 popular breeds
using 11 attributes regarding the breed characteristics, such as

3[Online]. Available: http://www.petfinder.com/

“Playfulness,” “Friendliness toward dogs,” “Friendliness toward
strangers,” “Protection ability,” “Watchdog ability,” “Ease of
training,” and the like. Decathlon is a data4 describing the
performance of 28 athletes in the ten disciplines of decathlon
in the 2004 Olympics. The IPAQ data5 describes results of
an international questionnaire examining physical activity of
population. It involves 4510 respondents and 16 questions,
which include questions regarding respondents’ age, sex, sports
activity, walking activity, health, body mass index, and the like.
The Music data comes from an inquiry of how people perceive
the speed of song [9]. In particular, the aim was to examine
how the perception of speed of a given song depends on various
features of the song. The Rio data6 represents countries and their
success in terms of obtained medals at the 2016 Olympics in Rio
de Janeiro.

As regards the meaning of computed factors, the re-
sults confirm that the factors obtained by ASSOL are gen-
erally not easy to interpret compared to those obtained by
GRECONDL and GRECONDL+. This again results from a
good interpretability of formal concepts, which are utilized
by GRECONDL and GRECONDL+. We also observed that the
factors obtained by GRECONDL and GRECONDL+ are often
similar.

The results of our experiments are displayed in Table V, which
is organized like the above table for synthetic data. That is, the
tables display for the various prescribed values of eu the number
of factors computed by the examined algorithms that are needed
for the actual eu not to exceed the prescribed value, as well
as the actual values eu, eo, and e of relative error. As with the
synthetic data, the first factor produced by ASSOL tends to have

4[Online]. Available: http://www.sports-reference.com/
5[Online]. Available: http://www.ipaq.ki.se/
6[Online]. Available: https://www.rio2016.com/en/medal-count
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TABLE V
NUMBERS OF FACTORS NEEDED FOR PRESCRIBED VALUES OF eu (REAL DATA)

a relatively small error. In addition to mediocre interpretability
of the first factor, the real data—which has naturally a rather
different character compared to our synthetic data—reveals
another shortcoming of ASSOL, namely, the inability to produce
factorizations with low prescribed error eo. This is because with
ASSOL, the overcover error eo may only increase as new factors
are computed, which does not allow the algorithm to add further
factors, which would possibly decrease the uncover error eu:
Decreasing eu would take place on the expense of increasing
eo, which move would result in the increase of the total error
e, and is hence not permitted by the algorithm. This shows
that ASSOL not only suffers from mediocre interpretability of
its first factors but also from the inability to produce pre-
cise factorizations.7GRECONDL+ displays a similar behavior if
related to GRECONDL, even though for real data, the numbers of
needed factors produced by GRECONDL are smaller compared
to GRECONDL+ more often than what we observed for the
synthetic data. Nevertheless, we observe a nice behavior of
our new algorithm regarding how the error evolves: Namely,
as new factors are computed, both parts of error eu and eo tend
to decrease, in most cases to the point when both eu and eo, and
hence the overall e, drop to zero. We consider this a rather in-
teresting property, not envisioned when we have been designing
the algorithm. The resulting factorization by GRECONDL+ is
hence often an exact factorization which, interestingly, involves
a smaller (sometimes significantly smaller) number of factors
compared to the exact factorization obtained by GRECONDL.
Note at this point that, as is well known, GRECONDL is capable
to compute an exact factorization for each input matrix I .
Note also that the sometimes significantly smaller number of

7The strength of ASSOL consists in providing a very good reduction of
dimensionality by its first few factors, which is a significant property when
interpretability of factors is not of primary concern.

factors obtained by GRECONDL+ is partly due to the fact that
GRECONDL does not perform any test of possible reducibility of
the computed factors. That is to say, GRECONDL itself can partly
be improved by revisiting all the computed factors once exact
factorization is computed and removing the factors that are not
needed in face of all the factors generated (remove a factor when
the remaining factors commit the same error as the original set of
factors).

D. Improvement to the Binary Case

While studying the algorithm GRECOND+ from [4], which
is designed for binary data, we made several observations
some of which are reported in this section. For one, we sug-
gest an improvement to the original algorithm if small over-
cover error is desired. Second, we present a comparison of
GRECOND+ with the basic GRECOND algorithm, which is
of interest because GRECOND+ is actually an extension of
GRECOND.

Note first that since our new algorithm works for matrices with
entries from a general scale L, setting L = {0, 1}, we obtain an
algorithm for binary (Boolean) data, which may be compared to
the original GRECOND+ designed in [4]. In this regard, our new
algorithm—while inspired by the one described in [4]—actually
uses a different way to remove an attribute j from D. The reason
we use this different way is that it leads to factorizations with a
smaller overcover error, which we find important. In particular,
l. 20–24 of GRECONDL+, when performed in the binary case, is
different from the corresponding procedure described in [4]. The
procedure described in [4] removes j fromD if each 1 in the col-
umn j that appears in some of the rows corresponding toC is cov-
ered by some 〈G,H〉 ∈ F − {〈C,D〉}, i.e., if for each 〈i, j〉 ∈
C ×D with Iij = 1 there exists 〈G,H〉 ∈ F − {〈C,D〉} with
〈i, j〉 ∈ G×H . Our approach, when translated to the binary
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TABLE VI
NUMBERS OF FACTOR NEEDED FOR PRESCRIBED eu (BINARY DATA)

case, uses a more relaxed condition, namely it removes j when-
ever the removal of j improves the overall error. This relaxed
condition actually leads to a smaller overall error of the produced
factorizations.

Table VI presents selected results of our experiments for
binary data; the layout of the table is the same as in the above-
mentioned tables for synthetic and real data with fuzzy attributes.
In particular, we selected some of the datasets used in [4],
which describe various domains. The Firewall data describe
365 firewall records (objects) by 709 system attributes; the
DBLP data are the 19 × 6980 data describing a selection of
19 renowned computer science conferences and 6980 authors
who published in these conferences according to the DBLP
database; the Chess data are the 3196 × 76 data involving chess
end-game samples including information whether white can win
or not; the Mushroom data describe 8124 mushrooms using 119
physical characteristics. For these data, the new algorithms,
GRECOND+ and our new GRECONDL+, when compared to
GRECOND, tend to produce smaller numbers of factors needed
to achieve a prescribed level of uncover error eu, i.e., needed to
explain a prescribed portion of the input data. This is particularly
apparent with GRECOND+ and the weight w, which represents
penalty for overcovering, set to a small value. Observe also
that the new algorithms tend to produce exact factorizations
or almost exact factorizations with smaller numbers of factors
(sometimes significantly smaller; again as in the case with
fuzzy attributes, this is partly because the original GRECOND
does not perform any reconsideration of the computed factors).
Comparing GRECOND+ with our new GRECONDL+, we see that
while GRECOND+ usually achieves the prescribed eu with a
smaller number of factors, it does so at the expense of producing
a considerably larger overcovering, and hence a larger total
error e.

IV. CONCLUSION

In this article, we proposed a new algorithm GRECONDL+ for
the factorization of matrices over ordinal scales. This algorithm,
unlike other algorithms based on using formal concepts as
factors, commits the so-called overcover error—one of two
types of error observed when factorizing matrices over ordinal
scales. The algorithm is based on utilizing formal concepts
as basic building blocks from which the actual factors are
constructed by reasonable overcover-committing extension. Our
experimental evaluation reveals that due to the usage of formal
concepts, the algorithm produces easily interpretable factors.
Moreover, the algorithm tends to produce smaller factorizations
compared to the other existing algorithms. Interestingly, the
management of the overcover error results in a gradual drop
of this error as new factors are computed, leading eventually to
highly precise factorizations. We also provide new observations
on factorization of binary data and propose an improvement to
reduce the overcover error of the produced factorizations.

We believe that our results reveal the promise of the main
novelty that our new algorithm puts forward, namely construct-
ing factors as extensions of easily interpretable basic blocks,
and revisiting and modifying previously generated factors in
order to make smaller the otherwise growing overcover error.
This approach has a general appeal and may be applied to
existing algorithms as well as to new factorization strategies
to be designed in the future.
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