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ABSTRACT
We consider the concept of fuzzy order in which antisymmetry is
intrinsically connected to a many-valued equality on the underlying
universe. We examine the origins of this concept, provide remarks
and observations on the existing studies, and prove new results. In
part I, we scrutinize the existing approaches to the examined con-
cept of fuzzy order and present remarks and results to elucidate the
available notions and findings, as well as to provide a deeper insight
into several issues. In part II, we explore antisymmetry.
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1. Aim of this paper

The concept of order is one of the basic concepts accompanying human reasoning. Corre-
spondingly, orders – known also as partial orders or orderings – became a widely studied
kind of relations, which are utilized across a variety of fields. Recall that a classical order
on a set U is a binary relation ≤ on U that is reflexive, antisymmetric, and transitive, i.e.
satisfies u ≤ u; u ≤ v and v ≤ u implies u = v; and u ≤ v and v ≤ w implies u ≤ w for all
u, v,w ∈ U. In addition to a classical, bivalent setting, the concept of order makes a good
sense in a more general setting, in which bivalence is replaced by graduality. For instance,
instead of conceiving inclusion, which is a particular example of order, as bivalent, onemay
consider an entity as being included in another entity to a certain degree. It hence comes
as no surprise that generalized orders – known as fuzzy orders – in which ordering is a
matter of degree represent a thoroughly studied subject.

Since the pioneering paper by Zadeh (1971),1 a number of definitions of the concept
of fuzzy order have been proposed.2 In our paper, we are concerned with the arguably
most developed approach to fuzzy orders, pursued originally byUlrichHöhle, Nicole Blan-
chard, Ulrich Bodenhofer, and Radim Belohlavek. The distinctive feature of this approach
is the treatment of antisymmetry: The approach assumes that the set on which a fuzzy
order is defined is equipped with a fuzzy relation that generalizes ordinary equality, which
is involved in classical antisymmetry. This approach actually subsumes two particular
definitions of antisymmetry, which shall be examined in detail below.

Even though a number of papers on fuzzy orders have been published after the pio-
neering works by the above-mentioned authors, some basic questions still remain open
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or answered partially only. Most important among them is the basic question of what is
actually an appropriate definition of fuzzy order.

Note at this point that such question should not be regarded as a quest for “the right”
definition of fuzzy order, which might rightfully be considered as ill posed. Namely, in the
more general setting of fuzzy logic, different situations may require different definitions
of fuzzy order, each of which may serve the intended purpose in the particular situation.
Yet, all of these definitions may indeed be proper generalizations of the classical concept
of order.3

Correspondingly, rather than looking for “the right” definition of fuzzy order, the ques-
tionmentioned in the previous paragraph is to be understood as a question of ramifications
of and relationships between possible definitions of fuzzy orders. Exploration of this ques-
tion as regards the above approach to fuzzy order, i.e. involving antisymmetry with respect
to generalized equality, is the primary purpose of our paper.

2. Definitions of fuzzy order

Throughout the rest of this paper, we assume a framework for dealing with fuzzy sets and
fuzzy relations that is based on complete residuated lattices used as the structures of truth
degrees. For details, we refer to Appendix. In particular, we denote an arbitrary complete
residuated lattice by L = 〈L,∧,∨,⊗,→, 0, 1〉.

2.1. Preliminary considerations

A transfer of an ordinary concept to a fuzzy setting, i.e. a generalization of a concept
defined in the framework of classical logic to a fuzzy logic framework, involves two aspects:
The first one is obvious and requires that the generalized concept indeed be a generaliza-
tion of the ordinary concept. The second one, which is somewhat vague and much less
trivial, asks that the generalized concept be useful and behave naturally. In this broader
perspective, which forms the starting point of our considerations, the first aspect concerns
mathematical correctness, while the second pertains to mathematical practice.

However, trivial the imperative of the first aspect appears, it is worth noting that it may
be understood several ways. Our understanding, which has become common in the past
two decades or so, is as follows. A definition of the generalized concept assumes a general
structure L of truth degrees and is expressed by appropriate conditions. For instance, a
binary fuzzy relation R : U × U → L is called transitive if the condition

R(u, v) ⊗ R(v,w) ≤ R(u,w) (1)

holds true for each u, v,w ∈ U. Now, one may consider the structure L of truth degrees as
a parameter and consider the definition for arbitrary L. Those L’s include, e.g. the real unit
interval L = [0, 1] and Łukasiewicz operations, but also – as a very particular case – the
two-valued Boolean algebra L = 2 of classical logic in which L = {0, 1}, i.e. the classical
truth values 0 and 1 are the only recognized degrees of truth. Taking L = 2means that the
fuzzy relation R is in fact a two-valued relation and may thus be identified with the cor-
responding ordinary relation o(R) = {〈u, v〉 | R(u, v) = 1}. As one then easily checks, R is
transitive in the sense of definition (1) if and only if the ordinary relation o(R) is classically
transitive, i.e. 〈u, v〉 ∈ o(R) and 〈v,w〉 ∈ o(R) imply 〈u,w〉 ∈ o(R) for each u, v,w ∈ U. It is
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in this sense that the definition (1) of transitivity of a fuzzy relation generalizes the classical
definition.4

Usefulness and natural behavior, i.e. the second aspect of generalizing a classical concept
to a fuzzy setting, basically implies that the generalized concept be useful in modeling of
reality, have nice properties, and be connected to other concepts in the generalized frame-
work in an analogous way the classical concept is in the classical framework. For instance,
when generalizing the concept of an equivalence relation to a fuzzy setting, it is desired
that the generalized concept of fuzzy equivalence provides a reasonable model of indistin-
guishability in a setting that allows for gradual indistinguishability, and that it is naturally
connected to an appropriately defined concept of a fuzzy partition.

It is immediate that meeting the requirement for the generalized concept to be indeed
a generalization of the corresponding ordinary concept does not imply that the second
requirement is satisfied, i.e. usefulness and natural behavior of the generalized concept.
To meet both of the above-outlined criteria, one needs to “experiment” and “play” with
the generalized concept, i.e. explore its properties in the generalized framework and pos-
sibly modify its definition, until a generalized concept comes up that is useful and behaves
naturally from the viewpoint of the concerned needs.5

According to the above rationale, to define a reasonable concept of fuzzy order not only
requires to provide a generalization of classical orders but also to examine thoroughly the
properties of such generalization with regard to notions which are relevant when consid-
ering gradual ordering. Since classical orders are reflexive, antisymmetric, and transitive
relations, it appears reasonable to define generalized conditions of reflexivity, antisymme-
try, and transitivity, and define fuzzy orders as fuzzy relations that satisfy these generalized
conditions. Generalizing reflexivity and transitivity appears immediate: reflexivity of a
fuzzy relation R : U × U → L means R(u, u) = 1 for each u ∈ U, while transitivity of R
is defined by (1). These two definitions have been proven useful and naturally behaving by
a great number of studies. Generalizing antisymmetry, however, is much less immediate.

To illustrate our point, let us recall the pioneering paper by Zadeh (1971), in which a
fuzzy relation R is considered antisymmetric if

R(u, v) > 0 and R(v, u) > 0 imply u = v (2)

for each u, v ∈ U. As one easily checks, this definition generalizes classical antisymme-
try, and hence is mathematically correct. However, it has serious drawbacks, of which we
present the following one.

In the classical setting, one of the most important examples of orders is represented
by inclusion ⊆ of sets: ⊆ is a reflexive, antisymmetric, and transitive relation, i.e. the
pair 〈2U ,⊆〉 is an ordered set, for any set U. However, the graded inclusion ⊂∼ of fuzzy
sets on U, defined by (A3) in Appendix, does not satisfy Zadeh’s antisymmetry (2).6
From the above viewpoint, the reason is that Zadeh did not put his definition to a proper
test, i.e. did not derive his definition from natural examples and did not consider it in a
proper context of relevant mathematical considerations. In a sense, (2) provides a formal-
istic approach to antisymmetry, which is mathematically correct but has a rather limited
use.

This example is not to criticize Zadeh, who typically had been deriving his notions
from natural examples, nor to criticize several other papers and even textbooks, such
as the widely circulated (Klir and Yuan 1995), which adopted Zadeh’s definition, or
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proposed different definitions, with similar drawbacks.7 Rather, we intend to emphasize the
importance of putting notions generalized to the setting of fuzzy logic to proper tests
involving concepts and theories with which the generalized notions shall interact properly.

2.2. Definitions of fuzzy order on a set with generalized equality

From today’s perspective, the approachwe examine in our papermay be regarded as allevi-
ating the drawbacks of formalistic attempts as the one outlined above. The key idea of this
approach is to consider as fuzzy (graded, many-valued) not only the order relation on the
universe set U but also the equality relation on U. That is to say, one considers a universe
U, a fuzzy relation� generalizing classical order, and a fuzzy relation ≈ generalizing clas-
sical equality. Even without further exploration, such approach appears well thought out
because the classical theory of ordered sets refers to equality on many occasions including
the definition of antisymmetry.

Remark 1: From an epistemic viewpoint, it is even tempting – when considering a fuzzy
order� onU – to assume that� is defined on a setU onwhich a generalized equality ≈ is
given already. This view agrees with the classical situation in which equality = is implicitly
understood as being given on the considered universe set. In drawing conclusions of this
sort, though, one has to be careful because an alternative view is also possible in which
even in a fuzzy setting,U may be regarded as equipped with classical equality = only, and
both� and ≈ may be understood as further entities with the provision that in the classical
case, = coincides with ≈ .8

The approach we explore has been initiated in the pioneering works of Höhle, Blan-
chard, Bodenhofer, and Belohlavek; see e.g. (Belohlavek 2001, 2002, 2004; Blanchard 1989;
Bodenhofer 2000, 2003; Bodenhofer and Klawonn 2004; Höhle 1987; Höhle and Blan-
chard 1985). It appeared for the first time in the paper by Höhle and Blanchard (1985) and
was apparently rediscovered later by Bodenhofer and Belohlavek, whose notions of fuzzy
order differ from each other in the antisymmetry condition. While Bodenhofer’s antisym-
metry coincides with that of Höhle and Blanchard (1985), Belohlavek’s antisymmetry is
different and essentially coincides with antisymmetry proposed in yet another paper by
Höhle (1987) whose purpose is a study of Dedekind’s construction of real numbers in a
fuzzy setting. Both Bodenhofer and Belohlavek studied their notions of fuzzy order in sev-
eral subsequent papers. They both were motivated by rather different goals and have not
examined the relationships of their two notions of fuzzy order to any deeper extent.

Let us note at this point that a related notion of fuzzy order has independently been
introduced by Blanchard (1983) and Fan (2001). This notion does not involve fuzzy equal-
ity on the underlying universe set U and is formulated in a slightly restricted framework.
Nevertheless, its generalization to the framework of complete residuated lattices turns out
to be equivalent in a sense with the approach utilizing fuzzy equalities. We present details
on this topic in part II (Belohlavek and Urbanec 2023).

We now provide the two definitions of fuzzy order on a set with a generalized equality.
We provide thembasically in the forms present in theworks of Bodenhofer andBelohlavek,
respectively, since these forms are most common in the literature; the definitions which
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appeared in the works by Höhle are just mild variations of the definitions we present.
Detailed comments on the definitions are presented below.

Definition 1 (Höhle, Blanchard, Bodenhofer): A fuzzy order on a set U equipped with
a fuzzy equality relation ≈ is a binary fuzzy relation � on U satisfying

u ≈ v ≤ u � v (≈ -reflexivity),

(u � v) ⊗ (v � w) ≤ u � w (transitivity),

(u � v) ⊗ (v � u) ≤ u ≈ v (⊗-antisymmetry),

for each u, v,w ∈ U. (Note: Höhle and Blanchard’s as well as Bodenhofer’s original defi-
nitions actually assume, more generally, that ≈ is a fuzzy equivalence rather than fuzzy
equality; this is discussed below.)

Definition 2 (Höhle, Belohlavek): A fuzzy order on a setU equippedwith a fuzzy equality
relation ≈ is a binary fuzzy relation � on U compatible with ≈ , i.e. fulfilling

(u1 � v1) ⊗ (u1 ≈ u2) ⊗ (v1 ≈ v2) ≤ u2 � v2,

for every u1, u2, v1, v2 ∈ U, which satisfies

u � u = 1 (reflexivity),

(u � v) ⊗ (v � w) ≤ u � w (transitivity),

(u � v) ∧ (v � u) ≤ u ≈ v (∧-antisymmetry),

for each u, v,w ∈ U.

Remark 2 (nomenclature): (a) If distinction is needed, we shall call fuzzy orders accord-
ing to Definitions 1 and 2 fuzzy orders with ⊗-antisymmetry and fuzzy orders with
∧-antisymmetry, respectively.

(b) Various terms are used in the literature, e.g. partial ordering in L-underdeterminate
sets (Höhle and Blanchard 1985),T-E-ordering (Bodenhofer),9 partial ordering on an
I-valued set (Höhle 1987), andL-order on a setwithL-equality (Belohlavek). Also note
that instead of complete residuated lattices, Höhle and Blanchard (1985) use some-
what more particular structures.10 Höhle (1987) and Bodenhofer use L = [0, 1] with
a left-continuous t-norm.11 Let us alsomention that Höhle (1987) uses amore general
concept of fuzzy equality inspired by category-theoretical considerations, in which the
degree u ≈ umay be strictly smaller than 1 and is interpreted as an extent to which u
exists.

(c) The structure consisting of U, ≈ , and � as described in the definitions is called a
fuzzy ordered set, and is denoted 〈U,≈,�〉, or 〈〈U,≈〉,�〉 if the distinct role of ≈ ,
e.g. resulting from epistemic preference as discussed in Remark 1, is to be emphasized.
In the latter case, one naturally speaks of a fuzzy order � on a set with fuzzy equality
〈U,≈〉.

Remark 3 (basic relationships): (a) Onemay observe two distinctions when comparing
Definition 1 with Definition 2. First, the definitions use different forms of antisymme-
try, with the stronger ∧-antisymmetry implying the weaker ⊗-antisymmetry. Basic
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relationships of these two forms of antisymmetry are addressed in Section 3.3; a thor-
ough consideration of antisymmetry is presented in the second part of this paper.
Second, Definition 1 requires ≈-reflexivity of the fuzzy order � while Definition 2
requires that � be reflexive and compatible with ≈ . Note at this point that in pres-
ence of the other conditions, these two requirements are equivalent and thatwe discuss
this relationship in Section 3.2. It hence follows from the facts just mentioned that
Definition 1 delineates a more general notion of fuzzy order than Definition 2 in the
following sense: If 〈U,≈,�〉 is a fuzzy ordered set according to Definition 2, it also
is a fuzzy ordered set according to Definition 1, but not vice versa.12 This view, how-
ever, is thoroughly reconsidered in part II of our paper, in which an alternative view
is provided.

(b) As noted inDefinition 1, the original definitions ofHöhle, Blanchard, and Bodenhofer
assume that ≈ is a fuzzy equivalence rather than a fuzzy equality. A fuzzy equality is a
more particular concept than a fuzzy equivalence since it additionally satisfies separa-
tion; see Appendix. We nevertheless assume that ≈ is a fuzzy equality in Definition 1
since this assumption yields, in a sense, a cleaner generalization of the notion of order
to the setting of fuzzy logic, which may moreover be better compared to the notion
of fuzzy order from Definition 2; see Section 3.1 for details. Still, we shall speak of
Definition 1 as the definition by Höhle, Blanchard, and Bodenhofer, as no confusion
arises in view of the present remark.

Note also that in their definition of fuzzy order, Höhle and Blanchard (1985) in fact
use – somewhat misleadingly – the term “L-equality” to denote a fuzzy equivalence.

(c) With respect to the problem with Zadeh’s antisymmetry and graded inclusion, it
is immediate and nowadays well known that for any set X, graded inclusion ⊂∼
becomes a fuzzy order with ⊗-antisymmetry on U = LX when one considers A ≈
B = (A ⊂∼ B) ⊗ (B ⊂∼ A) for fuzzy sets A,B ∈ LX , and becomes a fuzzy order with ∧-
antisymmetry on LX when one considers A ≈ B = (A ⊂∼ B) ∧ (B ⊂∼ A). Note that in
both cases, ≈ is a fuzzy equality on LX . These observations appear in their respective
forms in Belohlavek (2002); Bodenhofer (1999); Höhle (1987).

(d) It is well known and important for algebraic investigations of logic that the truth func-
tion → of classical implication defines an order ≤ on the set L = {0, 1} of classical
truth values by letting a ≤ b iff a → b = 1. In other words, → is the characteristic
function of ≤ . A natural generalization of this property holds true in the present
framework (recall: the two-valued Boolean algebra is a particular case of a com-
plete residuated lattice): For any complete residuated lattice L, the function → (i.e.
residuum, or truth function of implication) is a fuzzy order with ⊗-antisymmetry on
the set L of truth degrees equippedwith the fuzzy equality defined by a ↔⊗ b = (a →
b) ⊗ (b → a). Furthermore,→ is a fuzzy order with∧-antisymmetry when the fuzzy
equality is defined by a ↔∧ b = (a → b) ∧ (b → a). These observations appear in
works by Belohlavek (2002); Bodenhofer (1999); Höhle and Blanchard (1985).13 Note
that the examples in the present condition (d) may be regarded as special cases of
those of condition (c) of the present remark, because L may be identified with LU
for a singleton U = {u}, in which case ⊂∼ becomes → and ≈ becomes ↔⊗ or ↔∧,
respectively.

(e) For L = [0, 1] (or, more generally, a linearly ordered L), ⊗ = ∧, and ≈ coincid-
ing with ordinary equality (i.e. u ≈ v = 1 for u = v and u ≈ v = 0 for u �= v), both
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⊗-antisymmetry and ∧-antisymmetry are equivalent to Zadeh’s antisymmetry (2),
which – for ⊗-antisymmetry – is mentioned by Bodenhofer (1999) and Höhle and
Blanchard (1985).

Remark 4 (historical comments): (a) Definition 1 was – with the conditions listed
above but, as noted, with fuzzy equivalence rather than fuzzy equality – proposed for
the first time byHöhle and Blanchard (1985), who aimed to improve and further study
the concept of order in the setting of fuzzy logic originally introduced byZadeh (1971).
This definition was later reinvented by Bodenhofer, who was apparently not aware of
Höhle and Blanchard’s work. Bodenhofer does not cite this work in his first papers
(1999; 2000), but cites it in his next paper (2003), in which he acknowledges Höhle
and Blanchard’s historical priority.

(b) Definition 2 was proposed for the first time by Höhle (1987) with a more particu-
lar choice of structures L of truth degrees (namely, complete residuated lattices on
[0, 1]) but with a more general concept of fuzzy equality; cf. Remark 2 (b). It was later
reinvented by Belohlavek who was not aware of Höhle’s paper.

(c) It is worth noting that the motivation in the works investigating the notion of
fuzzy order according to Definition 1, i.e. by Höhle and Blanchard (1985) and by
Bodenhofer, was basically a general study of fuzzy order. The motivation in the first
works exploring fuzzy orders according to Definition 2, i.e. by Höhle (1987) and by
Belohlavek, was more particular, namely to study certain ordered structures deter-
mined by binary fuzzy relations. In particular, Höhle studied the so-called Dedekind
cuts, while Belohlavek studied so-called concept lattices; both of these structures are
strongly related (put briefly, Dedekind cuts are a particular case of concept lattices).

(d) Interestingly, Höhle (1987) does not comment on and does not cite his previous
definition of fuzzy order (Höhle and Blanchard 1985), i.e. does not mention why he
changed his definition for the purpose of his 1987 paper.

(e) Even though neither Bodenhofer nor Belohlavek were initially familiar with Höhle’s
work on fuzzy orders, both were strongly influenced by Höhle’s work on fuzzy logic.

(f) Bodenhofer and Belohlavek discussed their works on fuzzy order at the FSTA 1998
conference in Liptovský Ján, at which point most of the results of their first papers
were worked out, but they never got to comparing their approaches. Note also that
Belohlavek’s first paper (Belohlavek 2004) got stuck in the production process: As is
apparent from the acknowledgment in this paper and from Belohlavek (2001), the
2004 paper was submitted in 2000.

In the remainder of this paper, we shall examine the properties, relationships, and
ramifications of the two notions of fuzzy order in detail.

3. Observations and results

We now present our observations on the two notions of fuzzy order. We also aim at pro-
viding and putting in context the existing results and, in particular, attempt to clarify
relationships between the various conditions involved by providing clean statements.

To provide a deeper insight, we not only consider the conditions involved in the defini-
tions of fuzzy order but also consider truth degrees to which these conditions are satisfied,



INTERNATIONAL JOURNAL OF GENERAL SYSTEMS 955

such as the degree to which a fuzzy relation � is reflexive or transitive. This is because
considerations of these degrees and the respective relationships provide a deeper under-
standing of the concerned notions. We therefore start by recalling the definition of the
degrees of relevant properties of fuzzy relations.

For binary fuzzy relations R and ≈ on U, we define

ref(R) =
∧

u∈U
R(u, u), (3)

ref≈(R) =
∧

u,v∈U
((u ≈ v) → R(u, v)), (4)

sym(R) =
∧

u,v∈U
(R(u, v) → R(v, u)), (5)

tra(R) =
∧

u,v,w∈U
((R(u, v) ⊗ R(v,w)) → R(u,w)), (6)

∧-ant(R) =
∧

u,v∈U
((R(u, v) ∧ R(v, u)) → (u ≈ v)), (7)

⊗-ant(R) =
∧

u,v∈U
((R(u, v) ⊗ R(v, u)) → (u ≈ v)), (8)

comp(R) =
∧

u1,u2,v1,v2∈U
((R(u1, v1) ⊗ (u1 ≈ u2) ⊗ (v1 ≈ v2)) → R(u2, v2)). (9)

The degrees ref(R), ref≈(R), sym(R), tra(R), ∧-ant(R), ⊗-ant(R), and comp(R) are called
the degree of reflexivity, ≈ -reflexivity, symmetry, transitivity, ∧-antisymmetry, and ⊗-
antisymmetry of R, and the compatibility of R with ≈ , respectively.

Remark 5: (a) The above degrees have a clear meaning. For instance, ref(R) and sym(R)

are just the truth degrees of the first-order formulas14

(∀x)r(x, x) and (∀x)(∀y)(r(x, y) ⇒ r(y, x)),

respectively, i.e. formulas verbally described as “for each x, x is related to x” and “for each
x and y, if x is related to y then y is related to x”; similarly for the other degrees.

(b) Observe that the degree ref≈(R) is just the degree ≈ ⊂∼ R to which ≈ is included in
R; cf. (A3) in Appendix.

(c) Since
∧

j∈J aj = 1 iff aj = 1 for each j ∈ J, we obtain that ref(R) = 1 if and only if
R is reflexive. The same holds for the other properties, hence the degrees of the properties
naturally generalize the respective bivalent properties.

(d) Grades of properties (or graded properties) of fuzzy relations were studied by
Gottwald (1993, 2001) and Belohlavek (2002), and were later systematically examined
within the effort by Běhounek and Cintula (2006).

(e) Alternatively, one can consider a fuzzy relation a-reflexive for a given truth degree
a ∈ L if a ≤ R(u, u) for each u ∈ U. One may then check that

ref(R) =
∨

{a ∈ L | R is a-reflexive};
the same holds true for the other properties.
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(f) The notations ∧-ant(R) and ⊗-ant(R) assume that ≈ is obvious from the con-
text; alternatively, one could use “∧-≈-ant(R)” and “⊗-≈-ant(R).” The same applies to
comp(�).

3.1. Fuzzy order on a set with fuzzy equality versus fuzzy equivalence

As briefly discussed in Remark 3 (b), Definition 1 differs from the original definition of
fuzzy order by Bodenhofer (1999) and Höhle and Blanchard (1985) in that it assumes that
≈ is a fuzzy equality rather than fuzzy equivalence.Wenowbriefly examine this distinction
since it is conceptually significant and has not been properly addressed in the literature.

In our view, assuming a fuzzy equivalence instead of fuzzy equality in Definition 1 does
not represent a direct generalization of the notion of order to a fuzzy setting. Rather, it
represents a generalization that proceeds along two lines simultaneously. First, the two-
valued Boolean algebra is replaced by themore general complete residuated lattice. Second,
equality is replaced by equivalence.

This is also apparent when one examines what results from these two notions – i.e. fuzzy
order on a set with a fuzzy equality per Definition 1 and fuzzy order on a set with a fuzzy
equivalence per the original definition by Höhle, Blanchard, and Bodenhofer – if the defi-
nitions are considered within the classical setting. Consider thus both definitions with the
structure L of truth degrees being the two-element Boolean algebra 2 of classical logic.

On the one hand, the notion resulting from Definition 1 coincides with the classi-
cal notion of order because a fuzzy equality becomes classical equality, and the defining
conditions become classical reflexivity, transitivity, and antisymmetry.

On the other hand, the notion which results from the definition of a fuzzy order on a
set with a fuzzy equivalence is not the notion of a classical order. Rather, it is a notion of
classical relation ≤ on a set U, on which a classical equivalence ≡ is defined, such that
≤ contains ≡ , is transitive, and satisfies a generalized form of antisymmetry in that u ≤ v
and v ≤ u implies u ≡ v. As ≤ contains ≡ and as ≡ is reflexive, ≤ is reflexive as well.
Moreover, since ≡ is contained in ≤ , we obtain that

u ≡ v if and only if u ≤ v and v ≤ u.

In terms of standard notions of ordered sets (Birkhoff 1967; Blyth 2005; Davey and Priest-
ley 2002; Grätzer 2007), this means that ≤ is a quasiorder (preorder in an alternative
terminology; i.e. is reflexive and transitive) and ≡ is just the equivalence that is used to
make the quasiorder to an order by a well-known factorization.

Let us point out that it is clear from Bodenhofer’s papers that he was aware of this prop-
erty of the definition of fuzzy order assuming fuzzy equivalence (Bodenhofer 2000, 2003).
In particular, Bodenhofer (2003, 123) says:

Although this is most often not mentioned explicitly, many orderings in classical mathemat-
ics are in fact only preorderings that may be understood as orderings by considering some
factorization. . . . In contrast to most classical cases, however, we do not use the projection of a
given preordering to the factor set with respect to the underlying equivalence relation defined
by the symmetric kernel, but include the equivalence relation in the axioms of the ordering
explicitly. This might look like a significant deviation from the classical formulation, however,
the two ways are logically equivalent.
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Although we basically agree with Bodenhofer’s remarks, we find it necessary to obey
the maxim, according to which a generalization of a classical concept to the setting of
fuzzy logic needs to behave as explained above. That is, the generalized concept needs to
become the original classical concept when considered in the classical setting, i.e. when
the considered structure of truth degrees is the two-element Boolean algebra. This is why
we prefer Definition 1 assuming a fuzzy equality instead of fuzzy equivalence. In addition
to the above reason, ramifications of Definition 1 and Definition 2 may more directly be
compared when both definitions assume a fuzzy equality.

The notion of a (fuzzy) order on a set with a (fuzzy) equivalence also implies some
inconvenient properties compared to the ordinary notion of order. An example is the fact
that important distinguished elements, such as largest and smallest elements or suprema
and infima are then not unique. Rather, they are unique just up to the equivalence. We
illustrate this property by the following example in the classical setting.

Example 1: Let U = {u, v,w}, let a classical equivalence ≡ be given by the equivalence
classes {u} and {v,w}. Then the relation ≤ given by u ≤ u, v ≤ v, w ≤ w, u ≤ v, u ≤ w,
v ≤ w, andw ≤ v is an order on a set with an equivalence in the sense of Höhle, Blanchard,
and Bodenhofer. Defining naturally a smallest element x as an element such that x ≤ y for
every y, and dually for a largest element, it is immediate that u is the only smallest element.
On the other hand, both v and w are largest, even though these are two distinct elements.

With respect to the last paragraph, let us note that the non-uniqueness of distinguished
elements can be handled by developing the theory in an appropriatemanner, but the result-
ing theory is not likely to be straightforward. This is apparent e.g. from studies of the notion
of a lattice in quasiordered sets initiated by Chajda (1992).

Remark 6: It is easy to check the following claim: If � is a fuzzy order on the set U with a
fuzzy equivalence ≈ in the sense of Höhle, Blanchard, and Bodenhofer, one may – gener-
alizing in a straightforward manner the well-known classical construction of order from a
quasiorder – consider the factor set U ′ = U/E ofU by the ordinary equivalence E defined
by

〈u, v〉 ∈ E if and only if u ≈ v = 1,

and define fuzzy relations �′ and ≈′ on U ′ by

[u]E �′ [v]E = u � v and [u]E ≈′ [v]E = u ≈ v,

for any equivalence classes [u]E and [v]E in U ′. Then �′ is a fuzzy order on the set U ′
equipped with a fuzzy equality ≈′ according to Definition 1.

3.2. Reflexivity and compatibility

An immediate difference between Definitions 1 and 2 consists in their condition of reflex-
ivity. Both generalize classical reflexivity in that in the classical setting, i.e. L being the
two-element Boolean algebra, both coincide with classical reflexivity. However, while ≈-
reflexivity required by Definition 1 is stronger than reflexivity of Definition 2, the latter
requires compatibility of the fuzzy order � with ≈ .15
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Remark 7: (a) From the epistemic viewpoint mentioned in Remark 1, it seems
natural, if not necessary, to assume compatibility of � with ≈ . Compatibility gen-
eralizes the axiom of equality of classical logic, which in the context of order relations
reads: If u1 is less than or equal to v1, u1 equals u2, and v1 equals v2, then u2 is less
than or equal to v2. In the setting involving degrees, compatibility is compelling par-
ticularly when degrees of equality are interpreted as degrees of indistinguishability.
Compatibility then says that the following formula is true (i.e. its truth degree equals
1): If u1 is less than or equal to v1, u1 is indistinguishable from u2, and v1 is indistin-
guishable from v2, then u2 is less than or equal to v2. Validity of such formula seems
an unavoidable condition.

(b) Interestingly, compatibility has not been mentioned by Höhle and Blanchard (1985),
nor in the first works by Bodenhofer; Bodenhofer actually considers compatibility
considerably later (Bodenhofer and Demirci 2008). On the other hand, compatibility
has been a common condition utilized in modern studies of fuzzy relational systems
in the early 2000s; see, e.g. the books by Belohlavek (2002), Gottwald (2001), and
Hájek (1998).

In spite of the seemingly different conditions, i.e. ≈-reflexivity vs. reflexivity and com-
patibility, ≈-reflexivity turns out to be equivalent to reflexivity and compatibility given the
context of both definitions.16 The argument was observed for the first time by Belohlavek
and Vychodil (2005, Lemma 1.82) in the context of fuzzy equivalences on sets with fuzzy
equalities and later, independently, by Bodenhofer and Demirci (2008) in the context of
fuzzy orders. Since, aswe shall see below, this relationship is of considerable importance, we
consider it thoroughly, namely by taking into account the degrees of the properties of fuzzy
relations. We start by the following lemma, in which tra(�)2 stands for tra(�) ⊗ tra(�)

and analogously for ref≈(�)2.

Lemma 1: Let � and ≈ be arbitrary fuzzy relations on a given set U. Then

ref(≈) ⊗ ref≈(�) ≤ ref(�), (10)

sym(≈) ⊗ tra(�)2 ⊗ ref≈(�)2 ≤ comp(�), (11)

ref(≈) ⊗ ref(�) ⊗ comp(�) ≤ ref≈(�). (12)

In the following as well as in the subsequent proofs, we shall use – with no further notice
– common properties of infima and suprema, as well as properties of complete residuated
lattices (Belohlavek 2002; Gottwald 2001; Novák, Perfilieva, and Močkoř 1999).

Proof: Inequality (10) holds true iff for each u ∈ U, ref(≈) ⊗ ref≈(�) ≤ u � u, which is
indeed the case, as

ref(≈) ⊗ ref≈(�) ≤ (u ≈ u) ⊗ ((u ≈ u) → (u � u)) ≤ u � u.

To check (11), we need to verify that for each u1, u2, v1, v2 ∈ U one has

sym(≈) ⊗ tra(�)2 ⊗ ref≈(�)2 ≤ ((u1 � v1) ⊗ (u1 ≈ u2) ⊗ (v1 ≈ v2)) → u2 � v2,
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which is equivalent to

sym(≈) ⊗ tra(�)2 ⊗ ref≈(�)2 ⊗ (u1 � v1) ⊗ (u1 ≈ u2) ⊗ (v1 ≈ v2) ≤ u2 � v2,

which holds true. Indeed, observe first (easy, by standard arguments) that

(u ≈ v) ⊗ sym(≈) ≤ v ≈ u,

(u ≈ v) ⊗ ref≈(�) ≤ u � v, and

(u ≈ v) ⊗ (v ≈ w) ⊗ tra(�) ≤ u ≈ w.

Now,

sym(≈) ⊗ tra(�)2 ⊗ ref≈(�)2 ⊗ (u1 � v1) ⊗ (u1 ≈ u2) ⊗ (v1 ≈ v2)

= (u1 ≈ u2) ⊗ sym(≈) ⊗ ref≈(�) ⊗ (u1 � v1) ⊗ (v1 ≈ v2) ⊗ ref≈(�) ⊗ tra(�)2

≤ (u2 ≈ u1) ⊗ ref≈(�) ⊗ (u1 � v1) ⊗ (v1 � v2) ⊗ tra(�)2

≤ (u2 � u1) ⊗ (u1 � v2) ⊗ tra(�)

≤ u2 � v2,

completing the proof of (11).
Verifying (12) amounts to checking

ref(≈) ⊗ ref(�) ⊗ comp(�) ≤ (u ≈ v) → (u � v),

i.e.

ref(�) ⊗ ref(≈) ⊗ (u ≈ v) ⊗ comp(�) ≤ u � v,

for each u, v ∈ U, which is easy as

ref(�) ⊗ ref(≈) ⊗ (u ≈ v) ⊗ comp(�)

≤ (u � u) ⊗ (u ≈ u) ⊗ (u ≈ v) ⊗ comp(�) ≤ u � v,

with the last equality holding due to the definition of comp(�). �

Remark 8: (a) The meaning of inequalities (10), (11), and (12) may easily be described
verbally as follows; justification may either be intuitive or formal as explained in (b)
below. In particular, (10) means that if ≈ is reflexive and � is ≈ -reflexive, then �
is reflexive, even when this implication is interpreted in a way in which degrees of
being reflexive and ≈ -reflexive are taken into account. In the same vein, (11) is inter-
preted as claiming that if ≈ is symmetric, � is transitive and ≈ -reflexive, then � is
compatible with ≈ .17 Finally, (12) means that if ≈ is reflexive and � is reflexive and
compatible with ≈ , then � is ≈ -reflexive.

(b) To explain a formal justification of the meaning of the above inequalities, con-
sider (10); for the other inequalities, one proceeds analogously. There is a first-order
formula expressing inequality (10) syntactically, which is:

[(∀x)(x = x)&(∀x)(x = x ⇒ x ≤ x)] ⇒ (∀x)(x ≤ x). (13)

Namely, consider a first-order structure with universe U such that the relation sym-
bols = and ≤ are interpreted by the fuzzy relations ≈ and�, and connectives & and
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⇒ are interpreted by ⊗ and →. Due to basic semantic rules of first-order fuzzy logic
(Belohlavek 2002; Gottwald 2001; Hájek 1998), the truth degrees of the subformu-
las (∀x)(x = x), (∀x)(x = x ⇒ x ≤ x), and (∀x)(x ≤ x) are then just equal to ref(≈),
ref≈(�), and ref(�), respectively. Hence, the truth degree of formula (13) is equal to

[ref(≈) ⊗ ref≈(�)] → ref(�). (14)

From the properties of →, it now follows that formula (13) is true, i.e. the truth
degree (14) equals 1, if and only if inequality (10) is satisfied.

(c) One may easily observe that the exponents in the inequality (11) tell us how many
times the degree of the respective property is used in the proof of the inequality. For
instance, the exponent 2 in tra(�)2 indicates that the degree of transitivity is used
twice in the proof. This demonstrates an interesting added value of analyzing rela-
tionships among the concerned properties of fuzzy relations by looking at the degrees
to which the properties are satisfied.

(d) In (11), neither of the exponents of 2 in tra(�)2 and in ref≈(�)2 may be reduced to 1.
Indeed, consider the residuated latticeL to be the real unit interval L = [0, 1] equipped
with the Łukasiewicz connectives (cf. Appendix). Let U = {u1, u2, u3, u4} and let ≈
and � be given by the following tables:

≈ u1 u2 u3 u4
u1 1 1 0 0
u2 1 1 0 0
u3 0 0 1 1
u4 0 0 1 1

� u1 u2 u3 u4
u1 1 0.8 0.6 0.2
u2 0.8 1 1 0.6
u3 0 0 1 0.8
u4 0 0 0.8 1

As one may verify, sym(≈) = 1, tra(�) = 0.8, ref≈(�) = 0.8, and comp(�) = 0.2.
Now we have

sym(≈) ⊗ tra(�) ⊗ ref≈(�)2 = 1 ⊗ 0.8 ⊗ 0.82 = 0.4 �≤ 0.2 = comp(�)

and

sym(≈) ⊗ tra(�)2 ⊗ ref≈(�) = 1 ⊗ 0.82 ⊗ 0.8 = 0.4 �≤ 0.2 = comp(�).

Let us now consider some corollaries of Lemma 1, which result by strengthening the
assumptions.

Corollary 1: Let ≈ be reflexive and symmetric (in particular, a fuzzy equality) and � be
transitive. Then:

ref≈(�) ≤ ref(�),

ref≈(�)2 ≤ comp(�),

ref(�) ⊗ comp(�) ≤ ref≈(�).

Proof: Trivial given Lemma 1, because reflexivity and symmetry of ≈ is equivalent
to ref(≈) = 1 and sym(≈) = 1, respectively, and transitivity of � is equivalent to
tra(�) = 1. �
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Considering as a particular case the full satisfaction of the properties involved in
Corollary 1, we obtain the above-mentioned claim:

Corollary 2 (Belohlavek and Vychodil 2005, Bodenhofer and Demirci 2008): Let ≈ be
a fuzzy equality and � be transitive. Then � is ≈ -reflexive if and only if � is reflexive and
compatible with ≈ .

Proof: By a moment’s reflection from Corollary 1 taking into account that � is ≈ -
reflexive, reflexive, and compatible with ≈ iff ref≈(�) = 1, ref(�) = 1, and comp(�) =
1, respectively. �

Remark 9: (a) Observe that Corollary 2 is in the form of a logical equivalence, which
may be rephrased as follows: Given the assumptions (i.e. ≈ a fuzzy equality and �
transitive), we have ref≈(�) = 1 if and only if ref(�) = 1 and comp(�) = 1.

(b) On the other hand, Corollary 1, i.e. a direct “graded generalization” of Corollary 2, is in
the form of three inequalities of truth degrees expressing three implications regarding
graded properties of fuzzy relations. Namely, corresponding to the three inequalities
of Corollary 1 are three implications regarding graded properties of� and ≈ , respec-
tively, which have their truth degree equal to 1. In particular, using the basic rules of
semantics of first-order fuzzy logic, it may be shown that:
• ref≈(�) ≤ ref(�) holds true iff the truth degree of the formula “if� is ≈ -reflexive

then � is reflexive” equals 1, i.e. the formula is fully true;
• ref≈(�)2 ≤ comp(�) holds true iff the truth degree of the formula “if � is ≈ -

reflexive and � is ≈ -reflexive then � is compatible” equals 1; and
• ref(�) ⊗ comp(�) ≤ ref≈(�) holds true iff the truth degree of the formula “if �

is reflexive and � is compatible then � is ≈ -reflexive” equals 1.
(c) Observe that if ⊗ is idempotent, which is e.g. the case of the two-element Boolean

algebra, then the three inequalitiesmay readily be replaced by a single equality, namely

ref≈(�) = ref(�) ⊗ comp(�). (15)

This equality expresses the fact that the formula “� is ≈ -reflexive if and only if � is
reflexive and � is compatible” regarding graded properties of � and ≈ has its truth
degree equal to 1.

(d) In general, however, the three inequalities of Corollary 1 may not be expressed by the
single equality (15); for instance the fuzzy relations in Remark 8 (d) do not satisfy (15).

Remark 10: One may formulate other corollaries of Lemma 1. As an example, the fol-
lowing corollary concerns crisp properties of � and ≈ , as does Corollary 2, but is more
informative than Corollary 2:

Let � and ≈ be arbitrary fuzzy relations. Then

(a) if ≈ is reflexive and � is ≈ -reflexive, then � is reflexive; if ≈ is symmetric and � is
transitive and ≈ -reflexive, then � is compatible with ≈ ;

(b) if ≈ is reflexive and � is reflexive and compatible with ≈ then � is ≈ -reflexive.

Remark 11: Clearly, Corollary 2 implies that both Definition 1 and Definition 2 of fuzzy
order may be rephrased so that they differ in the condition of antisymmetry only. That is,



962 R. BELOHLAVEK AND T. URBANEC

the condition of ≈-reflexivity in Definition 1 may equivalently be replaced by reflexivity
and compatibility, and, conversely, the latter two conditions inDefinition 2may be replaced
by ≈-reflexivity (cf. Theorem 4).

3.3. Constraints regarding fuzzy equality

Both the ⊗-antisymmetry and ∧-antisymmetry may be regarded as lower bounds for the
fuzzy equality ≈ . This view opens the question of exploring constraints pertaining to ≈ .
A basic answer was provided by Bodenhofer (2000, Theorem 18) who proved the following
claim, which he phrased for fuzzy equivalences instead of equalities:

If� is a reflexive and transitive fuzzy relation onU and ≈ is a fuzzy equality onU, then
� is a fuzzy order according to Definition 1 if and only if

(u � v) ⊗ (v � u) ≤ u ≈ v ≤ (u � v) ∧ (v � u) (16)

for every u, v ∈ U.
An easy inspection of the proof reveals that a corresponding theorem for the notion of

fuzzy order with ∧-antisymmetry is obtained when replacing (16) by the equality

u ≈ v = (u � v) ∧ (v � u),

the validity of which for fuzzy orders according to Definition 2 was observed by
Belohlavek (2002).

The results we just mentioned, though, involve a redundancy in that the assump-
tion of reflexivity of � may be dropped. The redundancy may be regarded as resulting
from a lack of awareness of the relationship of reflexivity and compatibility versus ≈ -
reflexivity (cf. Section 3.2). In fact, some easy observations on the notions involved render
a non-redundant generalization of the above-mentioned results. Below we provide such
observations in a more general manner which, as in Section 3.2, take into account the
degrees of the properties of fuzzy relations. Then we obtain a proper formulation of the
above-mentioned results as simple consequences. We start with the following observation.

Lemma 2: Let ≈ and � be arbitrary binary fuzzy relations on U.

(a) One has

sym(≈) ≤ ref≈(�) ↔
∧

u,v∈U
[u ≈ v → ((u � v) ∧ (v � u))]. (17)

(b) If ≈ is symmetric (in particular, a fuzzy equality), then

ref≈(�) =
∧

u,v∈U
[u ≈ v → ((u � v) ∧ (v � u))]. (18)

(c) If ≈ is symmetric (in particular, a fuzzy equality), then

� is ≈-reflexive iff u ≈ v ≤ (u � v) ∧ (v � u). (19)
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Proof: (a) Since for any a, b, c ∈ L, a ≤ b ↔ c is equivalent to a ≤ b → c and a ≤ c → b,
i.e. – due to adjointness – to a ⊗ b ≤ c and a ⊗ c ≤ b, we need to verify

sym(≈) ⊗ ref≈(�) ≤
∧

u,v∈U
[u ≈ v → ((u � v) ∧ (v � u))] (20)

and

sym(≈) ⊗
∧

u,v∈U
[u ≈ v → ((u � v) ∧ (v � u))] ≤ ref≈(�). (21)

Check (20) first. Since

[u ≈ v → ((u � v) ∧ (v � u))] = (u ≈ v → u � v) ∧ (u ≈ v → v � u),

(20) holds true iff for each u, v ∈ U,

sym(≈) ⊗ ref≈(�) ≤ (u ≈ v → u � v) (22)

and

sym(≈) ⊗ ref≈(�) ≤ (u ≈ v → v � u). (23)

While (22) is trivial due to the definition of ref≈(�), (23) is equivalent to

(u ≈ v) ⊗ sym(≈) ⊗ ref≈(�) ≤ v � u,

which is true because

(u ≈ v) ⊗ sym(≈) ⊗ ref≈(�)

≤ (u ≈ v) ⊗ (u ≈ v → v ≈ u) ⊗ (v ≈ u → v � u) ≤ v � u.

Checking (21) is straightforward: As a → (b ∧ c) ≤ a → b, we have

sym(≈) ⊗
∧

u,v∈U
[u ≈ v → ((u � v) ∧ (v � u))] ≤

∧

u,v∈U
[u ≈ v → u � v] = ref≈(�).

(b) follows from (a) because if ≈ is symmetric, we have sym(≈) = 1, hence

ref≈(�) ↔
∧

u,v∈U
[u ≈ v → ((u � v) ∧ (v � u))] = 1.

Now, since a ↔ b = 1 iff a = b, equality (18) readily follows.
(c) follows from (b) because ≈-reflexivity of � means ref≈(�) = 1 and because a →

b = 1 is equivalent to a ≤ b. �

As an immediate consequence of Lemma 2 (c) and the definition of ⊗- and ∧-
antisymmetry, we have:

Corollary 3: Let � be a fuzzy relation and ≈ be a fuzzy equality on U.
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(a) � is ≈ -reflexive and ⊗-antisymmetric iff

(u � v) ⊗ (v � u) ≤ u ≈ v ≤ (u � v) ∧ (v � u).

(b) � is ≈ -reflexive and ∧-antisymmetric iff

u ≈ v = (u � v) ∧ (v � u).

The preceding corollary along with the equivalence of ≈-reflexivity to reflexivity
and compatibility for transitive fuzzy relations (cf. Corollary 2) immediately yield the
announced non-redundant and hence more informative rephrasement of the result by
Bodenhofer (2000, Theorem 18) and its counterpart for fuzzy orders according to
Definition 2, which we mentioned above.

Theorem 4: Let � be a transitive fuzzy relation and ≈ be a fuzzy equality on U.

(a) The following conditions are equivalent:
(a1) � is a fuzzy order according to Definition 1.
(a2) � is reflexive, ⊗-antisymmetric, and compatible with ≈ .
(a3) (u � v) ⊗ (v � u) ≤ u ≈ v ≤ (u � v) ∧ (v � u).

(b) The following conditions are equivalent:
(b1) � is a fuzzy order according to Definition 2.
(b2) � is ≈ -reflexive and ∧-antisymmetric.
(b3) u ≈ v = (u � v) ∧ (v � u).

Remark 12: (a) Theorem 4 basically presents equivalent conditions for a transitive fuzzy
relation � to become a fuzzy order. In particular, it shows that one such condition is
expressed by a simple constraint regarding� and the fuzzy equality ≈ . Note also that
Theorem 4 lets us regard the claims as trivial consequences of the definitions of and
previous observations on the individual properties of fuzzy orders.

(b) Compared to Theorem 18 by Bodenhofer (2000), part (a) of Theorem 4 is stronger.
Namely, as mentioned in the beginning of this section, Bodenhofer claims in his
Theorem 18 that being a fuzzy order (according to Definition 1) is equivalent to the
inequality (a3) of Theorem 4 for any reflexive and transitive �. Theorem 4, on the
other hand, makes it explicit that the assumption of reflexivity for �may be dropped.
This is worth mentioning because reflexivity is actually implied by one of the proper-
ties of fuzzy orders, namely ≈-reflexivity. In this respect, Theorem 4 is nonredundant
and properly separates the role of the individual properties.

(c) On the other hand, let us note that as is clear from the proof of his Theorem 18,
Bodenhofer (2000) was aware of the fact that the inequality u ≈ v ≤ (u � v) ∧ (v �
u) is equivalent to ≈-reflexivity for any transitive �, rather than any reflexive and
transitive �.

We conclude this section by presenting a possible generalization of the previous theorem
which takes the degrees of validity into account. We start with the following graded
generalization of Corollary 3.
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Lemma 3: Let ≈ and � be fuzzy relations, and let ≈ be symmetric (in particular, a fuzzy
equality).

(a)

ref≈(�) ∧ ⊗-ant(�) =
∧

u,v∈U

(
[((u � v) ⊗ (v � u)) → u ≈ v]

∧ [u ≈ v → ((u � v) ∧ (v � u))]
)
.

(b)

ref≈(�) ∧ ∧-ant(�) =
∧

u,v∈U
[u ≈ v ↔ ((u � v) ∧ (v � u))].

Proof: (a) Due to Lemma 2 (b) and the definition of ⊗-antisymmetry,

ref≈(�) ∧ ⊗-ant(�) = ⊗-ant(�) ∧ ref≈(�) =
=

∧

u,v∈U
((u � v) ⊗ (v � u)) → u ≈ v] ∧

∧

u,v∈U
[u ≈ v → ((u � v) ∧ (v � u))].

The required equality now follows because
∧

i∈I
(ai → bi) ∧

∧

i∈I
(bi → ci) =

∧

i∈I
[(ai → bi) ∧ (bi → ci)]

holds in any complete residuated lattice.
(b) Lemma 2 (b) again and the definition of ∧-antisymmetry yield

ref≈(�) ∧ ∧-ant(�)

=
∧

u,v∈U
[u ≈ v → ((u � v) ∧ (v � u))] ∧

∧

u,v∈U
[((u � v) ∧ (v � u)) → u ≈ v],

from which the required equality follows because
∧

i∈I
(ai → bi) ∧

∧

i∈I
(bi → ai) =

∧

i∈I
(ai ↔ bi).

�

For brevity, we now only consider a graded generalization of part (b) in Theorem 4.
Note that in this respect, Lemma 3 may be interpreted as claiming that the degree to
which u ≈ v equals (u � v) ∧ (v � u) coincides with the infimum of the degree of ≈-
reflexivity of � and the degree of ∧-antisymmetry of �. We now obtain the following
possible generalization of Theorem 4 (b):

Lemma 4 (generalization of Theorem 4 (b)): Let � be a transitive fuzzy relation and ≈
be symmetric (in particular, a fuzzy equality).



966 R. BELOHLAVEK AND T. URBANEC

(b12)

(ref(�) ⊗ comp(�)) ∧ ∧-ant(�) ≤ ref≈(�) ∧ ∧-ant(�)

ref≈(�)2 ∧ ∧-ant(�) ≤ (ref(�) ⊗ comp(�)) ∧ ∧-ant(�)

(b23)

ref≈(�) ∧ ∧-ant(�) =
∧

u,v∈U
[u ≈ v ↔ ((u � v) ∧ (v � u))]

(b13)

(ref(�) ⊗ comp(�)) ∧ ∧-ant(�) ≤
∧

u,v∈U
[u ≈ v ↔ ((u � v) ∧ (v � u))]

( ∧

u,v∈U
[u ≈ v ↔ ((u � v) ∧ (v � u))]

)2 ≤ (ref(�) ⊗ comp(�)) ∧ ∧-ant(�)

Proof: The claims are direct consequences of Lemma 1, Lemma 3 (b), and the properties
of complete residuated lattices. �

Remark 13: (a) Note that Lemma 4 implies (b) of Theorem 4. In particular, part (b12) of
Lemma 4 implies the equivalence of (b1) with (b2) in Theorem 4. In a similar manner,
part (b23) and (b13) of Lemma 4 imply the equivalence of (b2) with (b3) and of (b1)
with (b3) in Theorem 4, respectively.

Indeed, if � satisfies (b1), i.e. is reflexive, transitive, ∧-antisymmetric, and com-
patible with ≈ then ref(�) = 1, comp(�) = 1, and ∧-ant(�) = 1, from which it
follows by the first inequality in (b12) that ref≈(�) = 1 and ∧-ant(�) = 1, i.e. � is
≈ -reflexive and ∧-antisymmetric, establishing (b2). Similarly, the second inequality
in (b12) implies that (b2) implies (b1). For (b23) and (b13), one proceeds analogously.

(b) Clearly, other graded generalizations of Theorem 4 may be obtained, e.g. general-
izations employing a general degree tra(�) of transitivity of � instead of assuming
transitivity of � as in Lemma 4. Like Lemma 4, such generalizations would have a
form of a set of inequalities, since it is unclear how the two pairs of inequalities in
(b12) and (b13) might be expressed by two equalities, one implying the equivalence of
(b1) with (b2) and the second the equivalence of (b1) with (b3).

Notes

1. It is worth noting that before Zadeh, many-valued orders were considered by Menger (1951) as
part of his probabilistic approach to relations.

2. We identified over a thousand papers on fuzzy order in Scopus (papers containing “fuzzy order”
or “fuzzy lattice” in the title, abstract, or keywords).

3. This is a common situation encountered inmany areas of mathematics: A given concept defined
in a given framework might have several different meaningful generalizations in a more general
framework.

4. See Belohlavek, Dauben, and Klir (2017) for a detailed exposition of generalization to the
framework of fuzzy logic.

5. Clearly, for different purposes, the concerned needs may be different. It may hence well be that
there co-exist several different generalized concepts, each of which is a generalization of the
given classical concept, is useful and behaves naturally for the particular purpose.
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6. This is now well known: Take e.g. the Łukasiewicz structure on L = [0, 1], U = {u, v}, A =
{0.1/u, 0.9/v}, andB = {0.9/u, 0.1/v}. ThenA ⊂∼ B = 0.2 > 0 andB ⊂∼ A = 0.2 > 0 butA �= B. Sev-
eral other notions of degree of inclusion of fuzzy sets proposed in the literature violate Zadeh’s
antisymmetry as well.

7. A slightlymore general condition for antisymmetry is used e.g. byGottwald (1993) and by Fodor
and Roubens (1994), where antisymmetry asks that R(u, v) ⊗ R(v, u) > 0 imply u = v for each
u, v ∈ U, where⊗ is a chosen t-norm. As with Zadeh’s antisymmetry, graded inclusion does not
satisfy this condition.

8. By coincidence of = with ≈ we mean that u ≈ v = 1 for u = v and u ≈ v = 0 for u �= v.
9. Bodenhofer uses T and E for ⊗ and ≈ , respectively.
10. They use completely lattice-ordered commutative semigroups whose identity element is the

largest element (such structures are equivalent to complete residuated lattices) satisfying addi-
tionally for non-empty A ⊆ L that

∨
A = 1 implies

∨{a ⊗ a | a ∈ A} = 1.
11. Note that 〈L,∧,∨,⊗,→, 0, 1〉 with L being the real unit interval [0, 1] is a complete residuated

lattice if and only if⊗ is a left-continuous t-norm and a → b = max{c | a ⊗ c ≤ b}. Hence, the
only restriction compared to the framework of complete residuated lattices is L = [0, 1].

12. Put U = {u, v} and let ≈ and � be defined by u ≈ u = v ≈ v = 1, u ≈ v = v ≈ u = 0.5, u �
u = v � v = 1,u � v = 0.8, and v � u = 0.6. Then for the Łukasiewicz structure onL = [0, 1],
� is a fuzzy order according to Definition 1 but not according to Definition 2, as (u � v) ∧ (v �
u) = 0.8 ∧ 0.6 = 0.6 �≤ 0.5 = u ≈ v.

13. It is worth noting that Höhle and Blanchard (1985) consider ⊗-antisymmetry but take ↔∧ as
the fuzzy equality.

14. More precisely, truth degrees in a first order structure in which the relation symbol r is
interpreted by the fuzzy relation R.

15. For a fuzzy equality ≈ onU = {u, v} defined by u ≈ u = v ≈ v = 1 and u ≈ v = v ≈ u = 0.5,
the fuzzy relation� defined by u � u = v � v = 1 and u � v = v � u = 0 is reflexive but not
≈ -reflexive, demonstrating that ≈-reflexivity of � is stronger than reflexivity.

16. We observed in n. 15 that reflexivity of� does not imply ≈-reflexivity. Observe, moreover, that
compatibility of a (possibly transitive, and⊗-antisymmetric or∧-antisymmetric) fuzzy relation
� with a fuzzy equality ≈ does not imply ≈ -reflexivity of � either (just take U and ≈ as in
n. 15 and the empty fuzzy relation ∅ for �).

17. To take the exponents 2 properly into account, the precise meaning of (11) is: if ≈ is symmetric
and � is transitive and � is transitive and � is ≈ -reflexive and � is ≈ -reflexive, then � is
compatible with ≈ . Namely, conjunction is not idempotent in general in fuzzy logic, hence the
two appearances of “� is transitive” as well as “� is ≈ -reflexive” (two appearances because the
exponents in tra(�)2 and ref≈(�)2 are equal to 2).
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Appendix: Residuated lattices, fuzzy sets, and fuzzy relations

Structures of truth degrees

Unlike classical logic, which uses a two-element set L = {0, 1} of truth values and classical truth
functions of logical connectives, i.e. uses a fixed structure of truth values, neither the set of truth
degrees nor the truth functions of logical connectives are fixed in fuzzy logic. A modern approach
in fuzzy logic assumes a general set L of truth degrees and general truth functions of logical con-
nectives satisfying some natural basic conditions, i.e. assumes a general structure L of truth degrees.
This assumption thus delineates a class of structures, which includes various particular structures
such as the real unit interval L = [0, 1] equipped with the Łukasiewicz connectives. A given the-
ory or method, such as a theory of fuzzy equivalence relations, is then developed for the general
assumptions, i.e. for a general L, and is hence valid also for any of the particular structures.

Since the seminal work by Goguen (1967, 1969), it proved useful to assume that the structure
L of truth degrees forms a complete residuated lattice (Belohlavek 2002; Belohlavek, Dauben, and
Klir 2017; Gottwald 2001; Hájek 1998; Novák, Perfilieva, and Močkoř 1999), i.e. an algebra

L = 〈L,∧,∨,⊗,→, 0, 1〉
such that 〈L,∧,∨, 0, 1〉 is a complete lattice with 0 and 1 being the least and greatest element of L,
respectively; 〈L,⊗, 1〉 is a commutative monoid (i.e. ⊗ is commutative, associative, and a ⊗ 1 = a
for each a ∈ L); ⊗ and → satisfy the so-called adjointness property:

a ⊗ b ≤ c iff a ≤ b → c (A1)

for each a, b, c ∈ L. The elements a of L are called truth degrees and ⊗ and → are considered as the
truth functions of (many-valued) conjunction and implication, respectively. The biresiduum in L is
the binary operation defined by

a ↔ b = (a → b) ∧ (b → a), (A2)

and is interpreted as the truth function of (many-valued) equivalence.
Examples of complete residuated lattices, particularly those with L being [0, 1] or a finite subchain

of [0, 1] which are based on t-norms and their residua, are well known. A common choice of L is a
structure with L = [0, 1] (unit interval),∧ and∨ being minimum andmaximum,⊗ being a contin-
uous (or at least left-continuous) t-norm (i.e. a commutative, associative, and isotone operation on
[0, 1] with 1 acting as a neutral element) with the corresponding → given by

a → b = max{c | a ⊗ c ≤ b}.
The three most important pairs of adjoint operations on the unit interval are: Łukasiewicz (a ⊗
b = max(a + b − 1, 0), a → b = min(1 − a + b, 1)); Gödel (a ⊗ b = min(a, b), a → b = 1 if a ≤
b and a → b = b if a> b); and Goguen (a ⊗ b = a · b, a → b = 1 if a ≤ b and a → b = b/a if
a> b).

https://doi.org/10.1016/0165-0114(87)90027-3
https://doi.org/10.1073/pnas.37.3.178
https://doi.org/10.1016/S0020-0255(71)80005-1
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Another common choice is a finite linearly ordered L. For instance, one can put L = {a0 =
0, a1, . . . , an = 1} ⊆ [0, 1] (a0 < · · · < an) with ⊗ given by ak ⊗ al = amax(k+l−n,0) and the cor-
responding → given by ak → al = amin(n−k+l,n). Such an L is called a finite Łukasiewicz chain.
Another possibility is a finite Gödel chain which consists of L = {a0 = 0, a1, . . . , an = 1} ⊆ [0, 1]
and the restrictions of the Gödel operations from [0, 1] to L.

Importantly, a special case of a complete residuated lattice is the two-element Boolean algebra
〈{0, 1},∧,∨,⊗,→, 0, 1〉, denoted by 2, which is the structure of truth degrees of classical logic. This
is important because for the particular case L = 2, the developed notions and results essentially
become the ordinary notions. In particular, the notions regarding fuzzy sets and fuzzy relations
(cf. the next section) may be identified with the corresponding notions regarding classical sets and
classical relations.

Fuzzy sets and relations

Given a complete residuated lattice L, we define the usual notions: An L-set (fuzzy set, or L-set if
one need not emphasize the operations on L) A in a universeU is a mapping A : U → L, A(u) being
interpreted as “the degree to which u belongs to A.” Let LU denote the collection of all L-sets in U.
Binary L-relations (binary fuzzy relations) betweenU and V are naturally just L-sets in the universe
U × V , i.e. mappings R : U × V → L.

The basic operations with L-sets are based on the residuated lattice operations and are defined
componentwise. For instance, the intersection of L-sets A,B ∈ LU is an L-set A ∩ B in U such that
(A ∩ B)(u) = A(u) ∧ B(u) for each u ∈ U; to emphasize that∩ arises from∧, one also writesA ∧ B
instead of A ∩ B.

A fuzzy set A ∈ LU is called crisp if A(u) = 0 or A(u) = 1 for each u ∈ U. Each crisp fuzzy
set A ∈ LU may be obviously identified with the ordinary subset {u ∈ U | A(u) = 1} of U; a crisp
fuzzy set is in fact the characteristic function of the corresponding ordinary subset of U. Note
also that all 2-sets are crisp and hence 2-sets and operations with 2-sets can be identified with
ordinary sets and operations with ordinary sets, respectively. It is a common practice not to dis-
tinguish crisp fuzzy sets in U from the corresponding ordinary subsets of U if there is no danger of
confusion.

For a ∈ L andu ∈ U, we denote by {a/u} theL-setA inU, called a singleton, forwhichA(x) = a if
x = u andA(x) = 0 if x �= u. A crisp singleton {1/u}may be identified with a one-element ordinary
subset {u} of U.

Given A,B ∈ LU , we define the degree A ⊂∼ B of inclusion of A in B by

A ⊂∼ B =
∧

u∈U
(
A(u) → B(u)

)
, (A3)

which is also denoted S(A,B) in the literature, and the degree of equality of A and B by

A ≈ B = ∧
u∈U

(
A(u) ↔ B(u)

)
. (A4)

Note that (A3) generalizes the ordinary subsethood relation ⊆ . Described verbally, A ⊂∼ B repre-
sents the degree to which every element of A is an element of B. In particular, we write A ⊆ B iff
A ⊂∼ B = 1. As a consequence, A ⊆ B iff A(u) ≤ B(u) for each u ∈ U. Likewise, (A4) generalizes
the ordinary equality = of sets, and A ≈ B represents the degree to which every element belongs to
A iff it belongs to B. Clearly, A = B iff A ≈ B = 1.

AnL-equivalence (fuzzy equivalence) onU is a binary fuzzy relation ≈ onU, i.e.≈: U × U → L,
satisfying for each u, v,w ∈ U the conditions

u ≈ u = 1, (A5)

u ≈ v = v ≈ u, (A6)

(u ≈ v) ⊗ (v ≈ w) ≤ u ≈ w, (A7)
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called reflexivity, symmetry, and transitivity, respectively. An L-equality is an L-equivalence satisfy-
ing the condition of separation, i.e.

u ≈ v = 1 implies u = v, (A8)

for each u, v ∈ U.
A binary fuzzy relation R : U × U → L is called compatible with a fuzzy equivalence ≈ on U if

R(u1, v1) ⊗ (u1 ≈ u2) ⊗ (v1 ≈ v2) ≤ R(u2, v2). (A9)

Put verbally, compatibility reads that if u1 and v1 are related by R, u1 is equivalent to u2, and v1 is
equivalent to v2, then u2 and v2 are related by R as well.

In some contexts, it is convenient to speak of ⊗-transitivity, rather than transitivity, of a fuzzy
relation to emphasize that the connective “and” is interpreted by the truth function⊗, and to distin-
guish this condition from, e.g. ∧-transitivity, which would read (u ≈ v) ∧ (v ≈ w) ≤ u ≈ w. This
manner of emphasizing the truth functions is common in the literature andwe adopt it when needed.
For further details on fuzzy sets, we refer to the books by Belohlavek (2002); Belohlavek, Dauben,
and Klir (2017); Gottwald (2001); Hájek (1998); Novák, Perfilieva, and Močkoř (1999).
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