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Abstract

We present a method of imposing constraints in extracting formal concepts
(equivalently, closed itemsets or fixpoints of Galois connections) from a binary
relation. The constraints are represented by closure operators and their purpose
is to mimic background knowledge a user may have of the data. The idea is to
consider relevant and thus to extract only these itemsets that are compatible
with the background knowledge. As a result, the method extracts less clusters,
those that are interesting from the user point of view, in a shorter time. The
method makes it also possible to extract minimal bases of attribute dependencies
in the input data that are compatible with the background knowledge. We
provide examples of several particular types of constraits including those that
appeared in the literature in the past and present algorithms to compute the
constrained formal concepts and attribute implications.

Keywords: closure structure, binary relation, formal concept analysis,
attribute implication, background knowledge, algorithms

1. Introduction and Motivation

Formal concept analysis (FCA [7, 9]) is a method of data analysis and vi-
sualization which deals with object-attribute input data and aims at extracting
from the data particular conceptual clusters (so-called formal concepts) and
data dependencies (so-called attribute implications). The input data is in the
form of a table describing objects (rows), their attributes (columns), and their
“yes/no” relationship. The presence/absence of attributes is indicated by ×’s
or blanks in the table, see Fig. 1. The set of all formal concepts in the input
data forms a complete lattice. This lattice, called a concept lattice, is utilized
for the purpose of data analysis [9]. Another output utilized for data analysis
is a minimal basis [9] of all attribute implications that are valid in the input
data. FCA proved to be useful in several areas, both as a direct method of data
analysis, see e.g. [7, 9] and the references therein, and as a method for data pre-
processing, see e.g. [22]. Recently, it has been shown in [6] that formal concepts
can be used to find optimal factorization of Boolean matrices and can be used
as optimal solutions to the discrete basis problem discussed in [17]. Note also
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that in terms of association rule mining, (intents of) formal concepts coincide
with closed itemsets. Extracting formal concepts is therefore an important task.

One of the main challenges in FCA results from the fact that the number of
formal concepts of even a middle-size data is usually large. If a concept lattice
is to be directly examined by a user, its large size poses a problem. There exist
various approaches to overcome this problem, namely those based on factoriza-
tions and decompositions of large concept lattices [9]. In this paper, we present
a different approach. The approach is based on constraining concept lattices by
an additional information which a user may have about the input data. In the
basic setting of FCA, it is assumed that no further information is supplied at
the input except for the data table. However, it is often the case that there is
an additional information about the data available—a user background knowl-
edge. A background knowledge may naturally serve as a constraint. Namely,
the background knowledge can be used to filter out formal concepts which do
not comply with it (these are ruled out as “noninteresting”), while keeping (i.e.,
presenting to the user) formal concepts compatible with it (the “interesting”
ones). This way, the number of extracted formal concepts is reduced by fo-
cusing on the “interesting” ones. The same idea applies if one is interested in
discovering attribute dependencies in the data—instead of discovering a large
(and less useful) set of dependencies from the whole data, one can focus on
discovering dependencies that are compatible with the background knowledge.
One can then expect that such targeted dependencies are more informative for
the user who supplied the background knowledge.

In this paper, we develop an approach of imposing constraints in FCA which
are represented by means of closure operators. The approach covers several
natural kinds of constraints. For instance, one can set the closure operator in
such a way that the conceptual clusters satisfying the constraint correspond
exactly to closed frequent itemsets [19] used, e.g., in generating non-redundant
association rules [20, 22], see also Section 7.

The paper is organized as follows. In Section 2, we present preliminaries from
FCA. In Section 3, we deal with constraining concept lattices. In Section 4, an
algorithm for computing constrained concept lattices is described. In Section 5,
we present a method to constrain attribute implications, describe non-redundant
bases of constrained attribute implications, and present an algorithm that com-
putes the bases. In Section 6, we provide a syntactico-semantically complete
axiomatization for the constrained attribute implications. Section 7 contains
several examples of constraints by closure operators and illustrative examples.
In Section 8, we deal with combinations of constrains which allow us to create
compound constraints from elementary ones. Section 9 contains a summary.

2. Preliminaries

In this section, we summarize the basic notions of FCA. For a detailed in-
formation, we refer to [7, 9].

An object-attribute data table describing which objects have which attributes
(features) can be identified with a triplet 〈X,Y, I〉 where X is a finite non-empty
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set (of objects), Y is a finite non-empty set (of attributes), and I ⊆ X × Y is
an (object-attribute) relation. Objects and attributes correspond to table rows
and columns, respectively, and 〈x, y〉 ∈ I indicates that object x has attribute
y (table entry corresponding to row x and column y contains ×; if 〈x, y〉 6∈ I
the table entry contains blank symbol). In terms of FCA, the triplet 〈X,Y, I〉
is called a formal context.

Example 1. Fig. 1 represents a formal context with food products as objects
and food additives as attributes. The object attribute relation I ⊆ X × Y
indicates whether a food product x ∈ X does or does not contain an additive
y ∈ Y . The objects are denoted by numbers, i.e., X = {1, . . . , 27}, and the
attributes are denoted by letters, i.e., Y = {a, . . . , f}. We use this data for
illustrative purposes in this paper. �

Every data table 〈X,Y, I〉 induces a pair of so-called concept-forming oper-
ators. For each A ⊆ X and B ⊆ Y denote by A↑I a subset of Y and by B↓I a
subset of X defined by

A↑I = {y ∈ Y | for each x ∈ A : 〈x, y〉 ∈ I}, (1)

B↓I = {x ∈ X | for each y ∈ B : 〈x, y〉 ∈ I}. (2)

That is, A↑I is the set of all attributes from Y shared by all objects from A
and B↓I is the set of all objects from X having all attributes from B. A formal
concept in 〈X,Y, I〉 is a pair 〈A,B〉, consisting of A ⊆ X and B ⊆ Y , that
satisfies A↑I = B and B↓I = A. Formal concepts are thought of as conceptual
clusters in the input data. If I is obvious, we abbreviate ↑I and ↓I by ↑ and ↓,
respectively.

Remark 1. By definition, a formal concept 〈A,B〉 consists of a set A (so-called
extent) of objects which fall under the concept and a set B (so-called intent)
of attributes which fall under the concept such that A is the set of all objects
sharing all attributes from B and, conversely, B is the collection of all attributes
from Y shared by all objects from A. Alternatively, formal concepts can be
defined as maximal rectangles of 〈X,Y, I〉 which are full of ×’s: for A ⊆ X and
B ⊆ Y , 〈A,B〉 is a formal concept in 〈X,Y, I〉 iff A × B ⊆ I and there is no
A′ ⊃ A or B′ ⊃ B such that A′×B ⊆ I or A×B′ ⊆ I. See [9] for more details.
In a data like that in Fig. 1, there may exist formal concepts representing “dairy
products”, “frozen food products”, “soups”, “breakfast cereals”, and the like.
�

The set of all concepts in 〈X,Y, I〉 is denoted by

B(X,Y, I) = {〈A,B〉 |A↑ = B and B↓ = A}. (3)

B(X,Y, I) can be equipped with a partial order ≤, modeling a subconcept-
superconcept hierarchy, defined by

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (iff B2 ⊆ B1). (4)

3



E
32

2

E
33

0

E
44

0

E
47

1

E
47

6

E
50

0

a b c d e f

dia muesli 1 × × × ×
cherry muesli 2 × × × × ×

chocolate muesli 3 × ×
strawberry yogurt 4 × × ×

hazelnut wafers 5 × × × ×
lemon soda 6 × ×

stracciatella yogurt 7 × ×
chocolate soy bar 8 × × ×

milky way bar 9 × × × ×
assorted chocolates 10 × × ×

choc-ice 11 × ×
cranberry muesli 12 × × ×

margarine 1 13 × × ×
enriched margarine 14 × ×

gingerbread 15 × × × × ×
margarine 2 16 × ×
margarine 3 17 × × × ×
margarine 4 18 × × ×

hazelnut chocolate 19 × ×
raspberry jelly 20 ×

raisin chocolate 21 × × × ×
cinnamon cookies 22 ×

wafers 23 × ×
vegetable broth 24 ×

chocolate wafers 25 × × ×
chicken broth 26 ×

dia ginger cookies 27 ×

Figure 1: Object-attribute data table. Legend: objects = food products, attributes =
food additives (E322: lecithin; E330: citric acid; E440: pectin; E471: mono- and
diglycerides; E476: polyglycerol polyricinoleate; E500: sodium carbonates).
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Figure 2: Concept lattice for data from Fig. 1.

Thus, 〈A1, B1〉 ≤ 〈A2, B2〉 means that concept 〈A1, B1〉 is less general (i.e.,
more specific) than concept 〈A2, B2〉 in that it covers less objects and more
attributes. Note that ↑ and ↓ defined by (1) and (2) form a Galois connection [9]
and that B(X,Y, I) is in fact the set of all fixed points of ↑ and ↓. Considering
a food products data, the hierarchy of its concepts can comprise information
that a concept of “pastry” is more general (i.e., less specific) than a concept of
“breads” and that the concept of “breads” is more general (less specific) than
a concept of “sourdough breads”.
B(X,Y, I) equipped with ≤ happens to be a complete lattice (i.e., a partially

ordered set where every set of concepts has its infimum and supremum), called
a concept lattice of 〈X,Y, I〉, the basic structure of which is described by the
so-called Basic Theorem of FCA [9]:

Theorem 1. (i) The set B(X,Y, I) equipped with ≤ forms a complete lattice
where the infima and suprema are given by∧

j∈J〈Aj , Bj〉 = 〈
⋂

j∈J Aj , (
⋃

j∈J Bj)
↓↑〉,∨

j∈J〈Aj , Bj〉 = 〈(
⋃

j∈J Aj)
↑↓,
⋂

j∈J Bj〉.

(ii) An arbitrary complete lattice 〈V,≤〉 is isomorphic to B(X,Y, I) iff there are
maps γ : X → V , µ : Y → V where

• γ(X) is
∨

-dense in V, µ(Y ) is
∧

-dense in V, and

• γ(x) ≤ µ(y) iff 〈x, y〉 ∈ I.
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Note that part (ii) of Theorem 1 provides a way to visualize and label con-
cept lattices [9]: one depicts the clusters as nodes (vertices) and the subconcept-
superconcept relationship as edges in the line diagram of the lattice. The la-
beling allows us to identify extents and intents of all concepts. Namely, a node
representing a formal concept 〈A,B〉 is labeled by object x if 〈A,B〉 is the
smallest formal concept according to (4) which contains x (i.e., if A = {x}↑↓
and B = {x}↑); a node representing a formal concept 〈A,B〉 is labeled by at-
tribute y if 〈A,B〉 is the largest formal concept according to (4) which contains
y (i.e., if A = {y}↓ and B = {y}↓↑). As a consequence, both the extent A and
the intent B of a concept 〈A,B〉 represented by a node n can be retrieved from
the diagram. Namely, A contains object x if and only if there is a path going
downward from n to a node labeled by x; B contains attribute y if and only if
there is a path going upward from n to a node labeled by y.

Example 2. Consider the data 〈X,Y, I〉 from Fig. 1. The corresponding con-
cept lattice B(X,Y, I) is depicted in Fig. 2. The concept lattice contains 35
concepts denoted by black nodes in the diagram. Edges correspond to the
subconcept-superconcept ordering (4). The concept lattice contains two trivial
concepts. Namely, the bottom node corresponds to a concept 〈∅, Y 〉 (concept
with no objects); the top-most node corresponds to a concept 〈X, ∅〉 (concept
of all objects having no common attributes). Except for these two borderline
concepts, we have 33 nontrivial ones. Consider now the node labeled by 7. The
node represents a concept 〈A,B〉 = 〈{4, 7, 8, 9, 15, 21}, {a, c}〉. Indeed, if we go
from the node “upwards” along the edges, we can see that the node contains
attributes a (lecithin) and c (pectin). If we go “downwards”, we see that the
concept consists of objects 4 (strawberry yogurt), 8 (chocolate soy bar), 9 (milky
way bar), 21 (raisin chocolate), and 15 (gingerbread). Since the node is labeled
by 7, it also contains object 7 (stracciatella yogurt). As one can see, the concept
can be interpreted as a cluster of exactly all products containing lecithin and
pectin. �

The other patterns extraced in FCA from the input data are attribute im-
plications [9, 10]. An attribute implication (over a set Y of attributes) is an
expression A⇒ B where A,B ∈ 2Y are sets of attributes. A⇒ B is valid in the
input data 〈X,Y, I〉 if whenever an object has all the attributes from A, then
it has all the attributes from B as well. The basic notions concerning attribute
implications are summarized below. We say that A⇒ B is valid in a set M ⊆ Y
of attributes, written M |= A⇒ B, if the following condition is satisfied:

if A ⊆M then B ⊆M. (5)

Hence, if M represents the set of attributes of an object x then M |= A ⇒ B
means that if x has all the attributes from A then it has all the attributes from
B. More generally, for any M ⊆ 2Y , we put M |= A ⇒ B if M |= A ⇒ B
for each M ∈ M. Therefore, the notion of validity in input data may be
rephrased as follows: A⇒ B is valid in 〈X,Y, I〉 if and only ifM |= A⇒ B for
M = {{x}↑ |x ∈ X} (notice that {x}↑ is the set of all attributes of object x).
The fact that A⇒ B is valid in 〈X,Y, I〉 is denoted by I |= A⇒ B.
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Attribute implications valid in formal contexts may conveniently be repre-
sented by certain small sets called bases. Given a set T of attribute implications,
M ⊆ Y is called a model of T if M |= A⇒ B for each A⇒ B from T . The sys-
tem of all models of T is denoted by Mod(T ). An attribute implication A⇒ B
is (semantically) entailed by T , written T |= A⇒ B, if Mod(T ) |= A⇒ B (i.e.,
A⇒ B is valid in every model of T ). A set T of attribute implications is called
complete in 〈X,Y, I〉 if for every implication A ⇒ B we have: I |= A ⇒ B
(A ⇒ B is true in input data) if and only if T |= A ⇒ B (A ⇒ B is entailed
by T ). Furthermore, T is called a base of 〈X,Y, I〉 if T is complete in 〈X,Y, I〉
and no proper subset of T is complete in 〈X,Y, I〉. Thus, a base of 〈X,Y, I〉
is a non-redundant set of attribute implications valid in 〈X,Y, I〉 that entails
exactly all implications valid in 〈X,Y, I〉. In this sense, a base is a minimal fully
informative set of attribute implications valid in the input data. More details
including algorithms for finding bases can be found in [9, 10].

Example 3. The data 〈X,Y, I〉 from Fig. 1 has a minimal base containing five
attribute implications:

{e, f} ⇒ {a, e, f}, {c, f} ⇒ {a, b, c, f}, {c, e} ⇒ {a, c, e},
{c, d} ⇒ Y, {b, f} ⇒ {a, b, f}.

Therefore, all attribute implications valid in 〈X,Y, I〉 are exactly the attribute
implications entailed by the base of five implications. This paritcular base is a
so-called Guigues-Duquenne base [10]. The base can be further simplified by
removing attributes from consequents of the implications. For instance,

{e, f} ⇒ {a}, {c, f} ⇒ {a, b}, {c, e} ⇒ {a},
{c, d} ⇒ {a, b, e, f}, {b, f} ⇒ {a},

is another base of 〈X,Y, I〉. Put in words, the first implication{e, f} ⇒ {a} says
that “if a product contains polyglycerol polyricinoleate and sodium carbonates
then it contains lecithin as well”. The other implications can be interpreted in
a similar way.

Note that Guigues-Duquenne bases are minimal in terms of their size. In
the above example, it means that 〈X,Y, I〉 does not have a base consisting of
four or less attribute implications [10].

3. Formalization of Constraints

Selecting “interesting” concepts from the set B(X,Y, I) of all formal concepts
needs to be based on a criterion of interestingness. Such a criterion can be seen
as a constraint represented by a user background knowledge and needs to be
supplied by a user along with the input data 〈X,Y, I〉.

One way to specify “interesting” concepts, which is explored in this paper,
is to define them as concepts with “interesting intents” (i.e., interesting sets of
attributes covered by the concepts). Thus, given a data table 〈X,Y, I〉, the user
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may specify a system S ⊆ 2Y of subsets of Y . A concept 〈A,B〉 ∈ B(X,Y, I)
is then considered “interesting” if B ∈ S. Several important issues have to be
resolved, however. First, which systems S ⊆ 2Y lead to constrained concepts
which form a hierarchically-ordered substructure of B(X,Y, I) that (somehow)
approximates the original hierarchy? Second, how should S be described by
a user? Third, how to determine the constrained concept lattice without the
need to compute the original (large) concept lattice first? Fourth, can we deter-
mine and compute a minimal set of rules describing if-then dependencies among
attributes of the constrained concept lattice? In this paper, we develop the
above-mentioned approach to constraints and answer the foregoing questions
provided that the sets of attributes which are considered “interesting” form a
closure system in Y . As we see in Section 7, this choice covers a large family of
particular constraints and includes some approaches presented in the literature
in the past. (A reader who is only interested in examples may continue reading
this section up to Definition 2 and then skip to Section 7.)

Recall that S ⊆ 2Y is called a closure system in Y if S is closed under
arbitrary intersections. A closure operator in a set Y is a map C : 2Y → 2Y

satisfying

B ⊆ C(B), extensivity

B1 ⊆ B2 implies C(B1) ⊆ C(B2), monotony

C(C(B)) = C(B), idempotency

for any B,B1, B2 ∈ 2Y . A set B ⊆ Y such that C(B) = B is called a fixed point
of C. The set of all fixed points of C is denoted by fix(C). For each closure
system S ⊆ 2Y one can define an operator CS by CS(B) =

⋂
{A ∈ S |B ⊆ A}.

It is a well-known fact that (i) fix(C) is a closure system in Y , (ii) CS is a closure
operator in Y , and (iii) there is a one-to-one correspondence between closure
operators in Y and closure systems in Y : we have C = Cfix(C) and S = fix(CS),
i.e. the maps C 7→ fix(C) and S 7→ CS are mutually inverse, see [9] for details.

We now formalize “interesting sets of attributes” as follows:

Definition 1. Let Y be a set of attributes, C be a closure operator in Y . A set
B ⊆ Y is called a C-interesting set of attributes (shortly, a set of C-attributes)
if B = C(B). �

Throughout the paper, Y denotes a finite set of attributes and C : 2Y →
2Y denotes a closure operator in Y . Put verbally, Definition 1 says that C-
interesting sets of attributes are exactly the fixed points of the closure opera-
tor C. Thus, given any set B ⊆ Y of attributes, C(B) can be seen as the least
set of C-interesting attributes containing B.

Remark 2. (i) Given a set B ⊆ Y of attributes, either we have B = C(B), i.e.
B is C-interesting, or B ⊂ C(B) which can be read: “B is not C-interesting, but
additional attributes C(B)−B would make B interesting”. Thus, C describes
which set of attributes are interesting and which attributes must be added to a
set of attributes to make it interesting.

8



(ii) A definition of C depends on a particular application. In our approach,
we assume that C may be an arbitrary closure operator, covering thus all pos-
sible choices of C. Obviously, in real applications, it is necessary to have a
collection of easy-to-understand definitions of such closure operators. In Sec-
tion 7 and Section 8 we provide several examples of such operators.

(iii) Clearly, constraints represented by closure operators do not exhaust all
possible types of user constraints. For example, a different type of constraints,
representing relative importance of attributes, is investigated in [4]. Never-
theless, as we show in Section 7, constraints represented by closure operators
include a variety of particular natural constraints. �

Definition 2. Let 〈X,Y, I〉 be a data table, C be a closure operator in Y . We
put

BC(X,Y, I) = {〈A,B〉 ∈ B(X,Y, I) |B = C(B)}. (6)

Each 〈A,B〉 ∈ BC(X,Y, I) is called a C-interesting concept (shortly, a C-
concept) in 〈X,Y, I〉. If 〈A,B〉 ∈ BC(X,Y, I) is a C-concept then A and B
are called a C-interesting extent (C-extent) and a C-interesting intent (C-
intent), respectively. The sets of all C-extents and C-intents are denoted by
ExtC(X,Y, I) and IntC(X,Y, I), respectively. �

Remark 3. (i) According to Definition 2, 〈A,B〉 is a C-concept iff 〈A,B〉 is
a concept (in the ordinary sense) such that B is a set of C-attributes. Hence,
〈A,B〉 is a C-concept iff A↑ = B, B↓ = A, and C(B) = B hold. As a conse-
quence, C-concepts 〈A,B〉 can be seen as maximal rectangles in the input data
table which are full of ×’s, see Section 2, such that B is closed under C.

(ii) Notice that two boundary cases of closure operators in Y are C0(B) = B
(for all B ⊆ Y ) and C1(B) = Y (for all B ⊆ Y ). The notion of a C0-concept
coincides with that of a concept. Hence, BC0

(X,Y, I) equals B(X,Y, I). In case
of C1, BC1

(X,Y, I) is a one-element set containing 〈Y ↓, Y 〉.
(iii) Observe that B ⊆ Y is a C-intent iff B = B↓↑ = C(B). Thus,

IntC(X,Y, I) = Int(X,Y, I) ∩ fix(C), where Int(X,Y, I) denotes the set of all
intents. �

The following assertion characterizes the structure of C-concepts and shows
that BC(X,Y, I) equipped with the subconcept-superconcept hierarchy is a
particular substructure of B(X,Y, I). Note that a complete

∨
-sublattice of

B(X,Y, I) is a subset of B(X,Y, I) which is closed under arbitrary suprema.

Theorem 2. Let 〈X,Y, I〉 be a data table, C be a closure operator. Then
BC(X,Y, I) equipped with ≤ defined by (4) is a complete

∨
-sublattice of B(X,Y, I).

Proof. Take an arbitrary J-indexed system

S = {〈Aj , Bj〉 ∈ BC(X,Y, I) | j ∈ J}

of C-concepts. We prove that

〈A,B〉 =
〈(⋃

j∈J Aj

)↑↓
,
⋂

j∈J Bj

〉
(7)
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is the least upper bound of S in BC(X,Y, I) which will prove that BC(X,Y, I) is
a complete

∨
-sublattice of B(X,Y, I), see Theorem 1. First, since Bj ∈ fix(C) is

true for each j ∈ J , it follows that
⋂

j∈J Bj ∈ fix(C). Therefore, 〈A,B〉 defined
by (7) belongs to BC(X,Y, I). Moreover, since B ⊆ Bj for arbitrary j ∈ J ,
we get 〈Aj , Bj〉 ≤ 〈A,B〉 according to (4). Thus, 〈A,B〉 is an upper bound of
S in BC(X,Y, I). In addition to that, if there is 〈A′, B′〉 ∈ BC(X,Y, I) such
that 〈Aj , Bj〉 ≤ 〈A′, B′〉 for all j ∈ J , then B′ ⊆ Bj for all j ∈ J and thus,
B′ ⊆

⋂
j∈J Bj = B, meaning that 〈A,B〉 ≤ 〈A′, B′〉, i.e., 〈A,B〉 is indeed the

least upper bound (a supremum) of S in BC(X,Y, I). According to Theorem 1,
this supremum agrees with the supremum of S in B(X,Y, I).

The following theorem shows that conversely, every
∨

-sublattice of B(X,Y, I)
can be seen as a set of all C-concepts for a suitable operator C.

Theorem 3. Let B(X,Y, I) be a concept lattice and let L be a complete
∨

-
sublattice of B(X,Y, I). Then, L equals BC(X,Y, I) for some closure operator
C.

Proof. Put S = {B ⊆ Y | 〈A,B〉 ∈ L}. Observe that S is a closure system in Y .
Indeed, take arbitrary 〈Aj , Bj〉 ∈ L (j ∈ J). Since L is a complete

∨
-sublattice

of B(X,Y, I), the supremum of all 〈Aj , Bj〉 (j ∈ J) in L coincides with the
supremum of all 〈Aj , Bj〉 (j ∈ J) in B(X,Y, I). Applying Theorem 1, the latter
yields

⋂
j∈J Bj ∈ S. Consider the closure operator CS induced by S. Since

fix(CS) = S, one can conclude that L equals BC(X,Y, I) with C being CS .

Putting previous two assertions together, we get

Corollary 1. Let B(X,Y, I) be a concept lattice and let L ⊆ B(X,Y, I). Then
the following are equivalent:

(i) L is a set of C-concepts for some C.

(ii) L equipped with partial order ≤ defined by (4) is a complete
∨

-sublattice
of B(X,Y, I).

Remark 4. Notice that each BC(X,Y, I) contains 〈Y ↓, Y 〉, i.e. the least con-
cept of B(X,Y, I). This follows from the extensivity of C. Therefore, 〈Y ↓, Y 〉
is the least C-concept of BC(X,Y, I), see (4). This might seem to be in contra-
diction with our intuition about “interesting concepts” because 〈Y ↓, Y 〉 has all
attributes and is thus trivial. The presence of 〈Y ↓, Y 〉 is to be understood as a
technical condition that guarantees that BC(X,Y, I) is a complete lattice. �

4. Algorithms for Computing BC(X,Y, I)

We now turn our attention to the computational aspects of enumerating
all C-concepts., i.e. all elements of BC(X,Y, I). A naive way to compute
BC(X,Y, I) is to compute B(X,Y, I) first and then go through all of its concepts
and list all the C-concepts. This method may not be efficient because B(X,Y, I)
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may be very large compared to the size of BC(X,Y, I). In this section, we show
that BC(X,Y, I) can be directly computed without the need to enumerate all
concepts from B(X,Y, I).

We are going to reduce the problem of computing C-concepts to the problem
of computing fixed points of a single closure operator. Recall that the compo-
sition ↓↑ : 2Y → 2Y of the concept-forming operators (1) and (2) is a closure
operator [9]. Since C is assumed to be a closure operator as well, C-interesting
concepts are exactly the common fixed points of ↓↑ (operator induced by the
Galois connection given by a formal context 〈X,Y, I〉) and C (operator speci-
fying interesting sets of attributes). Thus, we may define a composite operator
as follows.

For any B ⊆ Y define sets Bj ⊆ Y (j ∈ N0) by

Bj =

{
B, if j = 0,

C(Bj−1
↓↑), if j ≥ 1.

(8)

Using (8), define an operator cl : 2Y → 2Y by

cl(B) =
⋃∞

j=0Bj . (9)

Theorem 4. Let 〈X,Y, I〉 be a formal context, C be a closure operator in Y .
Then cl : 2Y → 2Y defined by (9) is a closure operator such that fix(cl) =
IntC(X,Y, I), i.e. the fixed points of cl are just the C-intents.

Proof. Since both ↓↑ and C are closure operators, B0 ⊆ B1 ⊆ · · · , and Bj ⊆
cl(B) for each j ∈ N0. Furthermore, the extensivity and monotony of ↓↑ and
C yield extensivity and monotony of cl . To check idempotency of cl , we show
C((cl(B))↓↑) ⊆ cl(B) for each B ⊆ Y . For each y ∈ cl(B) denote by jy
an index jy ∈ N0 such that y ∈ Bjy , where Bjy is defined by (8). We have
cl(B) =

⋃
y∈cl(B)Bjy . Since Y is finite, cl(B) is finite, i.e. for an index j =

max{jy | y ∈ cl(B)}, we have cl(B) = Bj , where Bj is defined by (8). Therefore,

C((cl(B))↓↑) = C(Bj
↓↑) = Bj+1 ⊆ cl(B), i.e. cl is idempotent. Altogether, cl

is a closure operator.
We now prove that fix(cl) = IntC(X,Y, I).
“⊆”: Let B ∈ fix(cl), i.e. B = cl(B). Using the aforementioned idea,

cl(B) = Bj for some index j ∈ J . Therefore, B = Bj = C(Bj−1
↓↑) for some

j ∈ J which proves that B is a set of C-attributes. Moreover, B↓↑ = Bj
↓↑ ⊆

C(Bj
↓↑) = Bj+1 ⊆ cl(B) = B, i.e. B is an intent of a formal concept in

〈X,Y, I〉. Putting it together, B ∈ IntC(X,Y, I).
“⊇”: Let B ∈ IntC(X,Y, I). By definition, B = C(B) and B = B↓↑. Thus,

for each j ∈ N0, Bj = B, yielding B = cl(B), i.e., B ∈ fix(cl).

Theorem 4 provides a way to compute C-interesting intents and thus the
complete lattice of C-concepts: one can use arbitrary algorithm for computing
all fixed points of a closure operator because C-interesting intents are exactly
the fixed points of a closure operator cl derived from C and ↓↑. Note that
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Algorithm 1: Procedure C-Intents(B, y)

1 store B;
2 if B = Y or y > n then
3 return
4 end
5 for j from y upto n do
6 if j 6∈ B then
7 set D to cl(B ∪ {j});
8 if B ∩ Yj = D ∩ Yj then
9 C-Intents(D, j + 1);

10 end

11 end

12 end
13 return

well-known algorithms for computing fixed points of closure operators include
Ganter’s algorithm [8] (algorithm for listing fixed points in a lexical order),
Lindig’s algorithm [14] (algorithm for listing fixed points and computing their
hierarchy), and variants of the algorithm proposed independently by Kuznetsov
and Norris [12, 18]. A survey of algorithms for FCA can be found in [13]. For
the purpose of illustration, we use an algorithm based on CbO [12].

Suppose that Y contains attributes labeled by consecutive nonnegative inte-
gers, i.e., Y = {0, 1, . . . , n}. For each j ∈ N0, denote by Yj a subset of attributes
defined by

Yj = {y ∈ Y | y < j}. (10)

Then, an algorithm for computing C-intents can be formalized by a procedure
C-Intents(B, y) in Algorithm 1. The procedure accepts a C-intent B and an
attribute y and recursively lists all C-Intents beginning with B. It can be
shown that C-Intents(cl(∅), 0) lists all C-intents, each of them exactly once.
This can be shown in much the same way as in case of the original CbO [12],
details are therefore omitted.

Remark 5. Notice that C-Intents is a polynomial time-delay algorithm [11]
provided that C(B) (B ⊆ Y ) can be computed with a polynomial time complex-
ity. Indeed, for each B ⊆ Y , B↓↑ can be computed in a polynomial time (well-
known fact). Since Y is finite, there is an index i ≤ |Y | such that cl(B) = Bi,
where Bi is defined by (8). Thus, if C(B) can be computed in a polynomial
time, C-Intents computes with a polynomial time delay. �

5. Constraints and Attribute Implications

In this section, we focus on a new type of attribute dependencies which
arise in FCA when constraints by closure operators are imposed on attribute
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implications. In particular, we deal with validity of the dependencies, non-
redundant sets of these dependencies, algorithms to compute the non-redundant
sets, and show their relationship to lattices of C-concepts from Section 3.

Throughout this section, we consider a fixed set Y of attributes, a formal
context 〈X,Y, I〉, and a closure operator C : 2Y → 2Y representing a constraint.
In addition, all attribute implications considered in this section are attribute
implications over Y . Dependencies between C-interesting sets of attributes are
formalized as follows:

Definition 3. An attribute implication A⇒ B is called a C-attribute implica-
tion (shortly, a C-implication) if A and B are sets of C-attributes.

According to Definition 3, C-implications are but ordinary attribute impli-
cations in which both the antecedent and consequent are C-interesting sets of
attributes. Validity of C-implications may be defined as validity of ordinary at-
tribute implications. Then, however, a C-implication A⇒ B may be ruled out
non-valid because of a non-interesting set of attributes (a set M of attributes
of an object for which A ⊆ M and B 6⊆ M). This is not desirable because
only C-interesting sets of attributes should be regarded as reasons to reject a
C-implication. Therefore, we propose the following approach in which a C-
implication is checked in all C-interesting sets of attributes shared by objects
from X.

Definition 4. A C-implication A ⇒ B is called C-valid in a formal context
〈X,Y, I〉 if, for any N ⊆ X, the following condition is satisfied:

if N↑ is a set of C-attributes, then N↑ |= A⇒ B.

The fact that A⇒ B is C-valid in 〈X,Y, I〉 is denoted by I |=C A⇒ B.

Notice that if C is the identity operator (i.e. C does not impose any con-
straint), C-validity coincides with the ordinary notion of validity of attribute
implications. Testing of C-validity for given C-implication in a given formal
context 〈X,Y, I〉 according to Definition 4 is more complex than testing validity
of attribute implications. Indeed, unlike the ordinary case, where we perform
a single test for each object, according to Definition 4, we have to perform a
test for each subset of objects. Thus, the number of tests grows exponentially
with the size of X. It is therefore important to have a quick test for checking
I |=C A ⇒ B. The following assertion shows several equivalent criteria for
C-validity which can be used for quick tests.

Theorem 5. Let 〈X,Y, I〉 be a formal context and let A⇒ B be a C-implication.
The following are equivalent:

( i) I |=C A⇒ B,

( ii) IntC(X,Y, I) |= A⇒ B,

( iii) cl(A) |= A⇒ B,

( iv) B ⊆ cl(A),
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where cl : 2Y → 2Y is defined by (9).

Proof. “(i)⇒ (ii)”: Let I |=C A ⇒ B. For any M ∈ IntC(X,Y, I), 〈M↓,M〉
is C-concept because M↓↑ = M . Put N = M↓ ⊆ X. Using I |=C A ⇒ B,
we get N↑ |= A ⇒ B, i.e., M |= A ⇒ B because N↑ = M↓↑ = M is a set of
C-attributes, see Definition 4.

“(ii)⇒ (iii)”: Trivial because cl(A) ∈ IntC(X,Y, I).
“(iii)⇒ (iv)”: Since A ⊆ cl(A), from cl(A) |= A⇒ B it readily follows that

B ⊆ cl(A).
“(iv)⇒ (i)”: Let B ⊆ cl(A) and consider N ⊆ X such that N↑ is a set of C-

attributes. Then, N↑ is a C-intent of a C-concept 〈N↑↓, N↑〉. Hence, cl(N↑) =
N↑. Furthermore, if A ⊆ N↑, the monotony of cl yields cl(A) ⊆ cl(N↑) = N↑.
Therefore, B ⊆ cl(A) and the latter inclusion yield B ⊆ N↑. Hence, A ⊆ N↑

implies B ⊆ N↑, proving N↑ |= A⇒ B.

Remark 6. (1) Theorem 5 (ii) says that A ⇒ B is C-valid in 〈X,Y, I〉 iff
it is valid in every C-intent of 〈X,Y, I〉, generalizing the well-known fact that
an implication is valid in 〈X,Y, I〉 if and only if it is valid in every intent of
〈X,Y, I〉.

(2) Theorem 5 (iii) and (iv) provide simple tests of C-validity. Namely, if
C(B) (B ⊆ Y ) can be computed in a polynomial time (which is indeed so in
many important cases, cf. Section 7 with examples) then C-validity can be
checked in polynomial time as well.

In order to describe bases of C-implications, we need the following notions:

Definition 5. Let T be a set of C-implications. A set M ⊆ Y is called a
C-model of T if M is a set of C-attributes such that M ∈ Mod(T ). Denote by
ModC(T ) the system of all C-models of T , i.e. ModC(T ) = {M ∈ Mod(T ) |M =
C(M)}.

Furthermore, a C-implication A ⇒ B is C-entailed by T , denoted T |=C

A⇒ B, if ModC(T ) |= A⇒ B.

The notions of a completeness and a base are defined as follows:

Definition 6. A set T of C-implications is called C-complete in 〈X,Y, I〉 if, for
each C-implication A⇒ B:

T |=C A⇒ B iff I |=C A⇒ B.

Furthermore, T is called a C-base of 〈X,Y, I〉 if T is C-complete in 〈X,Y, I〉
and no proper subset of T is C-complete in 〈X,Y, I〉.

C-complete sets in 〈X,Y, I〉 can be characterized as sets of C-implications
whose models are exactly C-intents:

Theorem 6. A set T of C-implications is C-complete in 〈X,Y, I〉 iff ModC(T ) =
IntC(X,Y, I).
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Proof. Let T be C-complete in 〈X,Y, I〉. We are going to check that ModC(T )
equals IntC(X,Y, I) by checking both inclusions.

“⊆”: Let M ∈ ModC(T ). First, observe that IntC(X,Y, I) |= M ⇒ cl(M).
Indeed, for each C-intent N ∈ IntC(X,Y, I), if M ⊆ N then cl(M) ⊆ cl(N) =
N . Since T is complete, using Theorem 5 (ii), from IntC(X,Y, I) |= M ⇒ cl(M)
it follows that T |=C M ⇒ cl(M). Since M ∈ ModC(T ), we get M |= M ⇒
cl(M). Hence, cl(M) ⊆M , showing M = cl(M), i.e., M ∈ IntC(X,Y, I).

“⊇”: Let M ∈ IntC(X,Y, I) and consider any A ⇒ B ∈ T . Then, trivially,
T |=C A ⇒ B. Since T is C-complete, we obtain I |=C A ⇒ B. Furthermore,
M is a C-intent, i.e., using Theorem 5 (ii), the latter observation yields M |=
A ⇒ B. Since A ⇒ B ∈ T has been taken arbitrarily, we get M |= A ⇒ B for
all A⇒ B ∈ T , i.e., M ∈ ModC(T ) because M = C(M).

Conversely, if ModC(T ) = IntC(X,Y, I) then T is obviously C-complete in
〈X,Y, I〉, see Theorem 5 (ii).

Remark 7. (1) According to Theorem 6, a set T of C-implications is C-
complete if the C-models of T are exactly the C-interesting intents. From this
point of view, a C-complete set fully describes the lattice of C-concepts using
the notion of a C-model. Consequently, a C-base is a set T of C-implications
fully describing C-concepts so that one cannot remove any C-implication from
T without losing C-completeness. Hence, C-bases are minimal C-complete sets
of C-implications.

(2) In general, a C-complete set T of attribute implications (C-implications)
may have models which are not C-models. Also note that if C is given by
C(B) = B (B ∈ 2Y ), then the notions of a C-model and a C-completeness
coincide with the ordinary notions of a model and a completeness [9].

The following theorem shows that bases are complete sets which are not
redundant in the sense that no C-implication from a base follows from the
other C-implications:

Theorem 7. Let T be C-complete in 〈X,Y, I〉. Then, T is a C-base of 〈X,Y, I〉
iff T − {A⇒ B} 6|=C A⇒ B holds for each A⇒ B ∈ T .

Proof. Suppose that T is a C-base of 〈X,Y, I〉 and consider any A ⇒ B ∈ T .
Then, T − {A⇒ B} is not C-complete and thus ModC(T ) ⊂ ModC(T − {A⇒
B}), see Theorem 6. In other words, there is M ∈ ModC(T−{A⇒ B}) which is
not a C-model of T . Therefore, M 6|= A⇒ B. Hence, T−{A⇒ B} 6|=C A⇒ B.

Conversely, let T − {A ⇒ B} 6|=C A ⇒ B for each A ⇒ B ∈ T and take
T ′ ⊂ T . Then, there is A⇒ B ∈ T such that A⇒ B 6∈ T ′. Thus, T |=C A⇒ B
and T ′ 6|=C A⇒ B, i.e., T ′ is not C-complete in 〈X,Y, I〉. As a consequence, T
is a base of 〈X,Y, I〉.

We now show a way to find particular C-bases. For this purpose, we
introduce the following notion, generalizing the classic notion of a pseudo-
intent [9, 10]:

15



Definition 7. A set P of C-attributes is called a C-pseudo-intent of formal
context 〈X,Y, I〉 if P ⊂ cl(P ) and, for each C-pseudo-intent Q of 〈X,Y, I〉 such
that Q ⊂ P , we have cl(Q) ⊆ P . The set of all C-pseudo-intents of 〈X,Y, I〉 is
denoted by PC(X,Y, I).

Remark 8. (1) Notice that Definition 7 is a recursive definition in which C-
pseudo-intents are defined by means of strictly smaller C-pseudo-intents. Also
note that each C-pseudo-intent is a set of C-attributes which is not a C-intent.
If C(∅) is closed under ↓↑, then C(∅) is the least C-intent; otherwise C(∅) is the
least C-pseudo-intent.

(2) If C is the identity map, the notion of a C-pseudo-intent coincides with
the notion of a pseudo-intent, see [9, 10].

C-pseudo-intents are important because they determine an important C-
base. Namely, given PC(X,Y, I), one can form a set T of C-implications

T = {P ⇒ cl(P ) |P ∈ PC(X,Y, I)}. (11)

For T , we can prove the following:

Theorem 8. T defined by (11) is a C-base of 〈X,Y, I〉.

Proof. Notice that T is obviously a set of C-implications. We now check that
T is C-complete. Due to Theorem 6, it suffices to check that ModC(T ) =
IntC(X,Y, I).

“⊆”: Let M ∈ ModC(T ). Thus, M is a set of C-attributes. By contra-
diction, let M 6= cl(M), i.e. M ⊂ cl(M) because cl is extensive. Now, for
each C-pseudo-intent Q, we have M |= Q⇒ cl(Q) because M is a model of T .
Therefore, for each C-pseudo-intent Q, if Q ⊂ M then cl(Q) ⊆ M , i.e. M is a
C-pseudo-intent by Definition 7. On the other hand, M 6|= M ⇒ cl(M) because
cl(M) *M , a contradiction to M ∈ ModC(T ).

“⊇”: Let M ∈ IntC(X,Y, I). Then M = cl(M). For each C-pseudo-intent
P , if P ⊆ M then cl(P ) ⊆ cl(M) = M , i.e. M |= P ⇒ cl(P ). Altogether,
M ∈ ModC(T ).

It remains to check that T is a C-base. For each C-pseudo-intent P , P |=
Q ⇒ cl(Q) where Q 6= P is any C-pseudo-intent. Thus, P is a C-model of
TP = T − {P ⇒ cl(P )} which gives ModC(TP ) ⊃ IntC(X,Y, I), i.e. TP is not
C-complete in 〈X,Y, I〉.

Due to Theorem 8, in order to get a C-base, it suffices to compute all C-
pseudo-intents. To do that, we express C-pseudo-intents as particular fixed
points of a newly constructed closure operator. Given a set T of C-implications,
we consider sets Bi defined by B0 = B and

Bi+1 = C
(
Bi ∪

⋃
{D |A⇒ D ∈ T and A ⊂ Bi}

)
,

for each integer i ≥ 0. Obviously Bi ⊆ Bi+1 for each i ≥ 0. Furthermore, we
define an operator clT : 2Y → 2Y as follows:

clT (B) =
⋃∞

i=0Bi . (12)
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Algorithm 2: Procedure C-Base(〈X,Y, I〉)
1 set T to ∅;
2 set B to C(∅);
3 while B 6= Y do
4 if B 6= cl(B) then
5 add B ⇒ cl(B) to T ;
6 end
7 set B to NextClosure(B, clT )

8 end
9 return T

We now have the following

Theorem 9. Let T be defined by (11). Then clT defined by (12) is a closure
operator such that

fix(clT ) = PC(X,Y, I) ∪ IntC(X,Y, I).

Proof. clT is indeed a closure operator (apply arguments from the proof of
Theorem 4). We check that fix(clT ) = PC(X,Y, I) ∪ IntC(X,Y, I).

“⊆”: Let B = clT (B). If B 6∈ IntC(X,Y, I), it suffices to check that B is a C-
pseudo-intent. Since Y is finite, B = clT (B) = Bi0 for some i0 ≥ 1. That is, B is
of the form C(· · ·), yielding that B is a set of C-attributes. Moreover, for each C-
pseudo-intent Q, if Q ⊂ B then cl(Q) ⊆ B because B = clT (B) = Bi0 = Bi0+1

and Q⇒ cl(Q) ∈ T . Therefore, B is a C-pseudo-intent.
“⊇”: Clearly, for each C-intent B, Bi = B (i ∈ N), i.e. B is a fixed point of

clT . The same is true if B is a C-pseudo-intent.

Theorem 9 says that the fixed points of clT are all the C-pseudo-intents
together with all the C-intents. This provides us with a way to determine a C-
base: we can use the NextClosure [9] algorithm to compute fix(clT ) and then
single out the C-pseudo-intents according to PC(X,Y, I) = {P ∈ fix(clT ) |P 6=
cl(P )}. That is, the C-base (11) becomes

T = {P ⇒ cl(P ) |P = clT (P ) and P 6= cl(P )}

due to Theorem 8. The algorithm is described in Algorithm 2. The procedure
accepts a formal context as the input and produces a C-base (11). The pro-
cedure utilizes procedure NextClosure which, for given set B of attributes
and closure operator clT computes the least lexical successor of B, see [8, 9] for
details. This ensures that T is properly updated and during each step of the
computation, all C-implications which are needed to determine next C-pseudo-
intent are already present in T . This is easily seen since the lexical order is a
total strict order on 2Y extending the proper subsethood “⊂”.
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6. Syntactic Entailment and Axiomatization

In this section, we investigate syntactic entailment (i.e. provability) of C-
implications as a counterpart to the semantic entailment |=C introduced in
Section 5. We provide a simple set of deduction rules, inspired by the well-
known Armstrong deduction rules [1, 15], and show that the rules are syntactico-
semantically complete in that a given C-implication is semantically entailed by
a set T of C-implications if and only if the C-implication if provable from T
using these rules.

A version of Armstrong deduction rules, which we use in what follows, con-
sists of the following two rules which describe what attribute implications can
be derived (in a single inference step) from other implications:

(Ax): infer E∪F ⇒ F ,

(Cut): from E ⇒ F and F∪G⇒ H infer E∪G⇒ H.

Remark 9. In literature, several other equivalent sets of deduction rules are
described [15]. We have chosen this particular set of rules because it is concise.
Also note that (Ax) is, in fact, an axiom scheme stating that each attribute
implication of the from E∪F ⇒ F is derivable in a single step (from no preceding
attribute implications). (Cut) is a deduction rule which produces an attribute
implication E∪G⇒ H from two attribute implications of the form E ⇒ F and
F∪G⇒ H.

Using (Ax) and (Cut), one defines the notions of a proof and a provability.
A sequence ϕ1, . . . , ϕn of attribute implications is called a proof of ϕ from T if
ϕn = ϕ and, for each i = 1, . . . , n, we have

(i) ϕi ∈ T or

(ii) ϕi results using (Ax), or

(iii) ϕi results from ϕj and ϕk (j, k < i) using (Cut).

An attribute implication A ⇒ B is provable from T , written T ` A ⇒ B, if
there is a proof of A⇒ B from T .

Remark 10. In addition to (Ax) and (Cut), one can use so-called derived
deduction rules, i.e. rules that can be used as shorthands for certain repeated
applications of (Ax) and (Cut). We use the following derived deduction rules:

(Tra): from E ⇒ F and F ⇒ H infer E ⇒ H,

(Wea): from E ⇒ F infer E∪G⇒ F .

It is easily seen that (Tra) (rule of transitivity) is, in fact, an instance of
(Cut) for G = ∅. Moreover, (Wea) (rule of weakening) is a derived rule because
it follows by (Cut) from E ⇒ F and F∪G⇒ F , which is an instance of (Ax).

The relationship between the semantic entailment |= and provability ` is
characterized by the following well-known completeness result [1, 9, 15]:
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Theorem 10. For any set T of attribute implications and any attribute impli-
cation A⇒ B, we have

T ` A⇒ B iff T |= A⇒ B,

i.e., A⇒ B is entailed by T iff A⇒ B is provable from T .

We now turn our attention to provability of C-implications.
First, we show that the ordinary provability ` of attribute implications from

a set T of C-implications can be used to characterize C-entailment from T
provided that we consider provability form T enriched by additional attribute
implications. For any set T of C-implications, consider the set TC of attribute
implications

TC = T ∪ Th(C), (13)

where Th(C) is any set of attribute implications such that

Mod(Th(C)) = fix(C). (14)

Observe that such Th(C) always exists. For instance, one may take

Th(C) = {A⇒ C(A) |A ⊆ Y }. (15)

Instead of taking this particular Th(C) which is large since |Th(C)| = 2|Y |, one
can take any equivalent non-redundant set of attribute implications, e.g., the
Guigues-Duquenne base of all fixed points of C, see [10]. For our argument
below, it is important that Th(C) satisfying (14) always exists.

We now get the following characterization:

Theorem 11. For any set T of C-implications and any C-implication A⇒ B,
the following are true

( i) Mod(TC) = ModC(T ),

( ii) TC |= A⇒ B iff T |=C A⇒ B,

where TC is given by (13) with Th(C) satisfying (14).

Proof. Using (13) and (14), we get

Mod(TC) = Mod(T ∪ Th(C)) =

= Mod(T ) ∩Mod(Th(C)) =

= Mod(T ) ∩ fix(C) = ModC(T ),

proving (i). (ii) follows immediately from (i).

As a consequence of the previous assertions:
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Theorem 12. For any set T of C-implications and any C-implication A⇒ B,
we have

TC ` A⇒ B iff T |=C A⇒ B,

where TC is given by (13) with Th(C) satisfying (14).

Proof. Consequence of Theorem 10 and Theorem 11.

Theorem 12 can be seen as a completeness result for C-entailment. However,
it uses the ordinary notion of provability of attribute implications. Therefore,
corresponding proofs of C-implications from TC contain attribute implications
which are not C-implications. This kind of mixing C-implications and gen-
eral attribute implications in proofs is undesirable. Therefore, we are inter-
ested in finding a system of Armstrong-like deduction rules which enables us
to infer C-implications from C-implications, so that the proofs contain only
C-implications.

Consider the following deduction rules:

(AxC): infer C(E∪F )⇒ F , where F ∈ fix(C),

(CutC): from C-implications E ⇒ F and C(F∪G)⇒ H
infer C(E∪G)⇒ H.

Remark 11. (1) Notice that (AxC) and (CutC) are indeed rules which produce
C-implications from input C-implications.

(2) Deduction rules (AxC) and (CutC) generalize the original Armstrong
rules (Ax) and (Cut) the following way: if C is identity map, then (AxC) and
(CutC) become (Ax) and (Cut), respectively.

In much the same way as in case of (Ax) and (Cut), we can define the
notions of a C-proof and a C-provability with (AxC) and (CutC) used instead
of (Ax) and (Cut) and considering only C-implications as formulas: A sequence
ϕ1, . . . , ϕn of C-implications is called a C-proof of ϕ from T if ϕn = ϕ and, for
each i = 1, . . . , n, we have

(i) ϕi ∈ T or

(ii) ϕi results using (AxC), or

(iii) ϕi results from ϕj and ϕk (j, k < i) using (CutC).

A C-implication A⇒ B is C-provable from T , written T `C A⇒ B, if there is
a C-proof of A⇒ B from T .

The following assertions show the relationship between the ordinary prov-
ability ` and C-provability `C :

Theorem 13. Let T be a set of C-implications. Then, for every C-implication
A⇒ B,

if TC ` A⇒ B, then T `C A⇒ B,

where TC is given by (13) with Th(C) defined by (15).
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Proof. Let TC ` A ⇒ B. Thus, there is a proof A1 ⇒ B1, . . . , An ⇒ Bn of
A⇒ B from TC . We show, by induction on the length of the proof, that T `C
C(Ai)⇒ C(Bi) for all i = 1, . . . , n. As a particular case, we get T `C C(An)⇒
C(Bn), showing T `C A ⇒ B because An = A = C(A) and Bn = B = C(B),
respectively.

Take i ≤ n and suppose that the claim holds for all j < i. If Ai ⇒ Bi ∈ T ,
then obviously T `C C(Ai)⇒ C(Bi) because Ai ⇒ Bi is a C-implication.

If Ai ⇒ Bi ∈ Th(C), then from (15), Bi = C(Ai), i.e. Ai ⇒ Bi can be
written as Ai ⇒ C(Ai). Observe that C(Ai) ⇒ C(C(Ai)) becomes C(Ai) ⇒
C(Ai) because C is idempotent. Hence, C(Ai)⇒ C(Bi) equals C(Ai)⇒ C(Ai)
for which T `C C(Ai)⇒ C(Ai) using (AxC), hence T `C C(Ai)⇒ C(Bi).

If Ai ⇒ Bi is an instance of (Ax), then Bi ⊆ Ai. Since C is monotone, we
get that C(Bi) ⊆ C(Ai), i.e., C(Ai) ⇒ C(Bi) is an instance of (AxC) because
C(Ai)⇒ C(Bi) equals C(Ai∪C(Bi))⇒ C(Bi), showing T `C C(Ai)⇒ C(Bi).

Finally, let Ai ⇒ Bi result from E ⇒ F and F∪G ⇒ H by (Cut). In
that case, Ai = E∪G and Bi = H. Using the induction hypothesis, T `C
C(E) ⇒ C(F ) and T `C C(F∪G) ⇒ C(H). Since C(F∪G) ⇒ C(H) can be
written as C(C(F )∪G) ⇒ C(H), (CutC) yields C(C(E)∪G) ⇒ C(H) which is
equal to C(E∪G) ⇒ C(H), i.e., C(Ai) ⇒ C(Bi). Since, C(Ai) ⇒ C(Bi) has
been inferred using (CutC) from C-implications which are C-provable from T ,
C(Ai)⇒ C(Bi) is also C-provable from T , i.e., T `C C(Ai)⇒ C(Bi), finishing
the proof.

Theorem 14. Let T be a set of C-implications. Then, for every C-implication
A⇒ B,

if T `C A⇒ B, then TC ` A⇒ B,

where TC is given by (13) with Th(C) defined by (15).

Proof. Let T `C A ⇒ B. Thus, there is a C-proof A1 ⇒ B1, . . . , An ⇒ Bn

of A ⇒ B from T . We show, by induction on the length of the proof, that
TC ` Ai ⇒ Bi for all i = 1, . . . , n.

Take i ≤ n and suppose that the claim holds for all j < i. If Ai ⇒ Bi ∈ T
then trivially TC ` Ai ⇒ Bi because T ⊆ TC . If Ai ⇒ Bi is an instance of
(AxC), then Ai = C(E∪Bi) for some E ⊆ Y . In this case, TC ` C(E∪Bi)⇒ Bi,
because C(E ∪ Bi) ⇒ Bi is an instance of (Ax). Indeed, this is a consequence
of extensivity of C because Bi ⊆ E ∪Bi ⊆ C(E ∪Bi). Let Ai ⇒ Bi result from
C-implications E ⇒ F and C(F∪G)⇒ H by (CutC). Then, Ai = C(E∪G) and
Bi = H. Using the induction hypothesis, TC ` E ⇒ F and TC ` C(F∪G)⇒ H.
In addition to that, TC ` F∪G ⇒ C(F∪G) because Th(C) ⊆ TC . Thus,
using (Tra), which is a derived deduction rule, see Remark 10, it follows that
TC ` F∪G⇒ H. Now, using (Cut), we get TC ` E∪G⇒ H. Using the derived
deduction rule (Wea) on E∪G ⇒ H and the fact that E ∪ G ⊆ C(E ∪ G), we
get TC ` C(E∪G)⇒ H which means TC ` Ai ⇒ Bi, finishing the proof.
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As a consequence:

Theorem 15. Let T be a set of C-implications. Then, for every C-implication
A⇒ B, we have

TC ` A⇒ B iff T `C A⇒ B,

where TC is given by (13) with Th(C) defined by (15).

Proof. Consequence of Theorem 13 and Theorem 14.

We now obtain a completeness theorem that characterizes entailment of C-
implications:

Theorem 16 (completeness). Let T be a set of C-implications. Then, for every
C-implication A⇒ B, we have

T `C A⇒ B iff T |=C A⇒ B.

Proof. Consequence of Theorem 12 and Theorem 15.

7. Examples of Constraints

In this section, we provide several examples of constraints that can be de-
fined in terms of closure operators. That is, we provide examples of particular
constraints that are covered by the general approach to constraints proposed in
this paper. For illustration, we use the data from Fig. 1 to show effect of these
constraints.

For each constraint introduced, we present a verbal description of its meaning
and a definition of the corresponding closure operator C. Since each constraint
is parameterized (i.e., selecting a particular parameter, we obtain a particular
constraint), we denote each constraint by its name and a set of parameters in
the form

“constraint-name(parameters)”.

In the following examples, we visualize the constrained concept lattices. In
view of Theorem 2, we draw BC(X,Y, I) into the diagram of B(X,Y, I) using
a special notation: “•” denote concepts of B(X,Y, I) that are not present in
BC(X,Y, I); “◦” denote C-concepts; dotted lines denote edges of the original
concept lattice that are not present in BC(X,Y, I); bold solid lines denote edges
that are are present in both B(X,Y, I) and BC(X,Y, I); bold dashed lines denote
new edges, i.e. those in BC(X,Y, I) that are not in B(X,Y, I).

Required Attributes: having(Z)
For any Z ⊆ Y , C defined by C(B) = B ∪ Z is a closure operator. C-intents
are just the intents that have all attributes from Z. Notice that the boundary
cases mentioned in Remark 3 result by taking Z = ∅ and Z = Y , respectively.
For instance, having({a, d}) determines a constraint on “products containing
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having({a, d}) min-support(5)

excluding({b}) if-excluding({〈{a}, {b, c, d}〉})

Figure 3: Constrained concept lattices I.
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compatible-with(R) model-of(T )

sharing({21, 25}) being-intent-of(K)

Figure 4: Constrained concept lattices II.
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lecithin and mono- and diglycerides”, see Fig. 3 (top-left). The C-base for C
being having({a, d}) consists of a single C-implication, namely {a, c, d} ⇒ Y .

Maximum Number of Attributes: max-attributes(n)
In this case, B is considered interesting iff B contains at most n attributes or
B = Y . Namely, the corresponding closure operator is given by C(B) = B if
|B| ≤ n and C(B) = Y otherwise.

Required Minimal Support: min-support(s)
Define C so that B is C-interesting iff B = Y or |B↓| ≥ s where s is a non-
negative integer. It is easy to see that C-interesting sets form a closure system.
|B↓| ≥ s means that the number of objects sharing all attributes from B exceeds
a user-defined parameter s called support in association rules [23]. Condition
B = Y is a technical one to ensure that C-interesting sets form a closure system.
The corresponding closure operator is defined by

C(B) =

{
B, if |B↓| ≥ s,
Y, otherwise.

Then, the set IntC(X,Y, I) of all C-interesting intents (possibly without Y )
coincides with the set of closed frequent itemsets defined by Zaki [22] in order to
get non-redundant association rules. The result for min-support(5) is depicted
in Fig. 3 (top-right). The min-support(5)-base consists of a single implication
{b, f} ⇒ {a, b, f}.

Required Minimal Weight: min-weight(m,C, w)
Constraints by minimal support can be generalized by requiring a minimal
weight w of the extent with the weight of extents given by an additional measure-
like map m. In general, such m is supposed to be a map m : Ext(X,Y, I)→W
assigning to each extent (or, more generally, to each subset ofX) A ⊆ X a weight
m(A) from a set W of weights and w is supposed to be a weight from W . In
order to compare weights, W is equipped with a transitive relation C satisfying
the following monotony condition with respect to m:

if A1 ⊆ A2 then m(A1)Cm(A2) (16)

for all A1, A2 ∈ Ext(X,Y, I). Then, B ⊆ Y is C-interesting according to this
constraint iff w Cm(B↓). Hence, the corresponding closure operator is

C(B) =

{
B, if w Cm(B↓),
Y, otherwise.

C is indeed a closure operator. Namely, C is obviously extensive and idempo-
tent. In order to check monotony of C, we verify a stronger condition, namely
that C(B2) = B2 yields C(B1) = B1 for all B1 ⊆ B2 ⊂ Y . Thus, let C(B2) = B2

and B1 ⊆ B2 ⊂ Y . Since C(B2) = B2 ⊂ Y , the definition of C gives wCm(B↓2).

Furthermore, from B1 ⊆ B2, it follows that B↓2 ⊆ B↓1 . Using (16), one gets

m(B↓2) Cm(B↓1). Transitivity of C then yields w Cm(B↓1), i.e., C(B1) = B1.
Hence, C is monotone. Putting it together, C is a closure operator.
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Remark 12. (1) Since the values of W are interpreted as weights, it is natural
to consider (16) because larger extents are expected to be heavier. Transitivity
of C corresponds to the idea that if A ⊆ X is “heavy enough to satisfy the
constraint”, then any concept with its extent heavier than A should also satisfy
the constraint.

(2) It is easy to see that min-weight(m,C, w) is a generalization of min-support(s)
in which all objects contribute to the weigh of an extent equally. Indeed,
min-support(s) can be seen as min-weight(m,C, s) for m defined by m(A) = |A|
and considering the genuine ordering ≤ of W = {0, 1, . . . } as the relation C.

(3) Let W = [0,∞) be a set of non-negative real numbers and let m be a
super-additive function, i.e., let m satisfy

m(A1 ∪A2) ≥ m(A1) +m(A2) (17)

for all sets A1, A2 ⊆ [0,∞) such that A1 ∩ A2 = ∅. Then, min-weight(m,≤, w)
is a well-defined constraint. Indeed, it suffices to check (16). If A1 ⊆ A2, using
super-additivity, we get

m(A2) = m(A1 ∪ (A2 −A1)) ≥ m(A1) +m(A2 −A1)

Sincem(A2−A1) ≥ 0, we getm(A1) ≤ m(A2). As a consequence, min-weight(m,≤, w)
is well defined.

(4) A particular case of the constraint described in (3) is a constraint by a
measure m, i.e., by a non-negative additive function m such that m(∅) = 0. In
particular, m can be a discrete probability measure m : 2X → [0, 1] which is
uniquely determined by the values of m({x}) ∈ [0, 1] for all x ∈ X. This can
be interpreted so that each object in the context is assigned its weight which is
interpreted as a probability that particular object will be observed (i.e., objects
can be seen as elementary events). Under this assumption, extents of concepts
are events and the constraint min-weight(m,≤, w) says that a concept 〈A,B〉 is
interesting iff the probability that A occurs is greater than or equal to w.

Example 4. Consider the data 〈X,Y, I〉 from Fig. 1 and constraints min-weight(m1,≤, 7)
and min-weight(m2,≤, 7) with functionsm1 andm2 defined bym1(A) =

∑
x∈A w1(x)

and m2(A) =
∑

x∈A w2(x), where

w1(x) =

{
3, if x ∈ {14, 15, 17, 18, 19},
1, otherwise,

w2(x) =

{
4, if x ∈ {5, 16, 26},
1, otherwise.

The results are depicted in Fig. 5. The min-weight(m1,≤, 7)-base consists of a
single implication {b, f} ⇒ {a, b, f}, the min-weight(m2,≤, 7)-base consists of
{e, f} ⇒ {a, e, f}.

Remark 13. (1) Notice that a constraint analogous to min-weight(m,C, w)
can be formed in terms of the intents rather than the extents. Namely, one can
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min-weight(m1,≤, 7) min-weight(m2,≤, 7)

Figure 5: Constrained concept lattices III.

consider max-weight(m,C, w) where m : Int(X,Y, I) → W satisfies (16) with
respect to a transitive relation C defined on W . Under these conditions, B ⊆ Y
is C-interesting according to this constraint iff m(B) C w, i.e., if the weight of
B is at most w. Obviously, the corresponding closure operator is

C(B) =

{
B, if m(B)C w,
Y, otherwise,

and C is a closure operator. Again, as a special case, we can consider max-weight(m,C, w)
as a constraint by prescribing probabilities for attributes, see Remark 12 (4).

(2) Obviously, max-weight(m,≤, n) with m(B) = |B| (a special case of the
constraint discussed in (1)) is a generalization of max-attributes(n).

Excluded Attributes: excluding(Z)
For any Z ⊆ Y , let B be C-interesting if and only if B does not contain any
attribute from Z (or B = Y ). That is, put

C(B) =

{
B, if B ∩ Z = ∅,
Y, otherwise.

Fig. 3 (bottom-left) contains a result of applying constraint excluding({b}) of
products not containing the citric acid. In this particular case, the excluding({b})-
base consists of four implications:

{e, f} ⇒ {a, e, f}, {c, f} ⇒ Y,

{c, e} ⇒ {a, c, e}, {c, d} ⇒ Y.

Conditionally Excluded Attributes: if-excluding(E)
The previous constraint can be generalized so that some attributes are required
to be absent provided some other attributes are present. Namely, given a set
E ⊆ 2Y × 2Y , each 〈Z1, Z2〉 ∈ E can be seen as a rule saying “if all attributes
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from Z1 are present then no attribute from Z2 is present”, with a possible
exception of set Y .

The corresponding operator is defined as follows: C(B) = B if, for each
〈Z1, Z2〉 ∈ E, either Z1 * B or Z2∩B = ∅; otherwise, C(B) = Y . C is a closure
operator. Indeed, extensivity and idempotency are immediate. Monotony: if
B1 ⊆ B2 and if Z1 ⊆ B1 and Z2 ∩ B1 6= ∅ then Z1 ⊆ B2 and Z2 ∩ B2 6= ∅, i.e.
C(B1) = Y = C(B2). The rest is easy to see. An example of if-excluding(Z) for
Z = {〈{a}, {b, c, d}〉} saying that “if a product contains lecithin then it contains
neither of citric acid, pectin, and mono- and diglycerides” and the corresponding
constrained concept lattice is shown in Fig. 3 (bottom-right). The excluding(Z)-
base is the following:

{e, f} ⇒ {a, e, f}, {c, f} ⇒ Y, {c, e} ⇒ Y,

{c, d} ⇒ Y, {b, f} ⇒ Y.

Notice that constraint excluding(Z) is the same constraint as if-excluding({〈∅, Z〉}).

Compatibility with Relation: compatible-with(R)
This constraint is defined by requiring that interesting set of attributes be com-
patible with a given binary relation. Consider a binary relation R ⊆ Y × Y .
Put

Bj =

{
B, if j = 0,
Bj−1 ∪ {y′ | there is y ∈Bj−1: 〈y, y′〉 ∈ R}, if j ≥ 1,

and define C by C(B) =
⋃∞

j=0Bj . Since Y is finite, we have C(B) = Bj0 for
some j0 ∈ N0. Thus, B is C-interesting iff it satisfies the following condition:

if y1 ∈ B and 〈y1, y2〉 ∈ R then y2 ∈ B.

For instance, if R is an equivalence relation (i.e., R is reflexive, symmetric, and
transitive), see [2],

C(B) =
⋃
{[y]R | y ∈ B},

where [y]R denotes the class ofR containing y. Fig. 4 (top-left) shows compatible-with({〈a, d〉, 〈a, e〉, 〈f, b〉}).
The corresponding base contains tree implications:

{c, e} ⇒ Y, {c, d} ⇒ Y, {b, f} ⇒ {a, b, d, e, f}.

Required Attribute Implications: model-of(T )
In this constraint, C-interesting sets are models of (i.e., compatible with) a
prescribed set T of attribute implications. Since the system of all models of T is
a closure system in Y [9], the corresponding closure operator C can be defined
by C(B) =

⋃∞
j=0Bj , where

Bj =

{
B, if j = 0,
Bj−1 ∪

⋃
{D |A⇒D ∈ T and A ⊆ Bj−1}, if j ≥ 1.
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One can show that C(B) is the least model of T containing B. Hence, B is
C-interesting iff B is a model of attribute implications from T . Notice that this
type of definition of a closure operator is, in fact, the most general one, because
each closure operator on a finite set of attributes can be completely described
by a set of attribute implications. This topic is discussed further in Section 8.

The result of model-of({{a, b}⇒{c}, {d}⇒{e, f}}) is depicted in Fig. 4 (top-
right). The base consists of four implications:

{e, f} ⇒ {a, e, f}, {c, f} ⇒ {a, b, c, f},
{c, e} ⇒ {a, c, e}, {b, f} ⇒ {a, b, c, f}.

Constraint by Representative Objects: sharing(W )
Let W ⊆ X be set of objects and let B be C-interesting iff at least one object
x ∈ W has all the attributes from B. Thus, W can be seen as a set of selected
“representative objects”. The corresponding closure operator is defined by

C(B) =

{
B, if W ∩B↓ 6= ∅,
Y, otherwise.

Described verbally, B is C-interesting iff B equals Y (technical condition) or at
least one object in W shares all attributes from B. In other words, the extents of
interesting concepts contain at least one object from W . One can easily check
that C is indeed a closure operator. The lattice of C-concepts constrained
by sharing({21, 25}) is shown in Fig. 4 (bottom-left). The sharing({21, 25})-base
consists of two implications:

{e, f} ⇒ {a, e, f}, {c, e} ⇒ {a, c, e}.

Constraints Learned from Data: being-intent-of(K)
Users often want to analyze a data set 〈X,Y, I〉 and already have a related
data set 〈X ′, Y,K〉 with the same set of attributes Y . The additional data set
〈X ′, Y,K〉 can be, e.g., data set of sample (interesting) data or a data set of
selected artificial objects constructed by an expert. Thus, I represents an input
data and K can be used as a background knowledge for I. The user might
wish to extract only concepts whose intents are intents of K, i.e., intents of
the sample or expert data set. Observe that both ↓I↑I and ↓K↑K are closure
operators in Y , i.e., ↓K↑K can be used directly as a constraint.

For example, consider the data table from Fig. 1 and an additional data
table 〈{x1, . . . , x4}, Y,K〉 containing four representative food products and their
attributes:

a b c d e f

x1 × × × ×
x2 × × × ×
x3 × × ×
x4 × × × ×
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If we let C = ↓K↑K the set BC(X,Y, I) of all C-concepts consists of all con-
cepts in B(X,Y, I) whose intents are also intents of B({x1, . . . , x4}, Y,K), see
Fig. 4 (bottom-right). The corresponding base consists of two implications:

{c, e} ⇒ Y, {b, f} ⇒ {a, b, f}.

Minimal Gap: min-gap(Φ)
The following constraint is inspired by [21]. Let Φ be a positive integer. Call a
pair 〈A,B〉 a Φ-concept of a formal context 〈X,Y, I〉 if A = B↓ and |B↓|− |(B∪
{y})↓| ≥ Φ for every y 6∈ B. In [21], the author proposes to consider Φ as a
parameter and, given Φ, to extract from the data the collection of all Φ-concepts.
Since 1-concepts are exactly formal concepts and since every Φ-concept is also
a formal concept, Φ-concepts provide an interesting generalization of formal
concepts. In addition, the larger the parameter Φ, the smaller the set of Φ-
concepts. Φ may be regarded as a prescribed minimal gap in the size of extents
of a subconcept and a superconcept. Now, Φ-concepts are just C-interesting
concepts for an appropriate closure operator C. Indeed, let C be defined as
follows. Let for B ⊆ Y ,

c(B) =
{
y ∈ Y |Φ > |B↓| − |(B ∪ {y})↓|

}
and put

Bj =

{
B, if j = 0,
c(Bj−1), if j > 0.

Finally, let
C(B) =

⋃∞
j=0Bj .

Then, C is a closure operator and 〈A,B〉 is a Φ-concept if and only if B = C(B)
and A = B↓. Hence, BC(X,Y, I) is just the set of all Φ-concepts of 〈X,Y, I〉.

8. Combination of Constraints

Constraints may naturally be combined in a conjunctive manner. That is, for
closure operators C1, . . . , Ck representing constraints we can consider a closure
operator denoted C1 & · · ·&Ck whose fixed points are common fixed points of
Cis (i = 1, . . . , k). C1 & · · ·&Ck represents a conjunctive constraint “C1 and
C2 and · · · and Ck”.

From the computational point of view, the fixed points of C1 & · · ·&Ck can
be computed in a similar way as in (9). Namely, for each B ⊆ Y and j ∈ N0,
put

Bj =

{
B, if j = 0,
C1(C2(· · · (Ck(Bj−1)) · · · )), if j ≥ 1.
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Then, one can show that (C1 & · · ·&Ck)(B) =
⋃∞

j=0Bj . Since Y is a finite
set, for each B ⊆ Y there is j0 ∈ N0 such that (C1 & · · ·&Ck)(B) = Bj0 . For
illustration, Fig. 6 (top-left) shows the result of applying a conjunctive constraint

sharing({13, 14, 16, 17, 18}) &model-of({{a, b}⇒{c}}).

In addition to conjunctive compositions, one can use conditional constraints
representing a composed constraint “if C1 then C2”. In this case, the situation
is more complicated since a conditional composition of two constrains is not a
closure-based constraint in general. In order to characterize the constraints, we
need a notion of a filter : a set F ⊆ 2Y is called a filter if (i) for each B1, B2,∈ F ,
B1 ∩B2 ∈ F ; and (ii) if B1 ∈ F and B1 ⊆ B2 then B2 ∈ F .

Theorem 17. Let C1, C2 be closure operators in Y such that fix(C1) is a filter.
Then, an operator C1⇒C2 : 2Y → 2Y defined by

(C1⇒C2)(B) =

{
C2(B), if B ∈ fix(C1),
B, otherwise

(18)

is a closure operator and the following conditions are equivalent:

( i) B ∈ fix(C1⇒C2),

( ii) if B ∈ fix(C1) then B ∈ fix(C2).

Proof. Obviously, C1⇒C2 is extensive. It is also idempotent. Indeed, for
B′ = (C1⇒C2)(B), two mutually exclusive situations may occur. First, if
B 6∈ fix(C1), we have B′ = B, in which case, (C1⇒C2)(B′) = B′ follows di-
rectly from (18). Second, if B ∈ fix(C1), we have B′ = C2(B), in which case,
B′ ∈ fix(C1) because B ⊆ B′ and fix(C1) is a filter, i.e., (C1⇒C2)(B′) =
C2(B′) = C2(C2(B)) = C2(B) = B′, showing that C1⇒C2 is idempotent.

To prove monotony, suppose thatB1 ⊆ B2. IfB1 ∈ fix(C1) then (C1⇒C2)(B1) =
C2(B1). Furthermore, the fact that fix(C1) is a filter yields B2 ∈ fix(C1) be-
cause B1 ⊆ B2. Therefore, (C1⇒C2)(B2) = C2(B2). Thus, the monotony of
C1⇒C2 follows from the monotony of C2.

Observe that B ∈ fix(C1⇒C2) iff either B 6= C1(B) or B = C1(B) and
B = C2(B). Thus, B ∈ fix(C1⇒C2) iff B ∈ fix(C1) implies B ∈ fix(C2),
finishing the proof.

Example 5. Fig. 6 (bottom-left) shows a conditional constraint

having({b})⇒ compatible-with({〈a, d〉, 〈a, e〉, 〈f, b〉}).

The difference between conjunctive and conditional constraints is further illus-
trated in Fig. 6 (right) where we have two constraints having({a}) and min-support(6)
composed by conjunction (top) and implication (bottom).

Recall that Theorem 17 has a limitation of fix(C1) being a filter. We now
look at this requirement from the point of view of closure operators which satisfy
the requirement:
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sharing&model-of having&min-support

having⇒ compatible-with having⇒min-support

Figure 6: Examples of compound constraints.
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Theorem 18. Let C be a closure operator in Y . Then the following conditions
are equivalent:

( i) fix(C) is a filter,

( ii) C is identical to having(
⋂

fix(C)).

Proof. “(i)⇒ (ii)”: Let fix(C) be a filter. We prove that fix(C) equals
fix(having(

⋂
fix(C))). According to the definition of having(

⋂
fix(C)), it suffices

to check that B = C(B) iff
⋂

fix(C) ⊆ B. We use the fact that
⋂

fix(C) is a
fixed point of C. Namely, it is the least fixed point of C. So, if B = C(B),
then

⋂
fix(C) ⊆ B because both sets are fixed points of C and

⋂
fix(C) is the

least one. Conversely, if
⋂

fix(C) ⊆ B, the facts that fix(C) is a filter and that⋂
fix(C) is a fixed point of C yield that B is a fixed point of C.
“(ii)⇒ (i)” is true because fix(having(Z)) is a filter for any subset Z ⊆ Y ,

including Z =
⋂

fix(C).

Therefore, the limitation of Theorem 17 is quite strong, the only constraints
satisfying the condition are constraints of the form having(Z). Each compound
constraint C1⇒C2 is thus, in fact, of the form having(Z)⇒C. On one hand,
this is restrictive. On the other hand, we show below that compound conditional
constraints together with conjunctive constraints are rather general in terms of
the ability to represent other constraints.

We now discuss the expressive power of constraints. In Section 7, we men-
tioned that constraints model-of(T ) given by a set T of attribute implications
are the most general ones. This follows from the fact that for each closure
operator C : 2Y → 2Y representing a constraint there exists T such that
model-of(T ) represents the same constraint as C. For instance, one can take
T = {A ⇒ C(A) |A ⊆ Y } or any set of attribute implications which is se-
mantically equivalent to T , e.g., an equivalent and non-redundant subset of T
[8, 9, 10].

In a similar way as in mathematical logic where one can consider various
systems of logical connectives (so-called adequate sets of connectives) which are
adequate to describe all n-ary Boolean functions [16] (and thus all other con-
nectives), we can consider systems of constrains which are adequate to describe
all other constraints. Therefore, we might say that the system of constraints

M = {model-of(T ) |T is a set of AIs in Y } (19)

is adequate because any closure operator C in Y belongs toM. SinceM consists
solely of instances of model-of(T ) (for all possible T ’s), constraints by models
of attribute implications are the most general ones.

There are other systems of constrains that are adequate in the previous
sense. For instance, one can consider

N = {being-intent-of(K) |K ⊆ X ′×Y, X ′ is arbitrary},
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which is also adequate. Indeed, for each closure operator C in Y , one can take
K ⊆ X ′ × Y where X ′ = fix(C) and

K = {〈B, y〉 ∈ X ′ × Y |B ∈ X ′ and y ∈ B}.

The rest is obvious because fix(C) equals fix(↓K↑K ).
One can form an adequate system of constraints using constraint having(B)

by means of combination via implications and conjunctions as follows:

Theorem 19. Let Y be a set of attributes and let

H = {having(A)⇒ having(B) |A,B ⊆ Y },
I = {C1 & · · ·&Ck |C1, . . . , Ck ∈ H and k ≥ 1}.

Then I is an adequate system of constraints.

Proof. Note that having(A)⇒ having(B) is as well-defined constraint since fix(having(A))
is a filter. Furthermore, each constraint having(A)⇒ having(B) is equivalent to
model-of({A⇒ B}). Indeed, for each A,B ⊆ Y , a set M ⊆ Y is a fixed point of
having(A)⇒ having(B) iff M ∈ fix(having(A)) implies M ∈ fix(having(B)), see
Theorem 17. Since M ∈ fix(having(A)) means A ⊆ M and analogously for B,
we get that M is a fixed point of having(A)⇒ having(B) iff M |= A ⇒ B, i.e.,
M is a fixed point of model-of({A⇒ B}).

The proof is finished as follows: For an arbitrary closure operator C, there ex-
ists T such that fix(C) equals fix(model-of(T )) becauseM defined by (19) is ad-
equate. Let T = {Ai ⇒ Bi | i = 1, . . . , k} and let Ci be having(Ai)⇒ having(Bi)
for i = 1, . . . , k. Due to the previous observation, C1 & · · ·&Ck has the same
fixed points as model-of(T ), and thus the same fixed points as C, proving that
I is adequate.

9. Conclusions

We proposed a method that allows a user to impose constraints in formal
concept analysis. The rationale of the method is to let the user specify addi-
tional knowledge, his background knowledge, he may have about the input data
and extract from the data only the patterns that are compatible with the addi-
tional knowledge. The method proposed is suitable for dealing with background
knowledge that can be represented by a closure operator in that being compat-
ible with a background knowledge means being a fixed point of a given closure
operator. The method subsumes a broad class of constraints. We provided foun-
dations for imposing constraints on fomal concepts and attribute implications,
algorithms for computing a constrained concept lattice and a base of constrained
attribute implications, several particular constraints, and illustrative examples.
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