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Abstract

An algebra with fuzzy equality is a set with operations on it that is equipped with similarity ≈, i.e. a fuzzy
equivalence relation, such that each operation f is compatible with ≈. Described verbally, compatibility says that
each f yields similar results if applied to pairwise similar arguments. On the one hand, algebras with fuzzy equalities
are structures for the equational fragment of fuzzy logic and have been studied from this point of view before. On
the other hand, they are the formal counterpart to the intuitive idea of having functions that are not allowed to
map similar objects to dissimilar ones. The present paper aims at developing fundamental points of algebras with
fuzzy equalities: we introduce the notion of an algebra with fuzzy equality, present natural examples, compare the
notion with other approaches, and introduce and develop basic structural notions (subalgebras, morphisms, products,
direct unions). In a follow-up paper [Vychodil, Direct limits and reduced products of algebras with fuzzy equalities,
submitted for publication], we deal with advanced topics in algebras with fuzzy equalities (direct limits, reduced
products).
© 2005 Elsevier B.V. All rights reserved.
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1. The concept of algebra with fuzzy equality

Functions operating on a set so that close (similar) elements are mapped to close elements have
traditionally been the subject of study of calculus and functional analysis. The concept of closeness has
been almost exclusively formalized using the notion of a metric. On the other hand, the very essence of
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E-mail addresses: radim.belohlavek@upol.cz (R. Bělohlávek), vilem.vychodil@upol.cz (V. Vychodil).

0165-0114/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.fss.2005.05.044

http://www.elsevier.com/locate/fss
mailto:radim.belohlavek@upol.cz
mailto:vilem.vychodil@upol.cz
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the problem calls for a logical treatment. Namely, formulated verbally, the condition of mapping similar
elements to similar ones reads “if arguments of a function are pairwise similar then the results are similar
as well”. From a logical point of view, the situation is described by a logical formula that is traditionally
being called the compatibility axiom (or congruence axiom). Therefore, congruence relations which are
the relations satisfying the compatibility axioms provide us with a logico-algebraic means for handling
the above problem. The appropriateness of such an approach is, however, seriously questionable. Namely,
congruences are bivalent relations in that every two elements either are congruent or not. Contrary to
that, closeness (or similarity) is a graded notion—any two elements are close to some degree. With the
emergence of fuzzy logic, the ability of logic to treat the problem of functions preserving in a natural way
a given similarity on the universe set changed. Namely, instead of 0 and 1 only, fuzzy logic allows one to
have a whole scale of truth degrees and, consequently, one can model graded similarity in fuzzy logic. The
above mentioned compatibility axiom, compared to its crisp (two-valued) interpretation, becomes much
less trivial in fuzzy logic since its meaning depends on the choice of a conjunction operation (usually a
t-norm) and has a numerical (if truth degrees are numbers) significance.

In our previous papers, we used algebras with fuzzy equalities as structures for the equational fragment
of first-order fuzzy logic. In [4], we developed a syntactico-semantically complete logic for reasoning
about fuzzy equalities and in [6], we provided an algebraic characterization of the class of all models of a
given fuzzy set of identities. The main aim of this paper is to look closer at the very notion of an algebra
with fuzzy equality.

Our motivation is twofold. First, as shown in [4,6], the notion of an algebra with fuzzy equality is
a nontrivial and thus interesting one from the purely logico-mathematical point of view. Second, as
mentioned above and as we will see in the beginning of Section 3.1, the concept of an algebra with
fuzzy equality is the immediate semantic structure enabling us to study the problem of functions mapping
similar elements to similar elements from the very natural point of view. In addition to that, our paper
represents another attempt to application of fuzzy approach to universal algebra. Fuzzy approach to
various universal algebraic concepts started with Rosenfeld’s fuzzy groups [27]. Rosenfeld’s approach
has been applied to several algebraic structures and concepts, see e.g. [12], and also generalized to arbitrary
universal algebras, see Di Nola [14]. We comment on fuzzy algebras in Remark 3.2(2). Another attempt
started by [24] and was further developed in [28] where one can find further references. Our approach is
close to this attempt. However, there are important differences which we comment on later in the end of
Section 3.2.

Furthermore, our approach may be considered an alternative to so-called metric algebras [31,32], the
aim of which is also to provide a formal framework for treating functions mapping similar elements to
similar ones. However, contrary to our approach, metric algebras use the notion of a metric which leads
to conditions which are intuitively not very clear (we comment on this in Remark 3.2(1)).

Our paper is organized as follows. Section 2 introduces preliminaries, Section 3 contains the results.
Section 3.1 introduces the notion of an algebra with fuzzy equality and presents motivating examples.
Section 3.2 deals with subalgebras, congruences, morphisms, and related concepts. Direct and subdirect
products, and subdirect representation of algebras with fuzzy equalities are dealt with in Section 3.3.
Section 3.4 delas with direct unions. Section 3.5 studies operators on classes of algebras with fuzzy
equalities, free algebras, and varieties.

The paper is an extension of our short conference paper [7]. Compared to [7], the present paper contains
full proofs, more examples, more detailed remarks, and several further results. Since algebras with fuzzy
equalities are special first-order fuzzy structures, we can sometimes use the general notions and results
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developed for general fuzzy structures. If this is the case, we omit proofs and refer to [5]. However,
we introduce the notions and formulate results in their setting for algebras with fuzzy equalities since
they are simpler than in their form for general fuzzy structures (this pertains particularly to morphisms,
congruences, and direct products).

2. Preliminaries

We pick complete residuated lattices as the structures of truth values. Complete residuated lattices,
being introduced in the 1930s in ring theory, were introduced into the context of fuzzy logic by Goguen
[15,16]. Fundamental contribution to formal fuzzy logic using residuated lattices as the structures of truth
values is due to Pavelka [26]. Later on, various logical calculi were investigated using residuated lattices
or particular types of residuated lattices. A thorough information about the role of residuated lattices in
fuzzy logic can be obtained from monographs [17,18,25].

In the following, L denotes an arbitrary complete residuated lattice. Recall that a (complete) residuated
lattice is an algebra L = 〈L, ∧, ∨, ⊗, →, 0, 1〉 such that 〈L, ∧, ∨, 0, 1〉 is a (complete) lattice with the
least element 0 and the greatest element 1, 〈L, ⊗, 1〉 is a commutative monoid, and ⊗, → form an adjoint
pair, i.e. a⊗b�c iff a�b → c is valid for each a, b, c ∈ L. In what follows, L always refers to a complete
residuated lattice. All properties of complete residuated lattices used in the sequel are well known and
can be found in any of the above mentioned monographs. Note that particular types of residuated lattices
(distinguishable by identities) include Boolean algebras, Heyting algebras, algebras of Girard’s linear
logic, MV-algebras, Gödel algebras, product algebras, and more generally, BL-algebras (see [18,21]).

An L-set (or fuzzy set with truth degrees in L) in a universe set U is any mapping A : U → L, A(u) ∈ L

being interpreted as the truth value of “u belongs to A”. An L-set A in U is said to be finite, if the subset
{u | A(u) > 0} ⊆ U is finite. Every finite L-set A in U can be denoted by

A = {A(u1)/u1, . . . , A(un)/un} ,

where {u1, . . . , un} = {u | A(u) > 0}. Analogously, an n-ary L-relation (or fuzzy relation with truth
degrees in L) on a universe set U is an L-set in the universe set Un, e.g. a binary relation R on U is a
mapping R : U×U → L. For a binary L-relation R, an L-relation R−1 is defined by R−1(u, v) = R(v, u).
For binary L-relations R1, R2 on U , the ◦-composition of R1 and R2 is a binary L-relation on U defined
by

(R1 ◦ R2)(u, v) = ∨
w∈U

R1(u, w) ⊗ R2(w, v).

Recall that an L-equivalence (fuzzy equivalence) relation E on a set U is a mapping E: U × U → L

satisfying

(i) E(u, u) = 1 (reflexivity),
(ii) E(u, v) = E(v, u) (symmetry),

(iii) E(u, v) ⊗ E(v, w)�E(u, w) (transitivity)

for every u, v, w ∈ U . An L-equivalence on U where E(u, v) = 1 implies u = v will be called an
L-equality. A mapping f : Un → U , n ∈ N, is said to be compatible with a binary L-relation R on U
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if for arbitrary u1, v1, . . . , un, vn ∈ U we have

R(u1, v1) ⊗ · · · ⊗ R(un, vn)�R(f (u1, . . . , un), f (v1, . . . , vn)).

Compatibility has a natural verbal description. It says “if u1 and v1 are R-related and · · · and un and
vn are R-related then f (u1, . . . , un) and f (v1, . . . , vn) are R-related”. For further information on L-
equivalences, compatibility of L-relations, and their role in fuzzy reasoning see e.g. [22,21,18,5].

For L-sets A and B in U we define

(A ≈ B) = ∧
u∈U

(A(u) ↔ B(u)) (degree of equality of A and B)

and

S(A, B) = ∧
u∈U

(A(u) → B(u)) (degree of subsethood of A in B).

Note, that a ↔ b is an abbreviation for (a → b) ∧ (b → a). Clearly, (A ≈ B) = S(A, B) ∧ S(B, A).
Furthermore, we write A ⊆ B (A is a subset of B) if S(A, B) = 1, i.e. for each u ∈ U , A(u)�B(u).

An L-set A in U is called crisp if A(u) ∈ {0, 1} for each u ∈ U . Crisp L-sets in U correspond in an
obvious way to ordinary subsets of U (crisp L-sets are the characteristic functions of ordinary subsets).
Therefore, we will sometimes identify crisp L-sets with their corresponding ordinary subsets.

3. Algebras with fuzzy equalities

3.1. Definition and examples

A type is a triplet 〈≈, F, �〉 where ≈ /∈ F and � is a mapping � : F ∪ {≈} → N0 with �(≈) = 2.
Each f ∈ F is called a function symbol, ≈ is a relation symbol called a symbol for fuzzy equality. The
mapping � assigns the arity �(f ) to every function symbol f ∈ F . The symbol ≈ stands always for a
binary relation symbol. If there is no danger of confusion, a type will be denoted simply by F.

Definition 3.1. An algebra with L-equality of type 〈≈, F, �〉 is a triplet M = 〈
M, ≈M, F M

〉
such that〈

M, F M
〉

is an algebra of type 〈F, �〉 and ≈M is an L-equality on M such that each f M ∈ F M is
compatible with ≈M. Algebra

〈
M, F M

〉
denoted by ske(M) is called a skeleton 1 of M .

That is, F M = {f M : M�(f ) → M | f ∈ F }, i.e., F M contains a �(f )-ary function f M on M for each
f ∈ F . Recall that the compatibility condition says that

(a1 ≈M b1) ⊗ · · · ⊗ (an ≈M bn) � f M(a1, . . . , an) ≈M f M(b1, . . . , bn)

for each n-ary f ∈ F and every a1, b1, . . . , an, bn ∈ M . An algebra with L-equality will also be simply
called an L-algebra. If L is obvious, we say also an algebra with fuzzy equality. Following common usage,
we sometimes identify an L-algebra M with its support set M. Moreover, we write

〈
M, ≈M, f M

1 , . . . , f M
n

〉
instead of

〈
M, ≈M, {f M

1 , . . . , f M
n }〉 and sometimes also omit the superscript M from ≈M, F M, and f M.

1 The term skeleton comes from [19].
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In the following, we often call the degree (a ≈M b) the degree of similarity between a and b which due
to the intended interpretation of ≈M.

The concept of an L-algebra is by no means artificial. First, it is obvious that the compatibility axiom
expresses a natural constraint on the operations, i.e. mapping similar to similar. If one takes, e.g., L =
[0, 1], this constraint has a numerical character. Moreover, this constraint is expressed in a simple fragment
of first-order fuzzy logic (“if a1 and b1 are similar and · · · and an and bn are similar then f M(a1, . . . , an)

and f M(b1, . . . , bn) are similar” translates to a first-order formula). Therefore, unlike ordinary algebras,
L-algebras M have two nontrivial parts. First, the “functional part”, which is an ordinary algebra

〈
M, F M

〉
.

Second, the “relational part” which is a set equipped with a fuzzy equality,
〈
M, ≈M

〉
.

Remark 3.1. (1) For L =2 (two-element Boolean algebra), the only L-equality ≈ on U is the ordinary
identity relation, i.e. (u ≈ v) = 1 for u = v, (u ≈ v) = 0 for u �= v. It is therefore easy to see
that 2-algebras coincide with ordinary algebras [10,11]. This is the first way the notion of an L-algebra
generalizes the notion of an (ordinary) algebra.

(2) Taking this point of view, one may consider the structure L of truth values as a parameter and
think of the theory of L-algebras as a parametrized theory. Setting L = 2, we get the theory of ordinary
universal algebras. As we will see in the following, several results are valid for each L (each complete
residuated lattice). However, there are results which are true only for L’s satisfying special properties and
so, additional properties of L are important.

(3) Obviously, taking arbitrary L and a crisp L-equality ≈M, L-algebras M = 〈
M, ≈M, F M

〉
can be

identified with ordinary algebras. This is the second way the notion of an L-algebra generalizes the notion
of an algebra.

The following are natural examples of L-algebras.

Example 3.1. Let U be a set equipped with an L-equality≈U . LetM = S(U)be the set of all permutations
of U compatible with ≈U , i.e. the set of all bijective mappings � on U for which we have (u ≈U v)�
(�(u) ≈U �(v)). The triplet M = 〈

M, ≈M, ◦M
〉
, where

� ≈M � = ∧
u,v

(
(u ≈U v) → (�(u) ≈U �(v))

)
(1)

and ◦M denotes the composition of permutations, is an L-algebra. Note that � ≈M � is the degree to which
it is true that similar elements are mapped to similar ones. Moreover, the restriction of M to bijective
mappings satisfying the property (u ≈U v) = (�(u) ≈U �(v)) is a group with fuzzy equality. To prove
this assertion, we first show that

� ≈M � = ∧
u

(
�(u) ≈U �(u)

)
. (2)

On the one hand, we clearly have

� ≈M � = ∧
u,v

(
(u ≈U v) → (�(u) ≈U �(v))

)
�

∧
u

(
(u ≈U u) → (�(u) ≈U �(u))

)
= ∧

u

(
1 → (�(u) ≈U �(u))

)
= ∧

u

(
�(u) ≈U �(u)

)
.
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On the other hand,∧
u

(
�(u) ≈U �(u)

)
�� ≈M �

holds true iff for each u, v ∈ U we have∧
u

(
�(u) ≈U �(u)

)
�

(
(u ≈U v) → (�(u) ≈U �(v))

)
,

i.e. iff(
u ≈U v

)
⊗ ∧

u

(
�(u) ≈U �(u)

)
��(u) ≈U �(v)

which is true. Indeed, compatibility of � yields(
u ≈U v

)
⊗ ∧

u

(
�(u) ≈U �(u)

)
�

(
�(u) ≈U �(v)

)
⊗

(
�(u) ≈U �(u)

)
��(u) ≈U �(v).

It is now routine to check that ≈M is an L-equality on M: reflexivity and symmetry follow directly from
definition, and for transitivity we have on account of (2) for each u ∈ U that(

� ≈M �
)

⊗
(
� ≈M �

)
�

(
�(u) ≈U �(u)

)
⊗

(
�(u) ≈U �(u)

)
��(u) ≈U �(u),

that is(
� ≈M �

)
⊗

(
� ≈M �

)
�

∧
u

(
�(u) ≈U �(u)

)
= � ≈M �,

proving transitivity of ≈M. If (� ≈M �) = 1 then, using (2), (�(u) ≈U �(u)) = 1 for each u ∈ U . Since
≈U is an L-equality, we have that �(u) = �(u) for each u ∈ U , whence � = �. Therefore, ≈M is an
L-equality on S(U). To verify that ◦M is compatible with ≈M take any �, �′, �, �′ ∈ M . We have(

� ≈M �′) ⊗
(
� ≈M �′) �

(
� ◦ � ≈M �′ ◦ �′)

iff for each u ∈ U we have(
� ≈M �′) ⊗

(
� ≈M �′) �

(
�(�(u)) ≈U �′(�′(u))

)
which is true:(

� ≈M �′) ⊗
(
� ≈M �′) �

(
�(u) ≈U �′(u)

)
⊗

(
�(�′(u)) ≈U �′(�′(u))

)
�

(
�(�(u)) ≈U �(�′(u))

)
⊗

(
�(�′(u)) ≈U �′(�′(u))

)
� �(�(u)) ≈U �′(�′(u)).

To sum up, M = 〈
M, ≈M, ◦M

〉
is an algebra with fuzzy equality.

Example 3.2. Let C : LU → LU be an L-closure operator on X. Furthermore, let SC = {A ∈
LX | C(A) = A} be the system of all closed fuzzy sets of C, see [2]. Then SC is a complete lattice
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with respect to ⊆ where infima
∧

coincide with intersections and for suprema
∨

we have
∨

i∈I Ai =
C(

⋃
i∈I Ai). It is easy to verify that

∧
i∈I

(Ai ≈ Bi)�
(⋂

i∈I

Ai ≈ ⋂
i∈I

Bi

)
=

(∧
i∈I

Ai ≈ ∧
i∈I

Bi

)
, (3)

∧
i∈I

(Ai ≈ Bi)�
(⋃

i∈I

Ai ≈ ⋃
i∈I

Bi

)
. (4)

Hence, using (4) it follows that∧
i∈I

(Ai ≈ Bi) �
(⋃

i∈I

Ai ≈ ⋃
i∈I

Bi

)
= S

(⋃
i∈I

Ai,
⋃
i∈I

Bi

)
∧ S

(⋃
i∈I

Bi,
⋃
i∈I

Ai

)

� S

(
C

(⋃
i∈I

Ai

)
, C

(⋃
i∈I

Bi

))
∧ S

(
C

(⋃
i∈I

Bi

)
, C

(⋃
i∈I

Ai

))

=
(

C

(⋃
i∈I

Ai

)
≈ C

(⋃
i∈I

Bi

))
=

(∨
i∈I

Ai ≈ ∨
i∈I

Bi

)
.

For I = {1, 2} we can use (3) and the previous inequality to get

(A1 ≈ B1) ⊗ (A2 ≈ B2) �(A1 ∧ A2) ≈ (B1 ∧ B2),

(A1 ≈ B1) ⊗ (A2 ≈ B2) �(A1 ∨ A2) ≈ (B1 ∨ B2).

Therefore, 〈SC, ≈, ∧, ∨〉 is an L-algebra. Particularly, since the identity mapping is an L-closure operator
C (sending A to A) for which SC = LX, we get that

〈
LX, ≈, ∩, ∪〉

is an L-algebra, i.e. a lattice with fuzzy
equality.

Example 3.3. Let X and Y be a set of objects and a set of attributes, respectively, and I be an L-relation
between X and Y such that I (x, y) is the degree to which the object x has the attribute y. Furthermore,
let us define for all L-sets A ∈ LX, B ∈ LY the L-sets A↑ ∈ LY , B↓ ∈ LX by

A↑(y) = ∧
x∈X

(A(x) → I (x, y)) ,

B↓(x) = ∧
y∈Y

(B(y) → I (x, y)) .

Now, put B(X, Y, I ) = {〈A, B〉 ∈ LX × LY | A↑ = B, B↓ = A} and define for 〈A1, B1〉 , 〈A2, B2〉 ∈
B(X, Y, I ) a binary relation � by 〈A1, B1〉 � 〈A2, B2〉 iff A1 ⊆ A2 (or, iff B2 ⊆ B1; both ways are
equivalent). The structure 〈B(X, Y, I ), �〉 is called a fuzzy concept lattice induced by X, Y, and I. The
elements of 〈A, B〉 of B(X, Y, I ) are naturally interpreted as concepts hidden in (the input data represented
by) I. Namely, A↑ = B and B↓ = A says that B is the collection of all attributes shared by all objects from
A, and A is the collection of all objects sharing all attributes from B. Note that these conditions represent
exactly the definition of a concept as developed in the so-called Port-Royal logic; A and B are called the
extent and the intent of the concept 〈A, B〉, respectively, and represent the collection of all objects and all
attributes covered by the particular concept. Furthermore, � models the natural subconcept–superconcept
hierarchy—concept 〈A1, B1〉 is a subconcept of 〈A2, B2〉 iff each object from A1 belongs to A2 (dually
for attributes).
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Put Ext(X, Y, I ) = {A ∈ LX | 〈A, B〉 ∈ B(X, Y, I ) for some B ∈ LY }, i.e. Ext(X, Y, I ) consists of
all extents of the concepts from B(X, Y, I ). Now, it can be shown (see [2,3]) that for a fuzzy concept
lattice B(X, Y, I ), Ext(X, Y, I ) is an L-closure system in X and that for each L-closure system S in X
there are some X, Y, and I, such that S = Ext(X, Y, I ). This means that 〈B(X, Y, I ), ≈, ∧, ∨〉, where
(〈A1, B1〉 ≈ 〈A2, B2〉) = (A1 ≈ A2) and ∧ and ∨ are the infimum and supremum induced by the
corresponding operations in Ext(X, Y, I ), is an L-algebra (see Example 3.2).

Remark 3.2. (1) The idea of extending universal algebra by adding further constrains is not new. Par-
ticularly, in [32] (see also [31]), the author investigates the so-called metric algebras which are basically
algebras with a metric on the support set. It is interesting to note that the author introduces the notion of
an atomic inequality which is an expression of the form “�(p, q)�a” where � denotes a metric, p, q are
terms, and a ∈ [0, ∞]. An atomic inequality is said to be ε-true in a given metric algebra if �(p, q)�a+ε

in the metric algebra. The analogy to the fuzzy logic approach is obvious. Furthermore, an important no-
tion of [32] is that of an equicontinuity of operations of metric algebras: An operation f is equicontinuous
if the implication

�(x1, y1)�0 ∧ · · · ∧ �(xn, yn)�0 ⇒ �(f (x1, . . . , xn), f (y1, . . . , yn))�0

is satisfied equicontinuously. This means that for each ε > 0 there is a � > 0 such that for any interpre-
tation we have that if each �(ai, bi)�0 is �-true then �(f (a1, . . . , an), f (b1, . . . , bn))�0 is ε-true. Let us
note that even if the idea behind equicontinuity of operations in metric algebras is similar to that of com-
patibility (with a given L-equality), the theory of metric algebras deals with a completely different kind
of restrictions on operations. In our opinion, the explicit formulation of the requirement in the framework
of fuzzy logic (L-algebras) is more natural.

(2) Let us comment more on so-called fuzzy (sub)algebras, see e.g. [9,12,14,23,29,33]. Recall that a
fuzzy (sub)algebra in an ordinary algebra M = 〈

M, F M
〉

is an L-set A in M such that for each n-ary
operation f M ∈ F M we have

A(a1) ⊗ · · · ⊗ A(an)�A
(
f M(a1, . . . , an)

)
for every a1, . . . , an ∈ M . That is, the notion of a fuzzy subalgebra results by fuzzification of the concept
of a subalgebra and there is no fuzzy equality on the universe M considered. On the other hand, as we
will see, a subalgebra of an algebra with fuzzy equality is again an algebra with fuzzy equality (i.e. with
a crisp set as a universe). In a sense, the difference between the theory of fuzzy (sub)algebras and the
presented theory of algebras with fuzzy equalities lies in what becomes fuzzy: in fuzzy (sub)algebras,
it is the universe set, while in algebras with fuzzy equalities, it is the equality on the universe. As we
will see, we are able to develop most parts of universal algebra in the setting of algebras with fuzzy
equalities. On the other hand, we are not aware of a development of these parts in the setting of fuzzy
(sub)algebras. Nevertheless, fuzzy (sub)algebras and algebras with fuzzy equalities are complementary
and it might thus be interesting to look at the combination of both of these approaches, i.e. to consider
fuzzy (sub)algebras A in an algebra M with fuzzy equality ≈M, possibly such that A is compatible with
≈M, i.e. A(a) ⊗ (a ≈M b)�A(b).

(3) In a series of papers, see e.g. [13], Demirci considers sets equipped with fuzzy equivalence/equality
relations and compatible fuzzy functions. Fuzzy functions are particular fuzzy relations that need to
satisfy certain natural properties which make them behave like functions. Ordinary functions can be seen
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as particular fuzzy functions. Our approach is thus a particular approach of Demirci’s. However, Demirci
considers only binary fuzzy functions. Moreover, he does not consider general structural algebraic notions
which are developed in our paper. A development of universal algebraic results in the setting of Demirci
might be an interesting problem. Note, however, that with fuzzy functions, things get technically more
complicated. For instance, it is not immediately obvious how terms and terms functions should look
like in the setting of fuzzy functions. More generally, structures with fuzzy functions should possibly be
studied in a framework of a suitable predicate fuzzy logic. This would provide a unifying framework and
make it possible to use general results of predicate fuzzy logic. Also, this would perhaps suggest a way
to develop logical calculi for reasoning about fuzzy identities in Demirci’s setting analogous the calculi
developed in our setting (see [4,8]).

3.2. Subalgebras, congruences and morphisms

The goal of this section is to investigate subalgebras, morphisms, congruences, and factor algebras,
i.e. the very fundamental algebraic constructions. All principal properties of such constructions, being
developed in universal algebra, will generalize for every complete residuated lattice L as the structure
of truth values. Note that subalgebras, congruences, and morphisms of L-algebras are particular cases
of substructures, congruences, and morphisms of general fuzzy structures as developed in [5]. We will
therefore use results of [5] when possible. Note however, that due to a special nature of L-algebras, several
results for L-algebras are new and have no counterparts for general fuzzy structures.

Remark 3.3. Before delving into the basic structural notions, an important remark is in order. As men-
tioned above, each algebra M = 〈

M, ≈M, F M
〉
can be thought of as having two parts, a skeleton ske(M)

(functional part) and a set with L-equality
〈
M, ≈M

〉
(relational part) which are connected via the compat-

ibility condition. Traditional universal algebra deals with the functional part only. However, it is obvious
that when developing structural properties of L-algebras, we will face situations where (1) only the func-
tional part is important, (2) only the relational part is important, (3) both the functional and the relational
parts are important. For (1), we can obviously use well-known results established in universal algebra. For
example, we can omit the parts of proofs dealing only with the functional part. We apply this argument
in detail in the proof of Theorem 3.4 and, subsequently, in short by saying that the particular result in
question “follows from the ordinary case”.

Definition 3.2. Let M = 〈
M, ≈M, F M

〉
be an L-algebra of type F. An L-algebra N = 〈

N, ≈N, F N
〉

is
called a subalgebra of M, if ∅ �= N ⊆ M , every function f N ∈ F N is a restriction of f M to N, and ≈N is
a restriction of ≈M to N. A subuniverse of M is any subset N ⊆ M which is closed under all operations
of M.

That is, N ⊆ M is a subuniverse of M iff for each n-ary f M ∈ F M and every a1, . . . , an ∈ N we
have f M(a1, . . . , an) ∈ N . The collection of all subuniverses of M will be denoted by Sub(M). For
convenience, we write N ∈ Sub(M) if N is a subalgebra of M. It is almost immediate that there is a
bijective correspondence between subalgebras and nonempty subuniverses of M. Namely, a support set
of a subalgebra of M is a nonempty subuniverse and, conversely, a nonempty subuniverse of M equipped
with the restrictions of f M’s and the restriction of ≈M is a subalgebra of M.
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It follows from the ordinary case that Sub(M) is closed under arbitrary intersections and, therefore, it
is a closure system under the subsethood relation ⊆. We denote the corresponding closure operator by
[ ]M, i.e. for N ⊆ M , [N ]M is the least subuniverse of M containing N and we have

[N ]M = ⋂{
N ′ | N ′ ∈Sub(M) and N ⊆ N ′} . (5)

If [N ]M is nonempty then the corresponding subalgebra of M is called the subalgebra of M generated
by N. If N is finite then the corresponding subalgebra of M is said to be finitely generated.

In ordinary case, congruences correspond to abstract views on algebraic systems: one can put the
congruent (i.e. equivalent from a certain abstract point of view) elements together and form a factor algebra
which provides a view on the original algebra under which congruent elements are indistinguishable. In
fuzzy setting, it is natural to consider graded indistinguishability of elements. This leads to the notion of
a congruence on an L-algebra.

Definition 3.3. Let M be an L-algebra of type F. An L-relation � on M is said to be a congruence on M
if � satisfies the following conditions,

(i) � is an L-equivalence relation on M,
(ii) (a ≈M b)��(a, b) for arbitrary a, b ∈ M (shortly ≈M ⊆ �),

(iii) all functions f M ∈ F M are compatible with �.

Remark 3.4. (1) In what follows, the (ordinary) sets of all L-equivalences and congruences on an L-
algebra M are denoted by EqL(M) and ConL(M). Evidently, ConL(M) ⊆ EqL(M).

(2) It is immediate that congruences on 2-algebras correspond to ordinary congruences on algebras
since condition (ii) of Definition 3.3 is trivially satisfied by ordinary congruence relations, generalizing
thus the well-known concept of a congruence.

(3) Note that condition (ii) may be equivalently replaced by

�(a, b) ⊗ (a ≈M a′) ⊗ (b ≈M b′)��(a′, b′), (6)

which is supposed to hold for all a, a′, b, b′ ∈ M . Indeed, from (ii) we get �(a, b) ⊗ (a ≈M a′) ⊗
(b ≈M b′)��(a, b) ⊗ �(a, a′) ⊗ �(b, b′)��(a′, b′), by transitivity and symmetry of �. Conversely, (6)
and reflexivity of � and ≈M yield (a ≈M b) = �(a, a) ⊗ (a ≈M a) ⊗ (a ≈M b)��(a, b).

Remark 3.5. Let L be a complete residuated lattice with ⊗ being ∧ (i.e. L is a complete Heyting algebra).
If L = [0, 1], this means that ⊗ is the minimum which is probably the most common choice of “fuzzy
conjunction”. It is straightforward to verify that a binary L-relation on M is an L-equality if and only if
each a-cut a�, a ∈ L is an ordinary equivalence relation and 1� is the identity relation.

Furthermore, for an L-algebra M, � satisfies the compatibility condition w.r.t. the operations of M if and
only if each a� satisfies the compatibility condition w.r.t. operations of the corresponding ordinary algebra〈
M, F M

〉
. Indeed, for 〈a1, b1〉 ∈ a�, . . . , 〈an, bn〉 ∈ a� we have a��(ai, bi) for every i = 1, . . . , n, thus

a��(a1, b1) ⊗ · · · ⊗ �(an, bn)��
(
f M(a1, . . . , an), f

M(b1, . . . , bn)
)
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by the assumption ⊗ = ∧, i.e.
〈
f M(a1, . . . , an), f

M(b1, . . . , bn)
〉 ∈ a�. Conversely, put a = �(a1, b1) ⊗

· · · ⊗ �(an, bn). Then we have 〈ai, bi〉 ∈ a� for every i = 1, . . . , n, and so 〈f M(a1, . . . , an),

f M(b1, . . . , bn)〉 ∈ a�. Hence, it follows that a��
(
f M(a1, . . . , an), f

M(b1, . . . , bn)
)
.

Therefore, for a congruence � on an L-algebra M, S� = {a� | a ∈ L} is a system of binary relations on
M indexed by L which satisfies: (i) a�b implies b� ⊆ a�; (ii) for each a, b ∈ M there exists a greatest
a ∈ L with 〈a, b〉 ∈ a�; (iii) for each a ∈ L, a� is a congruence on

〈
M, F M

〉
containing a≈M. One may

verify that conversely, if S = {�a | a ∈ L} is a system of binary relations on M satisfying (i)–(iii) then
putting �S(a, b) = ∨{a | 〈a, b〉 ∈ �a}, �S is a congruence on M. Furthermore, � = �S� and S = S�S .

This way of looking at congruences of L-algebras (but only when ⊗ is ∧!) gives the following inter-
pretation: An ordinary congruence on an ordinary algebra may be thought of as representing an abstract
view of the algebra—a view under which one does not distinguish congruent elements. A congruence �
on an L-algebra may be thought of as a hierarchic system (the hierarchy supplied by L) of abstract views
a�. Since each a� is a congruence on

〈
M, F M

〉
, one may form the ordinary factor algebra

〈
M, F M

〉
/a�.

Clearly, the smaller a, the bigger a�, and so the coarser the factorization.
This fact has nontrivial applications. In [1], a method of factorization of concept lattices is presented.

As shown in Example 3.3, a fuzzy concept lattice B(X, Y, I ) can be naturally turned into an L-algebra
〈B(X, Y, I ), ≈, ∧, ∨〉. A fuzzy concept lattice B(X, Y, I ) represents a set of natural clusters (concepts)
contained in the input data 〈X, Y, I 〉. If there are too many clusters in B(X, Y, I ), the fuzzy concept lattice
is hardly graspable by human mind. If ⊗ is ∧, one can form the factor lattice B(X, Y, I )/a≈ for any a.
The factor lattice B(X, Y, I )/a≈ may be thought of as a simplified version of B(X, Y, I ). The choice of
a controls the coarseness of the factorization. The point of [1] is that, in fact, one may form the factor
lattice even for general ⊗ (not necessarily ∧) in which case a≈ is a tolerance relation (i.e., reflexive and
symmetric) which is compatible with the lattice structure of B(X, Y, I ). Since (complete) lattices can be
factorized even by compatible tolerance relations, a method for general ⊗ is available, see [1].

By definition, ConL(M) ⊆ EqL(M). The following theorem shows that ConL(M) inherits even the
complete lattice structure of EqL(M).

Theorem 3.1. 〈ConL(M), ⊆〉 is a complete sublattice of 〈EqL(M), ⊆〉.
Proof. Take an index set I and a family {�i | �i ∈ ConL(M), i ∈ I } of congruences. Obviously,

∧
i∈I �i ∈

EqL(M) and (a ≈M b)�
(∧

i∈I �i

)
(a, b). For every f M ∈ F M and arbitrary a1, b1, . . . , an, bn ∈ M ,

we have,

n⊗
j=1

(∧
i∈I

�i

(
aj , bj

))
�

∧
i∈I

(
n⊗

j=1
�i

(
aj , bj

))
�

∧
i∈I

�i

(
f M(a1, . . . , an), f

M (b1, . . . , bn)
)
,

thus every f M ∈ F M is compatible with
∧

i∈I �i . Hence, 〈ConL(M), ⊆〉 is closed under arbitrary infima
showing that infima in 〈ConL(M), ⊆〉 coincide with infima in 〈EqL(M), ⊆〉.

To complete the proof we have to show that 〈ConL(M), ⊆〉 and 〈EqL(M), ⊆〉 agree on their suprema.
First note that the supremum of �i (i ∈ I ) in EqL(M) equals

∨
i1,...,ik∈I �i1 ◦ · · · ◦ �ik . Indeed, denote∨

i1,...,ik∈I �i1 ◦ · · · ◦ �ik by �. One can see that each �i , i ∈ I is contained in � (i.e. �i ⊆ �), � is contained
in any L-equivalence containing all �i’s, and that � is reflexive (due to reflexivity of �i) and symmetric
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(due to symmetry of �i and commutativity of ⊗). Moreover,

�(a, b) ⊗ �(b, c) = ∨
i1,...,ik∈I
j1,...,jl∈I

(
�i1 ◦ · · · ◦ �ik

)
(a, b) ⊗ (

�j1 ◦ · · · ◦ �jl

)
(b, c)

�
∨

i1,...,ik∈I
j1,...,jl∈I

((
�i1 ◦ · · · ◦ �ik

) ◦ (
�j1 ◦ · · · ◦ �jl

))
(a, c)

�
∨

i1,...,im∈I

(
�i1 ◦ · · · ◦ �im

)
(a, c) = �(a, c),

thus � is also transitive showing that � is the supremum of �i’s in EqL(M). Now it suffices to show
that � ∈ ConL(M). Condition (ii) of Definition 3.3 is satisfied trivially. For (iii) take any n-ary function
f M ∈ F M and arbitrary a1, b1, . . . , an, bn ∈ M . We have

�(a1, b1) ⊗ · · · ⊗ �(an, bn)

=
n⊗

j=1

⎛
⎝ ∨

ij1,...,ijkj
∈I

(
�ij1 ◦ · · · ◦ �ijkj

)
(aj , bj )

⎞
⎠

= ∨
i11,...,i1k1 ∈I

...
...

in1,...,inkn∈I

∨
c11,...,c1(k1−1)∈M

...
...

cn1,...,cn(kn−1)∈M

n⊗
j=1

(
�ij1

(
aj , cj1

) ⊗ �ij2

(
cj1, cj2

) ⊗ · · · ⊗ �ijkj

(
cj (kj−1), bj

))
.

Now for any of �ij1(aj , cj1), �ij2(cj1, cj2), . . . , �ijkj
(cj (kj−1), bj ), j ∈ J we have

�i11(a1, c11) � �i11

(
f M(a1, . . . , an), f

M(c11, a2, . . . , an)
)

,

...

�in1(an, cn1) � �in1

(
f M(c11, c21, . . . , c(n−1)1, an), f

M(c11, . . . , cn1)
)

,

�i12(c11, c12) � �i12

(
f M(c11, . . . , cn1), f

M(c12, c21, . . . , cn1)
)

,

...

�inkn
(cn(kn−1), bn) � �inkn

(
f M(b1, . . . , b(n−1), cn(kn−1)), f

M(b1, . . . , bn)
)

.

Hence, it is possible to finish the proof with

∨
i11,...,i1k1 ∈I

...
...

in1,...,inkn∈I

∨
c11,...,c1(k1−1)∈M

...
...

cn1,...,cn(kn−1)∈M

n⊗
j=1

(
�ij1(aj , cj1) ⊗ �ij2(cj1, cj2) ⊗ · · · ⊗ �ijkj

(cj (kj−1), bj )
)

�
∨

l1,...,lm∈I

(
�l1 ◦ · · · ◦ �lm

) (
f M(a1, . . . , an), f

M(b1, . . . , bn)
)

= �
(
f M(a1, . . . , an), f

M(b1, . . . , bn)
)

.

Altogether, � ∈ ConL(M). �



R. Bělohlávek, V. Vychodil / Fuzzy Sets and Systems 157 (2006) 161–201 173

Lemma 3.1. For congruences �1, �2 ∈ ConL(M) the following conditions are equivalent:

(i) �1 ◦ �2 = �2 ◦ �1,
(ii) �1 ∨ �2 = �1 ◦ �2,

(iii) �2 ◦ �1 ⊆ �1 ◦ �2.

Proof. Analogously as in the ordinary case. �

An important notion is that of a congruence generated by a finite collection of pairs. The natural meaning
of this notion is the following: we are given a collection of pairs 〈ai, bi〉 of elements of M and are looking
for the least congruence containing all 〈ai, bi〉’s. In other words, we are looking for the least abstract view
on M under which all ai and bi are indistinguishable. In fuzzy setting, it is natural to provide additionally
the degrees of required indistinguishability of ai and bi . In what follows, we present tractable descrip-
tions of congruences generated by prescribed pairs of elements and their required indistinguishability
degrees.

Definition 3.4. Let M be an L-algebra. For a binary L-relation R in M we denote by �(R) the least
congruence on M containing R. Particularly, for any b1, c1, . . . , bk, ck ∈ M and arbitrary truth val-
ues a1, . . . , ak ∈ L we denote �({a1/〈b1, c1〉, . . . , ak/〈bk, ck〉}) by �(a1/〈b1, c1〉, . . . , ak/〈bk, ck〉). It is
the least congruence � ∈ ConL(M) such that �(b1, c1)�a1, . . . , �(bk, ck)�ak , i.e. �(a1/〈b1, c1〉, . . . ,
ak/〈bk, ck〉) is generated by the finite L-relation R = {a1/〈b1, c1〉, . . . , ak/〈bk, ck〉}. A congruence
�(a/〈b, c〉) ∈ ConL(M) is called a principal congruence on M.

Remark 3.6. Note that due to Theorem 3.1, �(R) exists for every L-relation R ∈ LM×M . Namely,
�(R) = ⋂{�∈ConL(M) | R ⊆ �}.

Lemma 3.2. The following are properties of principal congruences:

(i) �(a/〈b, c〉) = �(a/〈c, b〉),
(ii) �(a1/〈b1, c1〉, . . . , ak/〈bk, ck〉) = �(a1/〈b1, c1〉) ∨ · · · ∨ �(ak/〈bk, ck〉),

(iii) � = ∨
b,c ∈ M �(�(b, c)/〈b, c〉) = ⋃

b,c ∈ M �(�(b, c)/〈b, c〉).
Proof. (i) follows directly from the definition.

(ii) It is easily seen that �(a1/〈b1, c1〉, . . . , ak/〈bk, ck〉) is always contained in �(a1/〈b1, c1〉) ∨ · · · ∨
�(ak/〈bk, ck〉). For the converse inequality observe that �(ai/〈bi, ci〉) ⊆ �(a1/〈b1, c1〉, . . . , ak/〈bk, ck〉)
for every i = 1, . . . , k. Thus, property (ii) holds.

(iii)
⋃

b,c∈M �(�(b, c)/〈b, c〉) ⊆ ∨
b,c∈M �(�(b, c)/〈b, c〉) ⊆ � ⊆ ⋃

b,c∈M �(�(b, c)/〈b, c〉), proving
the claim. �

Terms (of a given type F in variables X) and term functions (on an L-algebra M) are defined as in the
ordinary case [11] and are denoted by t, s, . . . , and tM, sM, . . . , respectively. The set of all terms of type
F in variables X is denoted by T (X). For a variable x ∈ X and t ∈ T (X) let |t |x denote the number of
occurrences of x in t . For t ∈ T (X) we often write t (x1, . . . , xk) instead of t to indicate that the variables
occurring in t are among x1, . . . , xk ∈ X. The following assertion is a consequence of [5, Theorem 3.87].
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Theorem 3.2. Let t (x1, . . . , xn) be a term of type F over X and let M be an L-algebra of type F . Then

�(a1, b1)
|t |x1 ⊗ · · · ⊗ �(an, bn)

|t |xn ��
(
tM(a1, . . . , an), t

M(b1, . . . , bn)
)

for each � ∈ ConL(M) and a1, b1, . . . , an, bn ∈ M .

Remark 3.7. (1) Estimation (i) of Theorem 3.2 is degenerate and has no interesting meaning in the
ordinary case. In fuzzy case, however, (i) provides a nontrivial (possibly numerical, when truth values
are numbers) estimation of similarity (degree of equivalence) of results of term functions which can be
interpreted as describing sensitivity of a term function.

(2) Since ≈M is a congruence relation, applying (i) of Theorem 3.2 to ≈M gives(
a1 ≈M b1

)|t |x1 ⊗ · · · ⊗
(
an ≈M bn

)|t |xn � tM(a1, . . . , an) ≈M tM(b1, . . . , bn). (7)

(3) If ⊗ is ∧, the powers |t |xi
can be removed from �(ai, bi)

|t |xi and (ai ≈M bi)
|t |xi . This has the

following consequence. In general, the estimation describing sensitivity of a term function depends on
the structure of the corresponding term, hence the number of occurrences of variables is important. If
⊗ = ∧, the structure of the term does not play any role.

The following theorem generalizes the well-known Mal’cev lemma describing principal congruences.
Note that although on verbal level (and for the truth degree a = 1) the theorem reads the same way as in
the ordinary case, the proof is technically much more involved in fuzzy setting.

Theorem 3.3. Suppose M is an L-algebra of type F and let c, d ∈ M . For every set of variables
X = {x, y1, . . . , yk}, terms p1, . . . , pn ∈ T (X) and arbitrary elements s1, t1, . . . , sn, tn ∈ M such that{
sj , tj

} = {c, d}, 1�j �n and b, b′, e1, . . . , ek ∈ M let �(b, b′, p1, . . . , pn, s, t, e) denote

b ≈M pM
1 (s1, e) ⊗

n−1⊗
i=1

(
pM

i (ti , e) ≈M pM
i+1(si+1, e)

)
⊗ pM

n (tn, e) ≈M b′,

where e is an abbreviation for e1, . . . , ek , s is an abbreviation for s1, . . . , sn, and t is an abbreviation for
t1, . . . , tn. Then for �(a/〈c, d〉) ∈ ConL(M) and every b, b′ ∈ M we have

�(a/〈c, d〉)(b, b′) =
∨

X={x,y1,...,yk}; e1,...,ek∈M

p1,...,pn ∈ T (X); {sj ,tj }={c,d}, 1 � j � n

(
a

∑n
i=1 |pi |x ⊗ �(b, b′, p1, . . . , pn, s, t, e)

)
. (8)

Proof. First, let �∗ be an L-relation on M defined by the right side of (8). We have to check that
�(a/〈c, d〉) = �∗. In what follows we use the fact that if for every ai there is bj with ai �bj and for every
bi there is aj such that bi �aj then

∨
i∈I ai = ∨

j∈J bj .
“�(a/〈c, d〉) ⊆ �∗”: It is sufficient to prove that �∗(c, d)�a and �∗ ∈ ConL(M). The first condition is

obvious. Indeed, take a term p(x) = x, elements s1 = c, t1 = d, and observe that

�∗(c, d)�a|p|x ⊗
(
c ≈M pM(c)

)
⊗

(
pM(d) ≈M d

)
= a1 ⊗ 1 ⊗ 1 = a.
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Thus, �∗(c, d)�a. Moreover, take b, b′ ∈ M and a binary term p(x, y) = y. It follows that

�∗(b, b′)�a|p|x ⊗
(
b ≈M pM(c, b′)

)
⊗

(
pM(d, b′) ≈M b′) = a0 ⊗

(
b ≈M b′) ⊗ 1 = b ≈M b′,

i.e. b ≈M b′��∗(b, b′). Clearly, we can put b = b′, thus the foregoing inequality yields 1 = b ≈M

b��∗(b, b). Hence, �∗ is reflexive.
Furthermore, for every set of variables X = {x, y1, . . . , yk}, arbitrary terms p1, . . . , pn ∈ T (X) and

elements s1, t1, . . . , sn, tn ∈ M such that
{
sj , tj

} = {c, d}, 1�j �n and b, b′, e1, . . . , ek ∈ M it is easy
to see that

b ≈ MpM
1 (s1, e) ⊗

n−1⊗
i=1

(
pM

i (ti , e) ≈M pM
i+1(si+1, e)

)
⊗ pM

n (tn, e) ≈M b′

= b′ ≈M pM
n (tn, e) ⊗

n−2⊗
i=0

(
pM

n−i(sn−i , e) ≈M pM
n−i−1(tn−i−1, e)

)
⊗ pM

1 (s1, e) ≈M b.

Hence, the following equality holds,

a
∑n

i=1 |pi |x ⊗ �(b, b′, p1, . . . , pn, s, t, e) = a
∑n

i=1 |pi |x ⊗ �(b′, b, pn, . . . , p1, t, s, e),

where s is an abbreviation for sn . . . , s1 and t is an abbreviation for tn, . . . , t1. This equality ensures that
�∗(b, b′) = �∗(b′, b), i.e. �∗ is symmetric.

Consider b, b′, b′′ ∈ M , two sets of variables X1 = {
x1, y11, . . . , y1k1

}
, X2 = {

x2, y21, . . . , y2k2

}
,

terms p11, . . . , p1n1 ∈ T (X1), p21, . . . , p2n2 ∈ T (X2) and elements s11, t11, . . . , s1n1, t1n1 ∈ M ,
s21, t21, . . . , s2n2, t2n2 ∈ M abbreviated by s1, t1, s2, t2 such that

{
s1j , t1j

} = {c, d}, {s2l , t2l} = {c, d},
1�j �n1, 1� l�n2. Moreover, let us have e11, . . . , e1k1 ∈ M , e21, . . . , e2k2 ∈ M abbreviated by e1
and e2. Without loss of generality, we can assume that x1 = x2 and (X1 − {x1}) ∩ (X2 − {x2}) =
∅ (if this is not so, one can rename variables in X1 and X2 accordingly). In other words, all terms
p11, . . . , p1n1, p21, . . . , p2n2 can be thought of as terms in variables X1 ∪ X2. Using transitivity of ≈M

we have(
b ≈M pM

11(s11, e1) ⊗
n1−1⊗
i=1

(
pM

1i (t1i , e1) ≈M pM
1(i+1)(s1(i+1), e1)

)
⊗ pM

1n1
(t1n1, e1) ≈M b′

)

⊗
(

b′ ≈M pM
21(s21, e2) ⊗

n2−1⊗
i=1

(
pM

2i (t2i , e2) ≈M pM
2(i+1)(s2(i+1), e2)

)
⊗ pM

2n2
(t2n2, e2) ≈M b′′

)

�b ≈M pM
11(s11, e1) ⊗

n1−1⊗
i=1

(
pM

1i (t1i , e1) ≈M pM
1(i+1)(s1(i+1), e1)

)

⊗pM
1n1

(t1n1, e1) ≈M pM
21(s21, e2) ⊗

n2−1⊗
i=1

(
pM

2i (t2i , e2) ≈M pM
2(i+1)(s2(i+1), e2)

)
⊗pM

2n2
(t2n2, e2) ≈M b′′.

Hence, it follows that

a
∑n1

i=1 |p1i |x1 ⊗ �(b, b′, p11, . . . , p1n1, s1, t1, e1) ⊗ a
∑n2

i=1 |p2i |x2

⊗ �(b′, b′′, p21, . . . , p2n2, s2, t2, e2)
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�a
∑n1

i=1 |p1i |x1 ⊗ a
∑n2

i=1 |p2i |x2 ⊗ �(b, b′′, p11, . . . , p1n1, p21, . . . , p2n2, s, t, e)

= a

(∑n1
i=1 |p1i |x1+∑n2

i=1 |p2i |x2

)
⊗ �(b, b′′, p11, . . . , p1n1, p21, . . . , p2n2, s, t, e),

where e is an abbreviation for elements e11, . . . , e1k1, e21, . . . , e2k2 , s denotes s11, . . . , s1n1, s21, . . . ,

s2n2 , analogously for t . Taking into account the definition of �∗, we can conclude that �∗(b, b′)⊗�∗(b′, b′′)
��∗(b, b′′), i.e. �∗ is transitive.

Now we will check compatibility with operations of M. Take any m-ary f M ∈ F M and elements
a1, b1, . . . , am, bm ∈ M . For every 1�i�m let us have a set Xi = {

xi, yi1, . . . , yiki

}
of variables,

terms pi1, . . . , pini
∈ T (Xi), arbitrary elements si1, ti1, . . . , sini

, tini
∈ M such that

{
sij , tij

} = {c, d}
(1�j �ni) denoted by si , ti and elements ei1, . . . , eiki

∈ M denoted by ei . Again, we can assume that
Xi , Xj are pairwise disjoint for every 1�i, j �m, i �= j , i.e. for every 1�i�m, 1� l�ni we have
pil ∈ T (X′), where X′ = X1 ∪ · · · ∪ Xm.

Put n = max(n1, . . . , nm). We are going to show that we can enlarge every sequence pi1, . . . , pini
of

terms by defining new terms and suitable elements to obtain a sequence pi1, . . . , pini
, pi(ni+1), . . . , pin

which satisfies certain conditions. After that, all sequences have the same length, so it will be possible to
apply the compatibility of f M with ≈M simultaneously. First of all, put X = X′ ∪ {z1, . . . , zm}, where
z1, . . . , zm /∈ X′. All terms pij can be thought as terms of the form pij (x1, y11, . . . , y1k1, x2, y21, . . . ,

ymkm, z1, . . . , zm). For every sequence pi1, . . . , pini
such that ni < n, let pij = zi for all ni < j �n. We

can conclude that

a
∑ni

j=1 |pij |xi ⊗ �(ai, bi, pi1, . . . , pini
, si, ti , ei)

= a
∑n

j=1 |pij |xi ⊗ �(ai, bi, pi1, . . . , pin, s
′
i , t

′
i , e),

where e denotes e11, . . . , emkm, b1, . . . , bm, further, s′
i denotes si1, . . . , sin, and t ′i denotes elements

ti1, . . . , tin such that
{
sij , tij

} = {c, d}, ni < j �n. Indeed, since the new terms pij = zi do not

have any occurrence of xi , we have a
∑ni

j=1 |pij |xi = a
∑n

j=1 |pij |xi and the values of pM
ij ’s do not depend on

newly defined elements sij , tij for j > ni . Thus,

pM
ini

(tini
, ei) ≈M bi =

(
pM

ini
(tini

, ei) ≈M bi

)
⊗ 1 ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸

(n−ni)-times

=
(
pM

ini
(tini

, e) ≈M pM
i(ni+1)(si(ni+1), e)

)
⊗

(
pM

i(ni+1)(ti(ni+1), e)≈MpM
i(ni+2)(si(ni+2), e)

)
⊗ · · · ⊗

(
pM

in(tin, e) ≈M bi

)
.

Hence, it is possible to state
m⊗

j=1

(
aj ≈M pM

j1(sj1, e) ⊗
n−1⊗
i=1

(
pM

ji (tj i , e) ≈M pM
j (i+1)(sj (i+1), e)

) ⊗ pM
jn(tjn, e) ≈M bj

)
�f M(a1, . . . , am) ≈M f M(

pM
11(s11, e), . . . , p

M
m1(sm1, e)

)
⊗

n−1⊗
i=1

(
f M(

pM
1i (t1i , e), . . . , p

M
mi(tmi, e)

)
≈M f M(

pM
1(i+1)(s1(i+1), e), . . . , p

M
m(i+1)(sm(i+1), e)

))
⊗f M(

pM
1n(t1n, e), . . . , p

M
mn(tmn, e)

) ≈M f M(b1, . . . , bm).
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Moreover, the value of every f M
(
pM

1i (s1i , e), . . . , p
M
mi(smi, e)

)
can be expressed as the resulting value

of the term f (p1i(x1, y), p2i(x2i , y), . . . , pmi(xmi, y)), in variables (X ∪ {
xji | j �2

}
) − {x2, . . . , xm}

for elements e together with elements
{
tj i , sji | j �2

}
. In the case of f M

(
pM

1i (t1i , e), . . . , p
M
mi(tmi, e)

)
,

we can proceed analogously. Thus,

m⊗
i=1

a
∑ni

j=1 |pij |xi ⊗ �(ai, bi, pi1, . . . , pini
, si, ti , ei)

= a

(∑m
i=1

∑n
j=1 |pij |xi

)
⊗

m⊗
i=1

�(ai, bi, pi1, . . . , pin, s
′
i , t

′
i , e)

�a
∑n

j=1 |p1j |x1 ⊗
m⊗

i=1
�(ai, bi, pi1, . . . , pin, s

′
i , t

′
i , e)

�a
∑n

j=1 |p1j |x1 ⊗ �(f M(a1, . . . , am), f M(b1, . . . , bm),

f (p11, . . . , pm1), . . . , f (p1n, . . . , pmn), s1, t1, e).

Clearly,f (p11, . . . , pm1), . . . , f (p1n, . . . , pmn) are terms and
∑n

j=1 |p1j |x1 is the number of occurrences

of the variable x1 in these terms. This observation yields the compatibility of f M with �∗. Together with
the foregoing results, �∗ ∈ ConL(M) and �∗(c, d)�a. Consequently, �(a/〈c, d〉) ⊆ �∗.

“�(a/〈c, d〉) ⊇ �∗”: Take a set X = {x, y1, . . . , yk} of variables, terms p1, . . . , pn ∈ T (X) and
arbitrary elements s1, t1, . . . , sn, tn ∈ M abbreviated by s, t such that

{
sj , tj

} = {c, d}, 1�j �n and
b, b′, e1, . . . , ek ∈ M , where e is an abbreviation for e1, . . . , ek . It is easy to see that

a
∑n

i=1 |pi |x = a|p1|x ⊗ · · · ⊗ a|pn|x ��(a/〈c, d〉)(c, d)|p1|x ⊗ · · · ⊗ �(a/〈c, d〉)(c, d)|pn|x .

Theorem 3.2 yields �(a/〈c, d〉)(c, d)|p|x ��(a/〈c, d〉) (
pM(c, e), pM(d, e)

)
for every term p(x, y) and

any b, b′, e1, . . . , ek ∈ M . Thus, we have

a
∑n

i=1 |pi |x ⊗ �(b, b′, p1, . . . , pn, s, t, e)

= a
∑n

i=1 |pi |x ⊗ b ≈M pM
1 (s1, e) ⊗

n−1⊗
i=1

(
pM

i (ti , e) ≈M pM
i+1(si+1, e)

)
⊗ pM

n (tn, e) ≈M b′

�a
∑n

i=1 |pi |x ⊗ �(a/〈c, d〉)
(
b, pM

1 (s1, e)
)

⊗
n−1⊗
i=1

(
�(a/〈c, d〉)

(
pM

i (ti , e), p
M
i+1(si+1, e)

))
⊗�(a/〈c, d〉)

(
pM

n (tn, e), b
′)

��(a/〈c, d〉)
(
b, pM

1 (s1, e)
)

⊗ �(a/〈c, d〉)(c, d)|p1|x

⊗
n−1⊗
i=1

(
�(a/〈c, d〉)

(
pM

i (ti , e), p
M
i+1(si+1, e)

)
⊗�(a/〈c, d〉)(c, d)|pi+1|x

)
⊗ �(a/〈c, d〉)

(
pM

n (tn, e), b
′)

��(a/〈c, d〉)
(
b, pM

1 (s1, e)
)

⊗ �(a/〈c, d〉)
(
pM

1 (s1, e), p
M
1 (t1, e)

)
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⊗
n−1⊗
i=1

(
�(a/〈c, d〉)

(
pM

i (ti , e), p
M
i+1(si+1, e)

)
⊗�(a/〈c, d〉)

(
pM

i+1(si+1, e), p
M
i+1(ti+1, e)

))
⊗ �(a/〈c, d〉)

(
pM

n (tn, e), b
′) .

Hence, we can apply the transitivity of �(a/〈c, d〉) repeatedly to obtain

a
∑n

i=1 |pi |x ⊗ �(b, b′, p1, . . . , pn, s, t, e)��(a/〈c, d〉)(b, b′).

Since X = {x, y1, . . . , yk}, p1, . . . , pn ∈ T (X) and b, b′, s, s1, t1, . . . , sn, tn ∈ M , e1, . . . , ek ∈ M have
been chosen arbitrarily, we have proven the desired inequality.

Altogether, �∗ = �(a/〈c, d〉). �

A kernel of an L-equivalence � (i.e. the 1-cut 1�) is always a bivalent equivalence relation. This property
enables us to define a factor L-algebra M/� of an L-algebra M modulo a congruence � ∈ ConL(M).

Definition 3.5. Let � be a congruence on an L-algebra M of type F . An L-algebra M/� = 〈M/ 1�, ≈M/�,

F M/�〉 of type F is called a factor L-algebra of M modulo �, if

(i) f M/� ([a1]�, . . . , [an]�) = [
f M(a1, . . . , an)

]
� for any n-ary f M/� ∈ F M/� and a1, . . . , an ∈ M ,

(ii)
(
[a]� ≈M/� [b]�

) = �(a, b) for every a, b ∈ M ,

where [a]� = {
a′ | �(a, a′) = 1

}
for all a ∈ M . For brevity, the support M/ 1� shall be denoted by M/�.

Remark 3.8. A factor L-algebra is well defined. For c ∈ [a]�, d ∈ [b]� we have �(a, c) = 1, �(b, d) = 1.
Using transitivity and symmetry of � we obtain

�(a, b) = �(a, b) ⊗ �(a, c)��(b, c) = �(b, c) ⊗ �(b, d)��(c, d).

Similarly, �(c, d)��(a, b), thus ≈M/� is well-defined L-relation. Moreover ≈M/� is reflexive, symmetric,
and transitive. For [a]� ≈M/� [b]� = 1 we have �(a, b) = 1, that is a ∈ [b]� and thus [a]� = [b]�. For
each n-ary function f M/� ∈ F M/� and a1, b1, . . . , an, bn ∈ M , we have

[a1]� ≈M/� [b1]� ⊗ · · · ⊗ [an]� ≈M/� [bn]�

= �(a1, b1) ⊗ · · · ⊗ �(an, bn)��
(
f M(a1, . . . , an), f

M(b1, . . . , bn)
)

=
[
f M(a1, . . . , an)

]
�

≈M/�
[
f M(b1, . . . , bn)

]
�

= f M/� ([a1]�, . . . , [an]�) ≈M/� f M/� ([b1]�, . . . , [bn]�) .

Hence, every function f M/� ∈ F M/� is well defined (it suffices to apply the above inequality for
[a1]� ≈M/� [b1]� = 1, . . . , [an]� ≈M/� [bn]� = 1) and compatible with the L-equality ≈M.

Remark 3.9. An important role in the definition of a factor L-algebra is played by the 1-cut 1� of
a congruence � on M. It is important to note that in general, a congruence � on an L-algebra is not
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determined by 1�, not even if � is an L-equality (in fact, all L-equalities on M have a common 1-cut
of the form {〈a, a〉 | a ∈ M}). Furthermore, one can easily verify that for a congruence � ∈ ConL(M),
1� is an ordinary congruence relation on

〈
M, F M

〉
. Therefore, the functional part of M/� coincides with〈

M, F M
〉
/1�. Clearly, this issue is completely degenerate in the ordinary case since if L =2 then � and 1�

coincide (modulo the relationship between crisp fuzzy relations and the corresponding ordinary relations).

Before discussing morphisms between L-algebras, i.e. structure-preserving mappings, we consider
separately mappings preserving L-equalities. On the verbal level, such mappings are not allowed to map
similar elements to dissimilar ones. For the following concepts, see also [20,21].

Definition 3.6. Let M be a set equipped with an L-equality ≈M . The couple
〈
M, ≈M

〉
is called a set with

L-equality. For two sets with L-equalities
〈
M, ≈M

〉
and

〈
N, ≈N

〉
, a mapping h : M → N is called an

≈-morphism if

a1 ≈M a2 �h(a1) ≈N h(a2) (9)

holds for all a1, a2 ∈ M . For an ≈-morphism h : M → N denote by �h a binary L-relation on M for
which we have �h(a1, a2) = h(a1) ≈N h(a2). �h is called a kernel of the ≈-morphism h.

Remark 3.10. If h : M → N is an ≈-morphism between
〈
M, ≈M

〉
and

〈
N, ≈N

〉
, we usually denote this

fact explicitly by h : 〈
M, ≈M

〉 → 〈
N, ≈N

〉
.

Lemma 3.3. Let h : M → N be a mapping between
〈
M, ≈M

〉
and

〈
N, ≈N

〉
. Then h is an ≈-morphism

if and only if ≈M ⊆ �h.

Proof. Follows directly from Definition 3.6. �

Lemma 3.4. Let us have ≈-morphisms g : 〈
M, ≈M

〉 →
〈
M ′, ≈M ′〉

and h :
〈
M ′, ≈M ′〉 →

〈
M ′′, ≈M ′′〉

.

Then

(i) the composed mapping (g ◦ h) : M → M ′′ is an ≈-morphism.
(ii) If g is a bijection, then g−1 is an ≈-morphism iff a1 ≈M a2 = g(a1) ≈M ′

g(a2) for all a1, a2 ∈ M .

Proof. (i): The mapping g ◦ h, i.e. (g ◦ h)(a) = h(g(a)) for every a ∈ M , is evidently an ≈-morphism.
(ii): “⇒”: Suppose g is a bijection and g−1 is an ≈-morphism. Then

a1 ≈M a2 �g(a1) ≈M ′
g(a2)�g−1(g(a1)) ≈M g−1(g(a2)) = a1 ≈M a2,

which implies the requested condition a1 ≈M a2 = g(a1) ≈M ′
g(a2).

“⇐”: If g is a bijection satisfying a1 ≈M a2 = g(a1) ≈M ′
g(a2) for all a1, a2 ∈ M , then g−1 is

evidently an ≈-morphism. �
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Lemma 3.5. Let h : 〈
M, ≈M

〉 → 〈
N, ≈N

〉
be an ≈-morphism. Then

(i) �h is an L-equivalence;
(ii) �h is an L-equality iff h is injective.

Proof. The proof is easy (it follows e.g. from [5, Lemma 3.114] which contains a graded version of the
assertion), see also [13, part I]. �

In the sequel, a morphism of L-algebras is defined as a mapping that preserves both their operations
f M and their fuzzy equality ≈M. All properties well known from ordinary case generalize in full scope.

Definition 3.7. Let M and N be L-algebras of type F . A mapping h : M → N is called a morphism (or
homomorphism) of M to N if

(i) h(f M(a1, . . . , an)) = f N(h(a1), . . . , h(an))

for every n-ary f ∈ F and arbitrary a1, . . . , an ∈ M;
(ii) a ≈M b�h(a) ≈N h(b) for all a, b ∈ M .

The fact that h : M → N is a morphism will be usually denoted by h : M → N. Moreover,

• an injective morphism is called a monomorphism,
• a morphism such that

a ≈M b = h(a) ≈N h(b) for all a, b ∈ M (10)

is called an embedding,
• a surjective morphism is called an epimorphism,
• an epimorphism which is an embedding is called an isomorphism,
• a morphism h : M → M is called an endomorphism,
• an isomorphism h : M → M is called an automorphism.

For an epimorphism h : M → N, the L-algebra N is called an image of M. We say M is isomorphic to
N, written M�N, if there exists an isomorphism h : M → N. Let idM denote the identical mapping on
M (we use idM to emphasize that M is a universe of M).

Remark 3.11. Note that condition (a ≈M b)�
(
h(a) ≈N h(b)

)
can be verbally described as “if a and b

are similar, then h(a) and h(b) are similar”. Namely, (a ≈M b)�
(
h(a) ≈N h(b)

)
is true for all a, b ∈ M

iff formula (∀x)(∀y) (x ≈ y ⇒ h(x) ≈ h(y)) is fully true (i.e. has truth degree 1) in an appropriate struc-
ture encompassing both M and N. Condition h(f M(a1, . . . , an)) = f N(h(a1), . . . , h(an)) is equivalent
to saying that h is an (ordinary) morphism of the functional parts

〈
M, F M

〉
and

〈
N, F N

〉
.

Theorem 3.4. Let h : M → N be a morphism. Then we have

(i) if M ′ ∈ Sub(M) then h(M ′) ∈ Sub(N),
(ii) if N ′ ∈ Sub(N) then h−1(N ′) = {a ∈ M | h(a) ∈ N ′} ∈ Sub(M),

(iii) if h : M → N is an embedding then M�h(M), where h(M) is a subalgebra of N induced by h(M).
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Proof. (i): We apply Remark 3.3: As noted in Remark 3.11, h is a morphism of
〈
M, F M

〉
to

〈
N, F N

〉
.

Furthermore, by definition, h(M ′) ∈ Sub(N) (i.e. h(M ′) is a subuniverse of N) iff h(M ′) ∈ Sub(ske(N))

(i.e. h(M ′) is a subuniverse of the skeleton of N). The assertion therefore follows from the ordinary case
since it is well known that if h is a morphism of

〈
M, F M

〉
to

〈
N, F N

〉
then h(M ′) is a subuniverse of

ske(N).
(ii): Follows from the ordinary case as (i).
(iii): Suppose h : M → N is an embedding. Statement (i) yields that h(M) ∈ Sub(N). Thus, g : M →

h(M), where g(a) = h(a) for every a ∈ M is a surjective embedding, i.e. M�h(M). �

Theorem 3.5. Suppose g : M → M′ and h : M′ → M′′ are morphisms. The composition g ◦ h is a
morphism (g ◦ h) : M → M′′.

Proof. Lemma 3.4 yields that h is an ≈-morphism. The rest follows from the ordinary case. �

Theorem 3.6. Let h : M → N be a morphism. Then �h ∈ ConL(M).

Proof. From Lemmas 3.3 and 3.5 it follows that a ≈M b��h(a, b) for all a, b ∈ M and �h ∈ EqL(M).
Now it is sufficient to show that �h is also compatible with functions f M ∈ F M. For n-ary f M ∈ F M

and arbitrary a1, b1, . . . , an, bn ∈ M , the following inequality holds:
n⊗

i=1
�h(ai, bi) =

n⊗
i=1

h(ai) ≈N h(bi)�f N (h(a1), . . . , h(an)) ≈N f N (h(b1), . . . , h(bn))

= h
(
f M(a1, . . . , an)

)
≈N h

(
f M(b1, . . . , bn)

)
= �h

(
f M(a1, . . . , an), f

M(b1, . . . , bn)
)

.

Thus, �h ∈ ConL(M). �

Definition 3.8. For every L-algebra M and � ∈ ConL(M) a mapping h� : M → M/�, where h�(a) =
[a]� for all a ∈ M , is called a natural mapping.

Theorem 3.7. A natural mapping h� from an L-algebra M to a factor L-algebra M/� is an epimorphism.

Proof. For any a, b ∈ M we have a ≈M b��(a, b) = [a]� ≈M/� [b]� = h�(a) ≈M/� h�(b). Further-
more, for n-ary f M ∈ F M and arbitrary a1, . . . , an ∈ M we have

h�

(
f M(a1, . . . , an)

)
=

[
f M(a1, . . . , an)

]
�

= f M/� ([a1]�, . . . , [an]�)

= f M/� (h�(a1), . . . , h�(an)) .

Surjectivity of h� is evident. �

Definition 3.9. Suppose M is an L-algebra and �, � ∈ ConL(M), � ⊆ �. Then we let �/� denote
an L-relation on M/� defined by (�/�) ([a]�, [b]�) = �(a, b) for all a, b ∈ M . For N ⊆ M we put
N� = {a ∈ M | [a]� ∩ N �= ∅} (that is, N� is a union of congruence classes being incident with N),
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N� = [
N�

]
M (recall that N� is a subalgebra of M generated by N�) and let �|N denote the restriction of

� to N.

Lemma 3.6. Let N be a subalgebra of M, � ⊆ ConL(M). Then

(i) N� is the universe of N�,
(ii) �|N ∈ ConL(N).

Proof. (i): Take any n-ary f N ∈ F N and a1, . . . , an ∈ N�. By Definition 3.9 there are elements
b1, . . . , bn ∈ N for which we have a1 ∈ [b1]�, . . . , an ∈ [bn]�, in other words �(a1, b1) = · · · =
�(an, bn) = 1. Hence, it follows that �

(
f M(a1, . . . , an), f

M(b1, . . . , bn)
) = 1. Since the result f M(b1,

. . . , bn) is in N, we have f M(a1, . . . , an) ∈ N�.
(ii) is easy to check. �

Theorem 3.8 (Morphism theorems). Let M, N be L-algebras of type F.

(i) Let h : M → N be an epimorphism. Then there is an isomorphism g : M/�h → N such that
h�h

◦ g = h.

(ii) Let �, � ∈ ConL(M), � ⊆ �. Then the mapping h : (M/�)/(�/�) → M/� defined by h
([

[a]�
]
�/�

) =
[a]� is an isomorphism.

(iii) Let N be a subalgebra of M, � ⊆ ConL(M). Then N/(�|N)�N�/(�|N�).

Proof. The assertion is a consequence of morphism theorems for general fuzzy structures, see
[5, Chapter 3]. �

Theorem 3.9. Let an L-algebra M and � ∈ ConL(M) be given. Then the mapping h : [�, M×M] →
ConL(M/�) defined by h(�) = �/� is a lattice isomorphism.

Proof. For every �1, �2 ∈ [�, M×M] we have �1 ⊆ �2 iff �1/� ⊆ �2/� iff h(�1) ⊆ h(�2). Now it is
sufficient to prove that h is a bijective mapping. Suppose that (�1/�) ([a]�, [b]�) = (�2/�) ([a]�, [b]�) for
every a, b ∈ M . Then also �1(a, b) = �2(a, b) for all a, b ∈ M . Thus, the mapping h is injective. To show
surjectivity, first take any � ∈ ConL(M/�) and define an L-relation � on M by �(a, b) = � ([a]�, [b]�).
We will show that � is an L-equivalence on M for which � ⊆ � and h(�) = �.

First, we check conditions (i), (ii) of Definition 3.3. Clearly, � is an L-equivalence relation and for
every a, b ∈ M we have

a ≈M b�[a]� ≈M/� [b]� �� ([a]�, [b]�) = �(a, b).

To check condition (iii), take any n-ary f M ∈ F M and a1, b1, . . . , an, bn ∈ M . Now it follows that
n⊗

i=1
�(ai, bi) =

n⊗
i=1

� ([ai]�, [bi]�)��
(
f M/� ([a1]�, . . . , [an]�) , f M/� ([b1]�, . . . , [bn]�)

)
= �

([
f M(a1, . . . , an)

]
�
,
[
f M(b1, . . . , bn)

]
�

)
= �

(
f M(a1, . . . , an), f

M(b1, . . . , bn)
)

.
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Thus, � ∈ [�, M×M] ⊆ ConL(M). Clearly, h(�) = �/� = �. To sum up, h is a surjective mapping.
Hence, h is a lattice isomorphism. �

Let us close this section with several clarifying remarks on the approach developed in [24,28] and
its relationship to algebras with fuzzy equalities. The concepts under investigation are that of fuzzy
congruence relations on universal algebras, and fuzzy factor algebras. There are several distinctions with
respect to our approach.

First, in [24,28], M is supposed to be an ordinary universal algebra. This can be considered a par-
ticular case of ours for ≈M (fuzzy equality) being the crisp identity. As demonstrated in Section 3.1,
allowing a general fuzzy equality enables us to model existing examples where the fuzzy equality nat-
urally accompanies the universe set of the algebra in question. Moreover, taking a general fuzzy equal-
ity, we obtain the usual relationship between congruence relations (as fuzzy relations) and morphisms
which is not possible under the approach of [24,28], i.e. ordinary algebras and congruences (as fuzzy
relations).

Second, the set of truth degrees used in [24,28] is supposed to be the real unit interval [0, 1]. That is, it
is supposed to be infinite, linearly ordered, and having numerical character. None of these features was
justified by the authors. On the one hand [0, 1] is the most common structure used in applications of fuzzy
sets. On the other hand, in the study of algebraic concepts, one should try to use a general framework if
possible. We find our framework assuming a complete residuated lattice L instead of [0, 1] a natural one
in that it captures the basic logical requirements concerning the structure of truth degrees and, at the same
time, is sufficiently powerful to formulate nontrivial results. Restricting oneself to [0, 1], one may loose
insight into some important structural concepts like that of a subdirect product. As will be demonstrated
later on, the well-known representation theorem is not true in fuzzy setting if we take L = [0, 1] but is
true, for example, if L is a finite chain.

Third, the authors in [24,28] use min (minimum) as ⊗. The idempotency property of minimum
has, however, nontrivial consequences, see e.g. Remark 3.5. Therefore, taking min may be regarded
as an unjustified simplification. Moreover, ⊗ explicitly appears in the compatibility condition (a1 ≈M

b1) ⊗ · · · ⊗ (an ≈M bn)�(f M(a1, . . . , an) ≈M f M(b1, . . . , bn)) of a congruence relation. Taking min
for ⊗, the left-hand side depends only on the least (ai ≈M bi), which might be regarded as not very
intuitive.

In [28], the author presents a factorization of an ordinary algebra M = 〈
M, F M

〉
by a fuzzy congruence

relation. The resulting structure is an ordinary algebra whose universe consists of congruence classes
which are special L-sets in the universe M. The concept of “fuzzy factorization” can be generalized for L-
algebras as well. However, it can be shown that such a construction is already covered by the factorization
presented in Definition 3.5. The following definition presents the generalization of a fuzzy factorization
for L-algebras.

Definition 3.10. Let M = 〈
M, ≈M, F M

〉
be an L-algebra of type F, � ∈ ConL(M). Let us assume

M� = {a� | a ∈ M}, where a� ∈ LM , (a�)(b) = �(a, b) for all a, b ∈ M . Then M� = 〈
M�, ≈M

� , F M
�

〉
,

where

(i) f M�(a1�, . . . , an�) = (
f M(a1, . . . , an)

)
� for any n-ary f M� ∈ F M� and a1�, . . . , an� ∈ M�,

(ii) (a� ≈M� b�) = �(a, b) for every a�, b� ∈ M�,

is called a fuzzy factor L-algebra of M modulo �.
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Remark 3.12. (1) Every fuzzy factor L-algebra is well defined. Indeed, we can take advantage of the
fact that a� = b� iff �(a, b) = 1. The compatibility of ≈M

� with operations follows directly from the
compatibility of � ∈ ConL(M).

(2) Let us have an L-algebra M = 〈
M, ≈M, F M

〉
with the crisp L-equality ≈M. For every � ∈ ConL(M),

the functional part
〈
M�, F

M
�

〉
of the fuzzy factorization M� coincides with the notion of a fuzzy quotient

(factor) algebra as it has been presented in [28], however, we use arbitrary complete residuated lattices
as structures of truth values.

(3) Consider two L-algebras M, N the functional parts of which coincide, but ≈M �= ≈N. In this case,
M is not isomorphic to N although the functional parts are isomorphic in the sense of the isomorphism

of ordinary algebras. On the other hand,
〈
M≈M, F M

≈M

〉
�

〈
N≈N, F N

≈N

〉
in the sense of [28], which is quite

unnatural, because both ≈M, ≈N represent different similarities.
(4) Let us have an L-algebra M = 〈

M, ≈M, F M
〉
. ≈M is a fuzzy congruence on

〈
M, F M

〉
in the sense

of [28]. Therefore, we can consider the factor algebra
〈
M≈M, F M

≈M

〉
(factorization of

〈
M, F M

〉
by ≈M in

the sense of [28]). Now,
〈
M≈M, F M

≈M

〉
encompasses the same information as

〈
M, ≈M, F M

〉
(observe that

the L-equality ≈M can be reconstructed from M≈M , and vice versa, since M≈M = {a≈M | a ∈ M} and
a ≈M b = (a≈M)(b)). However, we still cannot formalize algebras with fuzzy equalities

〈
M, ≈M, F M

〉
as fuzzy factor algebras

〈
M≈M, F M

≈M

〉
. Namely, the ordinary algebraic constructions, e.g. morphisms, do

not preserve similarity. Therefore, such constructions, when applied to fuzzy factor algebras, can lead to

a “loss of similarity information”. For instance, there are morphisms from
〈
M≈M, F M

≈M

〉
which are not

morphisms from
〈
M, ≈M, F M

〉
, etc.

The following theorem shows that the notion of fuzzy factor L-algebras is covered by factor L-algebras
and therefore unnecessary.

Theorem 3.10. For every L-algebra M = 〈
M, ≈M, F M

〉
and � ∈ ConL(M), we have M��M/�.

Proof. Take a mapping h : M� → M/�, where h(a�) = [a]� for every a� ∈ M�. Evidently, h is an
embedding since a� ≈M� b� = �(a, b) = [a]� ≈M/� [b]�. For any n-ary f M� ∈ F M� , a1, . . . , an ∈ M

we have

h
(
f M�(a1�, . . . , an�)

)
= h

(
f M(a1, . . . , an)�

)
=

[
f M(a1, . . . , an)

]
�

= f M/� ([a1]�, . . . , [an]�) = f M/� (h(a1�), . . . , h(an�)) .

Clearly, h is surjective. Hence, M��M/�. �

Finally, let us note that even if we confine ourselves to the particular case of [0, 1], min as conjunction,
and crisp identity as the fuzzy equality, there is only a small overlap between our results and the results
obtained in [24,28].



R. Bělohlávek, V. Vychodil / Fuzzy Sets and Systems 157 (2006) 161–201 185

3.3. Direct and subdirect products

Direct product is a basic construction yielding larger L-algebras from collections of input L-algebras.
Subdirect product can be thought of as a derived construction since it is a special subalgebra of a direct
product. This section introduces basic properties of both constructions. It is worth to add that some results
presented in this section hold true only for certain subclasses of residuated lattices as the structures of
truth values.

Definition 3.11. Let I be an index set. An L-algebra
∏

i∈I Mi is called a direct product of a family
{Mi | i ∈ I } of L-algebras Mi = 〈

Mi, ≈Mi , F Mi
〉
of type F if M = ∏

i∈I Mi and for every n-ary function
f

∏
i∈I Mi ∈ F

∏
i∈I Mi and a1, . . . , an ∈ M we have

f
∏

i∈I Mi (a1, . . . , an)(i) = f Mi (a1(i), . . . , an(i)), (11)

for all i ∈ I and the L-equality ≈
∏

i∈I Mi is defined by

(a ≈
∏

i∈I Mi b) = ∧
i∈I

(
a(i) ≈Mi b(i)

)
(12)

for all a, b ∈ M .

Remark 3.13. A direct product as defined above is a well-defined L-algebra. Suppose
∏

i∈I Mi is a direct
product of a family {Mi | i ∈ I } of L-algebras. L-relation ≈

∏
i∈I Mi is evidently reflexive and symmetric.

Now for every a, b, c ∈ ∏
i∈IMi we have(

a ≈
∏

i∈I Mi b
)

⊗
(
b ≈

∏
i∈I Mi c

)
=

(∧
i∈I

a(i) ≈Mi b(i)

)
⊗

( ∧
j∈I

b(j) ≈Mj c(j)

)
�

∧
i,j∈I

(
a(i) ≈Mi b(i) ⊗ b(j) ≈Mj c(j)

)
�

∧
i∈I

(
a(i) ≈Mi b(i) ⊗ b(i) ≈Mi c(i)

)
�

∧
i∈I

(
a(i) ≈Mi c(i)

)
= a ≈

∏
i∈I Mi c.

Hence, ≈
∏

i∈I Mi is transitive. For a ≈
∏

i∈I Mi b = 1 we have a(j) ≈Mj b(j) = 1 for every j ∈ I , thus
a ≈

∏
i∈I Mi b = 1 implies a = b. Altogether, ≈

∏
i∈I Mi is an L-equality relation. The compatibility of

functions with ≈
∏

i∈I Mi follows from the definition. Indeed, for every n-ary f
∏

i∈I Mi ∈ F
∏

i∈I Mi and
arbitrary a1, b1, . . . , an, bn ∈ ∏

i∈IMi , we have(
a1 ≈

∏
i∈I Mi b1

)
⊗ · · · ⊗

(
an ≈

∏
i∈I Mi bn

)
=

n⊗
j=1

∧
i∈I

aj (i) ≈Mi bj (i)�
∧
i∈I

n⊗
j=1

aj (i) ≈Mi bj (i)

�
∧
i∈I

f Mi (a1(i), . . . , an(i)) ≈Mi f Mi (b1(i), . . . , bn(i))

=
(
f

∏
i∈I Mi (a1, . . . , an) ≈

∏
i∈I Mi f

∏
i∈I Mi (b1, . . . , bn)

)
.

Hence, ≈
∏

i∈I Mi is an L-equality compatible with all functions of
∏

i∈I Mi .
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Definition 3.12. Let
∏

i∈I Mi be a direct product of a family {Mi |i ∈ I } of L-algebras. For every j ∈ I

a mapping �j : ∏
i∈I Mi → Mj , where �j (a) = a(j) is called a projection map on the jth coordinate

of
∏

i∈I Mi or shortly j th projection of
∏

i∈I Mi .

Lemma 3.7. (i) For a direct product
∏

i∈I Mi of a family {Mi | i ∈ I } of L-algebras, the jth projection
�j is an epimorphism for every j ∈ I . (ii) For every family of morphisms {hi : M → Mi | i ∈ I } there is
a uniquely determined morphism h : M → ∏

i∈I Mi such that h ◦ �i = hi for every i ∈ I .

Proof. (i): Take any j ∈ I . For arbitrary a ∈ Mj we have �j (b) = a for every b ∈ ∏
i∈I Mi , where

b(j) = a. Thus, �j is a surjective mapping. Moreover,

a ≈
∏

i∈I Mi b = ∧
i∈I

a(i) ≈Mi b(i)�a(j) ≈Mj b(j) = �j (a) ≈Mj �j (b).

The rest follows from the ordinary case.
(ii): Let us have a mapping h : M → ∏

i∈IMi defined by h(a)(i) = hi(a) for every i ∈ I , a ∈ M . We
have a ≈M b�hi(a) ≈Mi hi(b) since hi is supposed to be a morphism for every i ∈ I . Thus,

a ≈M b�
∧
i∈I

hi(a) ≈Mi hi(b) = h(a) ≈
∏

i∈I Mi h(b).

The rest of the proof follows from the ordinary case. �

Lemma 3.8. For a direct product M = M1 × M2, we have

(i) ��1 ∧ ��2 = ≈M,
(ii) ��1 ∨ ��2 = M×M ,

(iii) ��1 ◦ ��2 = ��2 ◦ ��1 .

Proof. For (i), we have
(
��1 ∧ ��2

)
(a, b) = ��1(a, b)∧ ��2(a, b). That is

(
��1 ∧ ��2

)
(a, b) = a(1) ≈M1

b(1) ∧ a(2) ≈M2 b(2), but this is exactly the definition of ≈
∏

i∈I Mi for I = {1, 2}. Thus, (i) holds.
(ii): For any a, b ∈ M1 × M2, we have

��1(a, 〈a(1), b(2)〉) = 1, and ��2(〈a(1), b(2)〉, b) = 1. (13)

By transitivity, for each congruence � ∈ ConL(M) containing both ��1 and ��2 we have �(a, b) = 1,
whence ��1 ∨ ��2 = M×M proving (ii).

(iii): Clearly, (��1 ◦ ��2)(a, b) = 1 for every a, b ∈ M . Thus, ��1 ◦ ��2 = ��1 ∨ ��2 from which we
get (iii). �

Definition 3.13. � ∈ ConL(M) is called a factor congruence, if there is a congruence �∗ ∈ ConL(M)

such that

(i) � ∧ �∗ = ≈M,
(ii) [a]� ∩ [b]�∗ �= ∅ for all a, b ∈ M .

The pair 〈�, �∗〉 is called a pair of factor congruences on M.
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Remark 3.14. The proof of Lemma 3.8 yields that for every M = M1 × M2 the couple
〈
��1, ��2

〉
is

a pair of factor congruences on M. Moreover, condition (ii) of Definition 3.13 implies that for every
a, b ∈ M there is some c ∈ M such that �∗(a, c) ⊗ �(c, b) = 1. Hence, from (ii) it follows that
� ◦ �∗ = �∗ ◦ � = � ∨ �∗ = M×M , this is easy to check.

Theorem 3.11. If 〈�, �∗〉 is a pair of factor congruences on an L-algebra M, then M�M/� × M/�∗.

Proof. Put h(a) = 〈[a]�, [a]�∗〉 for all a ∈ M . For every a, b ∈ M , we have

a ≈M b = (� ∧ �∗)(a, b) = �(a, b) ∧ �∗(a, b) = [a]� ≈M/� [b]� ∧ [a]�∗ ≈M/�∗
[b]�∗

= 〈[a]�, [a]�∗〉 ≈M/�×M/�∗ 〈[b]�, [b]�∗〉 = h(a) ≈M/�×M/�∗
h(b).

Condition (ii) of Definition 3.13 yields that for every a, b ∈ M there is some c ∈ M such that c ∈
[a]� ∩ [b]�∗ . That is, c ∈ [a]� and c ∈ [b]�∗ , i.e. [a]� = [c]�, [b]�∗ = [c]�∗ . Therefore, we obtain
h(c) = 〈[c]�, [c]�∗〉 = 〈[a]�, [b]�∗〉, i.e. h is surjective. Finally, we have to check the compatibility with
functions. Take any n-ary f M ∈ F M and arbitrary a1, . . . , an ∈ M . The rest follows from the ordinary
case. �

Remark 3.15. (1) The previous theorem yields that every L-algebra is isomorphic to a direct product.
Namely,

〈≈M, M×M
〉

is a pair of factor congruences on M, whence M�M/≈M × M/(M×M).
(2) In [28], instead of (ii) of Definition 3.13, the author requires that � ◦ �∗ = M×M (denote

this condition by (ii′)). As we know from Remark 3.14, (ii) implies (ii′). In the ordinary case, both
(ii) and (ii′) are equivalent. This, however, might not be the case in general since we may
have � ◦ �∗(a, b) = 1, i.e.

∨
c∈M (�(a, c) ⊗ �∗(b, c)) = 1, although there is no c ∈ M with �(a, c) = 1

and �∗(b, c) = 1, i.e. c ∈ [a]� and c ∈ [b]�∗ . Therefore, (ii) is indeed stronger than (ii′) in general.
This fact reflects itself in Theorem 4.2 of [28] which is a generalization of the well-known theorem
on factor congruences. Contrary to our approach, Theorem 4.2 of [28] needs an additional
assumption.

(3) An L-algebra M = 〈
M, ≈M, F M

〉
is said to be trivial if M = {a}. Since the universe of a trivial

L-algebra contains only one element, all mappings {a}n → {a} are trivially compatible with ≈M. In the
case of trivial L-algebras, the L-equality ≈M does not represent any constraint for functions f M and vice
versa. An L-algebra that is not trivial is called nontrivial.

Definition 3.14. An L-algebra M is said to be directly indecomposable if M is not isomorphic to a direct
product of two nontrivial L-algebras.

Theorem 3.12. An L-algebra is directly indecomposable iff
〈≈M, M×M

〉
is the only one pair of its factor

congruences. Moreover, every finite L-algebra is isomorphic to a direct product of directly indecompos-
able L-algebras.

Proof. The assertion follows by Theorem 3.12 and Lemma 3.8 using the same arguments as in the
ordinary case. �
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Definition 3.15. If a, b ∈ M and h : 〈
M, ≈M

〉 → 〈
N, ≈N

〉
is a mapping we say h separates a and b,

if h(a) ≈n h(b) < 1. A family of mappings
{
hi :

〈
M, ≈M

〉 → 〈
Ni, ≈Ni

〉 | i ∈ I
}

separates points iff for
every a, b ∈ M with a ≈M b < 1 there is an index j ∈ I such that hj : 〈

M, ≈M
〉 → 〈

Nj, ≈Nj
〉
separates

a and b.

Lemma 3.9. For a family of morphisms {hi : M → Mi | i ∈ I }, the following conditions are equivalent:

(i) the family {hi : M → Mi | i ∈ I } separates points,
(ii) a mapping h : M → ∏

i∈I Mi , where h(a)(i) = hi(a) for every i ∈ I , a ∈ M is an injective
morphism,

(iii) 1
(⋂

i∈I �hi

) = {〈a, a〉 | a ∈ M}.

Proof. “(i)⇒(ii)”: Lemma 3.7 yields that h is a morphism. For a �= b we have a ≈M b < 1. Thus, if
{hi : M → Mi | i ∈ I } separates points, then there is some i0 ∈ I such that hi0(a) ≈Mi hi0(b) < 1,
which implies h(a) ≈

∏
i∈I Mi h(b) < 1, i.e. h is injective.

“(ii)⇒(iii)”: Evidently,
(⋂

i∈I �hi

)
(a, a) = 1, thus {〈a, a〉 | a ∈ M} ⊆ 1

(⋂
i∈I �hi

)
. Let us assume that

(ii) holds. Then for a �= b we obtain

1 > h(a) ≈
∏

i∈I Mi h(b) = ∧
i∈I

hi(a) ≈Mi hi(b) = ∧
i∈I

�hi
(a, b) =

(⋂
i∈I

�hi

)
(a, b),

that is 〈a, b〉 /∈ 1
(⋂

i∈I �hi

)
. Hence, (ii) implies (iii).

“(iii)⇒(i)”: Suppose that
(⋂

i∈I �hi

)
(a, b) < 1 holds for a �= b. Then

∧
i∈I hi(a) ≈Mi hi(b) < 1.

Thus, there is i0 ∈ I such that hi0(a) ≈Mi0 hi0(b) < 1. Since a �= b have been chosen arbitrarily,
{hi : M → Mi | i ∈ I } separates points. �

Lemma 3.10. Let {hi : M → Mi | i ∈ I } be a family of morphisms and let h : M → ∏
i∈I Mi denote a

morphism, where h(a)(i) = hi(a) for every i ∈ I , a ∈ M . The morphism h is an embedding iff(⋂
i∈I

�hi

)
(a, b) = a ≈M b.

Proof. Recall that h(a) ≈
∏

i∈I Mi h(b) = (⋂
i∈I �hi

)
(a, b) for all a, b ∈ M . The rest is evident. �

In bivalent case, every algebra can be represented by a subdirect product of subdirectly irreducible
algebras. In fuzzy case, this is not true in general. In the subsequent development, we introduce a sufficient
condition for subdirect representation. However, unlike the bivalent case, we will also show that there are
L-algebras, which are not subdirectly representable.

Definition 3.16. Let M be an L-algebra of type F . The L-algebra M is said to be a subdirect product of
a family {Mi | i ∈ I } of L-algebras of type F if

(i) M is a subalgebra of
∏

i∈I Mi ,
(ii) �i(M) = Mi for every i ∈ I .
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An embedding h : M → ∏
i∈I Mi is called subdirect if h(M) is a subdirect product of the family

{Mi | i ∈ I }.

Lemma 3.11. If �i ∈ ConL(M) for every i ∈ I and
⋂

i∈I �i = ≈M, then the mapping g : M →∏
�∈I M/�i , where g(a)(i) = [a]�i

is a subdirect embedding. If h : M → ∏
i∈I Mi is a subdirect

embedding, then there is a family of congruences {�i ∈ ConL(M) | i ∈ I } such that
⋂

i∈I �i = ≈M and
Mi�M/�i for every i ∈ I .

Proof. Since g defined by g(a)(i) = [a]�i
is a morphism, using Lemma 3.10 we can deduce that g is

an embedding. Moreover, g(M)(i) = {[a]�i
| a ∈ M} = M/�i for every i ∈ I , thus g is a subdirect

embedding.
Furthermore, let h : M → ∏

i∈I Mi be a subdirect embedding. Put �i = �hi
for every i ∈ I (recall that

hi : M → Mi , where hi(a) = h(a)(i) is a surjective morphism). Now by applying Lemma 3.10 one can
conclude that

⋂
i∈I �i = ≈M. Since every hi is surjective, (i) of Theorem 3.8 yields that Mi�M/�i for

every i ∈ I . �

Definition 3.17. An L-algebra M is subdirectly irreducible if for every subdirect embedding h : M →∏
i∈I Mi there is an index j ∈ I such that h ◦ �j : M → Mj is an isomorphism.

Theorem 3.13. An L-algebra M is subdirectly irreducible iff M is either trivial, or there is a least
congruence in ConL(M) − {≈M}. In the latter case

⋂{
ConL(M) − {≈M}} is a principal congruence

and 〈ConL(M), ⊆〉 contains exactly one atom.

Proof. “⇒”: Suppose, by contradiction, that M is not a trivial L-algebra and ConL(M)−{≈M} does not
have the least element. Then

⋂{
ConL(M) − {≈M}} = ≈M. Put I = ConL(M) − {≈M}. Using Lemma

3.11, there is a subdirect embedding h : M → ∏
�∈I M/�, where h(a)(�) = [a]� for every a ∈ M and

� ∈ I . Moreover, for every congruence � ∈ I we have � ⊃ ≈M. Thus, there are a, b ∈ M such that
a ≈M b < �(a, b), i.e.

a ≈M b < �(a, b) = [a]� ≈M/� [b]� = h�(a) ≈M/� h�(b) = (h ◦ ��)(a) ≈M/� (h ◦ ��)(b).

Hence, for every � ∈ I the mapping h◦�� : M → M is not an isomorphism. Consequently, the L-algebra
M is not subdirectly irreducible.

“⇐”: A trivial L-algebra M is subdirectly irreducible. Indeed, for every subdirect embedding h : M →∏
i∈I Mi , each L-algebra Mi must be trivial, because �i(h(M)) = �i(h({a})) = Mi holds for every i ∈ I

by virtue of the assumption. Hence, h ◦ �i : M → Mi is an isomorphism for all i ∈ I . Altogether, M
is subdirectly irreducible. So suppose M is nontrivial and let � = ⋂{

ConL(M) − {≈M}} > ≈M, i.e. �

is the least congruence in ConL(M) − {≈M}. Then there are a, b ∈ M such that �(a, b) > a ≈M b. Let
h : M → ∏

i∈I Mi be a subdirect embedding. Now we have, a ≈M b = ∧
i∈I h(a)(i) ≈Mi h(b)(i) <

�(a, b). Therefore, there is an index i ∈ I such that h(a)(i) ≈Mi h(b)(i)��(a, b), that is, (h◦�i)(a) ≈Mi

(h ◦ �i)(b)��(a, b), so �h◦�i
��. Since � is the least congruence in ConL(M) − {≈M}, we readily ob-

tain �h◦�i
= ≈M. Thus, h ◦ �i : M → Mi is an isomorphism and the L-algebra M is subdirectly

irreducible.
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If � is the least congruence in ConL(M) − {≈M}, then there are elements a, b ∈ M such that
�(a, b) > a ≈M b. Obviously, we have �(�(a, b)/〈a, b〉) ⊆ �. The converse inclusion holds since
�(�(a, b)/〈a, b〉) > a ≈M b and � is the least congruence with �(a, b) > a ≈M b. Thus, we have
�(�(a, b)/〈a, b〉) = �, i.e. � is a principal congruence. �

Theorem 3.14 (Representation theorem). Let M be a nontrivial L-algebra such that for every distinct
a, b ∈ M there exists �a,b ∈ ConL(M), where �a,b(a, b) = a ≈M b, and �a,b is ∧-irreducible in
ConL(M). Then M is isomorphic to a subdirect product of a family of subdirectly irreducible L-algebras.

Proof. Let �a,b be ∧-irreducible in ConL(M). As a result,
[
�a,b, M×M

] − {
�a,b

}
has the least el-

ement. Now from Theorems 3.9 and 3.13 it follows that M/�a,b is subdirectly irreducible. We have⋂
〈a,b〉∈I �a,b = ≈M, where I = {〈a, b〉 | a, b ∈ M and a �= b}. Thus, Lemma 3.11 yields that there is a

subdirect embedding h : M → ∏
〈a,b〉∈I M/�a,b, where h(c)(〈a, b〉) = [c]�a,b

for all a, b, c ∈ M , a �= b.
Hence, M is isomorphic to a subdirect product of subdirectly irreducible L-algebras. �

The previous representation theorem is sort of abstract. It only delimits a condition under which an
L-algebra M has a subdirect representation. In the following we will focus on the existence of suitable
∧-irreducible elements in ConL(M). First, we prove a technical lemma.

Lemma 3.12. Let {�i | i ∈ I } ⊆ ConL(M) be a directed system of congruences, i.e. for any finite number
�i1, . . . , �ik ∈ {�i | i ∈ I }, there is �i , i ∈ I such that �ij ⊆ �i , for all j = 1, . . . , k. Then

⋃
i∈I �i =∨

i∈I �i (supremum in ConL(M)).

Proof. Clearly,
⋃

i∈I �i ⊆ ∨
i∈I �i . We have to show “⊇”:(∨

i∈I

�i

)
(a, b) = ∨

i1,...,ik∈I
c1,...,ck−1∈M

(
�i1(a, c1) ⊗ · · · ⊗ �ik (ck−1, b)

)

�
∨
i∈I

c1,...,ck−1∈M

(�i(a, c1) ⊗ · · · ⊗ �i(ck−1, b)) �
∨
i∈I

�i(a, b) =
(⋃

i∈I

�i

)
(a, b)

for every a, b ∈ M . �

Lemma 3.13. Suppose M is a nontrivial L-algebra. Then for every distinct elements a, b ∈ M:

(i) there is a maximal �a,b ∈ ConL(M) such that �a,b(a, b) = a ≈M b;
(ii) if a ≈M b is ∧-irreducible in L then �a,b is ∧-irreducible in ConL(M).

Proof. (i): Let Ia,b = {
� ∈ ConL(M) | �(a, b) = a ≈M b

}
. It is easy to observe that

〈
Ia,b, ⊆

〉
is a partially

ordered set, Ia,b ⊆ ConL(M). Moreover, ≈M ∈ Ia,b implies Ia,b �= ∅. For every chain I ⊆ Ia,b

of congruences we have
(∨

i∈I �i

)
(a, b) = (⋃

i∈I �i

)
(a, b) = a ≈M b due to Lemma 3.12. That is,∨

i∈I �i ∈ Ia,b. Hence, every chain I ⊆ Ia,b is bounded from above. Now using Zorn Lemma it readily
follows that there is a maximal element �a,b ∈ Ia,b.
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(ii): Put J = [
�a,b, M×M

] − {
�a,b

}
and suppose a ≈M b to be an ∧-irreducible element of L. By

maximality of �a,b, �(a, b) > �a,b(a, b) for each � ∈ J . Thus, it follows that(⋂
J
)
(a, b) = ∧

�∈J

�(a, b) > a ≈M b.

As a consequence,
⋂

J ∈ J , i.e. �a,b is ∧-irreducible in ConL(M). �

If the lattice part of L is a finite chain, then every element 1 �= a ∈ L is ∧-irreducible. Thus, for finite
linearly ordered residuated lattices we can use Theorem 3.14 and Lemma 3.13 to obtain the following
consequence.

Corollary 3.1. If L is a finite chain then every nontrivial L-algebra is isomorphic to a subdirect product
of subdirectly irreducible L-algebras.

Remark 3.16. (1) There is a more general criterion for subdirect representation, which is, however, more
technical than the one given by Lemma 3.13. Let M be an L-algebra. If for every distinct b, b′ ∈ M we
have

b ≈M b′ <

( ⋂
a > b ≈Mb′

�(a/
〈
b, b′〉)

)
(b, b′), (14)

then M is isomorphic to a subdirect product of subdirectly irreducible L-algebras. Indeed, take a maximal
�b,b′ ∈ ConL(M) with �b,b′(b, b′) = b ≈M b′. Clearly, �b,b′ is ∧-irreducible in ConL(M) due to (14).
Namely, �b,b′ ∨ (⋂

a > b ≈M b′ �(a/
〈
b, b′〉)) is the least congruence in

[
�b,b′, M×M

]− {
�b,b′

}
. Now apply

Theorem 3.14. It is easily seen that if b ≈M b′ is ∧-irreducible in L, then (14) holds trivially.
(2) The subdirect representation does not pass for every L. In other words, for certain structures of

truth values, there are still L-algebras which are not isomorphic to a subdirect product of subdirectly
irreducible L-algebras. An example follows.

Example 3.4. Take a complete residuated lattice L on the rational unit interval [0, 1]. Let us have an
L-algebra M = 〈

M, ≈M, ∅〉
of empty type, where M = {a, b}, and a ≈M b = 0. It is easy to see that

every reflexive and symmetric binary L-relation � on M is a congruence on M since M is a two-element
set with a ≈M b = 0, and F M = ∅. Obviously, every congruence � ∈ ConL(M) is uniquely determined
by the truth degree �(a, b) ∈ L. Thus, there is a one-to-one correspondence between congruences from
ConL(M) and truth degrees from L. Moreover, ConL(M) is isomorphic to the lattice part of L. For � ∈
ConL(M), Theorem 3.9 yields ConL(M/�)� [�, M×M] � [c, 1], where �(a, b) = c. Since [c, 1] − {c}
does not have the least element, M/� is subdirectly reducible. As a consequence, if h : M → ∏

i∈I Mi is
a subdirect embedding, then every Mi�M/�h◦�i

is subdirectly reducible, i.e. M is not isomorphic to a
subdirect product of subdirectly irreducible L-algebras.

3.4. Direct unions

In general, there is no obvious way to naturally equip the union
⋃

i∈I Mi of universes of L-algebras Mi

with functions so that it became an L-algebra. In some cases, it is possible to define functions on
⋃

i∈I Mi
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such that
⋃

i∈I Mi equipped with such functions and a suitable L-equality turns into an L-algebra. For
instance, when {Mi | i ∈ I } is a directed family of L-algebras, we can define a direct union of {Mi | i ∈ I }
which is a well-defined L-algebra.

Definition 3.18. A partially ordered index set 〈I, �〉 is called directed, if I �= ∅ and for every i, j ∈ I

there is k ∈ I such that i, j �k. A family {Mi | i ∈ I } of L-algebras of type F , where 〈I, �〉 is a directed
index set and Mi ∈ Sub(Mj ) whenever i�j is called a directed family of L-algebras.

For a directed family {Mi | i ∈ I } of L-algebras we define
⋃

i∈I Mi =
〈⋃

i∈I Mi, ≈
⋃

i∈I Mi , F
⋃

i∈I Mi

〉
such that for every n-ary f ∈ F , and arbitrary a1, . . . , an ∈ ⋃

i∈I Mi we put

f
⋃

i∈I Mi (a1, . . . , an) = f Mj (a1, . . . , an), (15)

where a1 ∈ Mi1, . . . , an ∈ Min , j ∈ I , and i1, . . . , in�j . For every elements a, b ∈ ⋃
i∈I Mi such that

a ∈ Mi , b ∈ Mj we define the degree of equality a ≈
⋃

i∈I Mi b as follows:

(a ≈
⋃

i∈I Mi b) = (a ≈Mk b), (16)

where k ∈ I , i, j �k.
⋃

i∈I Mi is called a direct union of {Mi | i ∈ I }.

Remark 3.17. The direct union
⋃

i∈I Mi of a directed family {Mi | i ∈ I } is a well-defined L-algebra.
First, observe that for finitely many i1, . . . , in ∈ I there is always an index j ∈ I such that i1, . . . , in�j

(this follows from the definition of directed index set). Moreover, {Mi | i ∈ I } is a directed family so we
have Mi1, . . . , Min ∈ Sub(Mj ), i.e. f

⋃
i∈I Mi (a1, . . . , an) always exists. The fact that

⋃
i∈I Mi equipped

with functions f
⋃

i∈I Mi ∈ F
⋃

i∈I Mi is an algebra follows from the ordinary case.
The L-relation ≈

⋃
i∈I Mi is well defined. Indeed, it suffices to check that a ≈

⋃
i∈I Mi b is independent

on the choice of indices i, j, k ∈ I used in (16). Let a ∈ Mi , a ∈ Mi′ , b ∈ Mj , b ∈ Mj ′ . Take k�i, j

and k′�i′, j ′. Since 〈I, �〉 is directed, there is an index l ∈ I such that l�k, k′. As a consequence,
Mk, Mk′ ∈ Sub(Ml). Thus, it follows that (a ≈Mk b) = (a ≈Ml b) = (a ≈Mk′ b). Therefore, a ≈

⋃
i∈I Mi

b is independent on the choice of i, j, k ∈ I . Furthermore, for a ∈ ⋃
i∈I Mi we have a ∈ Mj for some

j ∈ I . Since a ≈Mj a = 1, it follows that a ≈
⋃

i∈I Mi a = 1 (reflexivity). Symmetry follows from the
symmetry of all ≈Mi ’s. For every a, b, c ∈ M there is an index j ∈ I such that a, b, c ∈ Mj , thus

(a ≈
⋃

i∈I Mi b) ⊗ (b ≈
⋃

i∈I Mi c) = (a ≈Mj b) ⊗ (b ≈Mj c)�(a ≈Mj c) = (a ≈
⋃

i∈I Mi c),

i.e. ≈
⋃

i∈I Mi is transitive. Moreover, if a ≈
⋃

i∈I Mi b = 1 then for j ∈ I such that a, b ∈ Mj we have
(a ≈Mj b) = 1. Thus, (a ≈

⋃
i∈I Mi b) = 1 implies a = b. Altogether, ≈

⋃
i∈I Mi is an L-equality.

It suffices to verify, that every f
⋃

i∈I Mi ∈ F
⋃

i∈I Mi is compatible with ≈
⋃

i∈I Mi . For every n-ary f ∈ F

and arbitrary a1, b1, . . . , an, bn ∈ ⋃
i∈I Mi there is an index j ∈ I such that a1, b1, . . . , an, bn ∈ Mj .

Thus,

(a1 ≈
⋃

i∈I Mi b1) ⊗ · · · ⊗ (an ≈
⋃

i∈I Mi bn)

= (a1 ≈Mj b1) ⊗ · · · ⊗ (an ≈Mj bn)

�f Mj (a1, . . . , an) ≈Mj f Mj (b1, . . . , bn)

= f
⋃

i∈I Mi (a1, . . . , an)≈
⋃

i∈I Mi f
⋃

i∈I Mi (b1, . . . , bn).

Hence,
⋃

i∈I Mi is a well-defined L-algebra.
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The following theorem shows that every L-algebra can be constructed from its finitely generated
subalgebras.

Theorem 3.15. Every L-algebra is isomorphic to a direct union of finitely generated L-algebras.

Proof. Suppose an L-algebra M = 〈
M, ≈M, F M

〉
is given. Consider an index set IM = {M ′ ⊆ M | M ′

is finite}. IM can be partially ordered using the set inclusion ⊆. It is also evident that for every M ′, M ′′ ∈
IM we have M ′ ∪ M ′′ ∈ IM. Moreover,

[
M ′]

M is a subalgebra of
[
M ′′]

M, whenever M ′ ⊆ M ′′. Hence,{[
M ′]

M | M ′ ∈ IM
}

is a directed family of finitely generated L-algebras.
Now we can claim M�

⋃{[
M ′]

M | M ′ ∈ IM
}
. Indeed, since every a ∈ M is contained in [{a}]M, it

is possible to define a mapping h : M → ⋃{[
M ′]

M | M ′ ∈ IM
}

by h(a) = a (a ∈ M). For all a, b ∈ M

we have

(a ≈M b) =
(
a ≈[{a,b}]M b

)
=

(
h(a) ≈

⋃{[M ′]M | M ′∈IM} h(b)
)

i.e. h is an ≈-morphism. For any n-ary f ∈ F and a1, . . . , an ∈ M we have,

h
(
f M(a1, . . . , an)

)
= h

(
f [{a1,...,an}]M(a1, . . . , an)

)
= f [{a1,...,an}]M(a1, . . . , an) = f

⋃{[M ′]M | M ′∈IM} (h(a1), . . . , h(an)) .

Since for every finite M ′ ⊆ M the L-algebra
[
M ′]

M is a subalgebra of M, the mapping h is a surjective
embedding, proving the claim. �

Remark 3.18. (1) Clearly, every L-algebra M is isomorphic to a trivial direct union. Namely, M�⋃
i∈I Mi , where I = {1} and M1 is M.
(2) If {Mi | i ∈ I } is a directed family of L-algebras, where I is finite, then evidently I has the greatest

element, let us denote it by k. Clearly, for every i ∈ I we have Mi ∈ Sub(Mk), that is
⋃

i∈I Mi�Mk .

In certain sense, the direct union can be thought of as a derived construction since it is isomorphic to
a factorization of certain subalgebra of a direct product. The following lemma with be used further in
Section 3.5.

Lemma 3.14. Let {Mi | i ∈ I } be a directed family of L-algebras of type F . Then
⋃

i∈I Mi�N/�, where

(i) N ∈ Sub(
∏

i∈I Mi), where N = {
a ∈ ∏

i∈IMi | there is k ∈ I such that a(k) = a(i) for all i�k
}
,

(ii) � ∈ ConL(N) such that �(a, b) = ∨
i∈I

∧
k� i a(k) ≈Mk b(k).

Proof. For the sake of brevity, let a ∈ N(j) denote the fact that a(j) = a(i) for all i�j . Clearly, if
a ∈ N(j), then a ∈ N(l) for every l�j . First, we will check that N is a nonempty subuniverse of

∏
i∈I Mi .

Evidently, N �= ∅. Furthermore, for any n-ary f ∈ F and arbitrary elements a1, . . . , an ∈ N there is an
index j ∈ I , such that a1 ∈ N(j), . . . , an ∈ N(j). Since Mj ∈ Sub(Mi) for all i�j , it follows that

f
∏

i∈I Mi (a1, . . . , an)(j) = f Mj (a1(j), . . . , an(j)) = f Mi (a1(i), . . . , an(i))

= f
∏

i∈I Mi (a1, . . . , an)(i)

for every i�j , i.e. f
∏

i∈I Mi (a1, . . . , an) ∈ N(j). Hence, N ∈ Sub(
∏

i∈I Mi).
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In the rest of the proof, we will take advantage of the following claim: for any a ∈ N(j), b ∈ N(j ′) we
have

�(a, b) = a(m) ≈Mm b(m) for every m�j, j ′. (17)

“�” of (17): Take m�j, j ′, where a ∈ N(j), b ∈ N(j ′). For arbitrary index i ∈ I there is some m′ ∈ I

such that i, m�m′. Moreover, from a(m′) = a(m), b(m′) = b(m), Mm ∈ Sub(Mm′) it follows that∧
k� i

a(k) ≈Mk b(k)�a(m′) ≈Mm′ b(m′) = a(m) ≈Mm b(m).

Hence, we have �(a, b) = ∨
i∈I

∧
k� i a(k) ≈Mk b(k)�a(m) ≈Mm b(m).

“�” of (17): Let us have a ∈ N(j), b ∈ N(j ′) and let m�j, j ′. We can take i = m. Since Mm ∈ Sub(Mk)

for all k�m, we readily obtain a(m) ≈Mm b(m) = ∧
k�m a(k) ≈Mk b(k). That is,

a(m) ≈Mm b(m)�
∨
i∈I

∧
k� i

a(k) ≈Mk b(k) = �(a, b).

Altogether, claim (17) holds true.
Now it is easy to check that � ∈ ConL(N). Reflexivity and symmetry of � are obvious. For every

a, b, c ∈ N , we have �(a, b) = a(m) ≈Mm b(m), �(b, c) = b(m′) ≈Mm′ c(m′) for certain m, m′ ∈ I due
to (17). Evidently, a, b ∈ N(m), b, c ∈ N(m′). Thus, for m′′�m, m′ it follows that a, b, c ∈ N(m′′). Hence,

�(a, b) ⊗ �(b, c) =
(
a(m) ≈Mm b(m)

)
⊗

(
b(m′) ≈Mm′ c(m′)

)
=

(
a(m′′) ≈Mm′′ b(m′′)

)
⊗

(
b(m′′)≈Mm′′ c(m′′)

)
�a(m′′)≈Mm′′ c(m′′)=�(a, c),

i.e. � is transitive. In an analogous way it is possible to prove that every n-ary f N ∈ F N is compatible
with �. For a1, b1 ∈ N(m1), . . . , an, bn ∈ N(mn), and m ∈ I such that m�m1, . . . , mn we have

n⊗
i=1

(
ai(mi) ≈Mmi bi(mi)

)
=

n⊗
i=1

(
ai(m) ≈Mm bi(m)

)
� f Mm (a1(m), . . . , an(m)) ≈Mm f Mm (b1(m), . . . , bn(m))

= f N(a1, . . . , an)(m) ≈Mm f N(b1, . . . , bn)(m)

= �
(
f N(a1, . . . , an), f

N(b1, . . . , bn)
)

.

That is, � ∈ ConL(N).
Let us introduce mappings hi : Mi → N/� (i ∈ I ) defined by hi(a) = [

a′]
�, where a′ ∈ N such

that for every j �i we have a′(j) = a. Every hi is a well-defined mapping since for a′, a′′ ∈ N , where
a′(j) = a′′(j) = a for all j �i we have �(a′, a′′) = 1, i.e.

[
a′]

� = [
a′′]

�. Furthermore, for any n-ary
f Mi ∈ F Mi and arbitrary a1, . . . , an ∈ Mi it is obvious that

f N/� (hi(a1), . . . , hi(an)) = f N/� ([
a′

1

]
�, . . . ,

[
a′
n

]
�

) =
[
f N(a′

1, . . . , a
′
n)

]
�

= hi

(
f Mi (a1, . . . , an)

)
.

Hence, every hi : Mi → N/� is compatible with operations. Moreover, hi is a restriction of hj on Mi

whenever i�j . Now it is possible to define a mapping h : ⋃
i∈I Mi → N/� by h(a) = hi(a) for all a ∈

Mi , i ∈ I . Clearly, f N/� (h(a1), . . . , h(an)) = h
(
f Mi (a1, . . . , an)

)
. Furthermore, for a, b ∈ ⋃

i∈I Mi ,
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a ∈ Mi , b ∈ Mj we can take k�i, j , thus a ≈
⋃

i∈I Mi b = a ≈Mk b = a′(k) ≈Mk b′(k), where a′, b′ ∈ N

such that for every l�k we have a′(l) = a, b′(l) = b, i.e. a′, b′ ∈ N(k). Moreover, we can apply (17) to
obtain

a′(k) ≈Mk b′(k) = �(a′, b′) = [
a′]

� ≈N/� [
b′]

� = hk(a) ≈N/� hk(b)

= hi(a) ≈N/� hj (b) = h(a) ≈N/� h(b).

Consequently, h is an embedding. Furthermore, for any [b]� ∈ N/� there is an index i ∈ I such that
b(j) = a for some a ∈ Mi and every j �i. Thus, h(a) = hi(a) = [b]�, i.e. h is surjective. Altogether,⋃

i∈I Mi�N/�. �

3.5. Class operators, varieties, free L-algebras

The notion of a variety of L-algebras was introduced in [6]. This section elaborates on the notion of a
variety and related notions in more detail.

Definition 3.19. For a class K of L-algebras of the same type we define the following operators:

H(K) = {h(M) | M ∈ K, h is a morphism},
I (K) = {M | M is isomorphic to some N ∈ K},
S(K) = {M | M is a subalgebra of some N ∈ K},
P (K) = {M | M is a direct product of a family P ⊆ K},
PS(K) = {M | M is a subdirect product of a family P ⊆ K},
U(K) = {M | M is a direct union of a directed family U ⊆ K}.

That is, H(K) is the class of all homomorphic images of L-algebras from K. I (K) is the class of all
L-algebras isomorphic to some N ∈ K. S(K) is the class of all subalgebras of L-algebras from K.
P(K) and PS(K) denote the classes of all direct and subdirect products of families of L-algebras from
K, respectively. U(K) denotes the class of all direct unions of directed families of L-algebras from K.

A class K of L-algebras of type F is said to be closed under the operator O if O(K) ⊆ K. Class
operators may be composed. That is, we may have HS, HHPHS, and so on. An operator O is said to be
idempotent iff O = OO. If O1, O2 are two operators on classes of L-algebras of the same type we put
O1 �O2 iff O1(K) ⊆ O2(K) for every class K of L-algebras of type F . It is easy to see that � is a partial
order on operators on classes of L-algebras of the same type.

Lemma 3.15. We have SH �HS, PS�SP , PH �HP . Furthermore, H , S, and IP are idempotent.

Proof. Suppose M ∈ SH(K). Then for some M′ ∈ K and some epimorphism h : M′ → N, M is a
subalgebra of N. Theorem 3.4 yields that the inverse image h−1(M) is a subalgebra of M′. Moreover,
h(h−1(M)) = M. Hence, it follows that M ∈ HS(K).

If M ∈ PS(K), then M = ∏
i∈I Mi for suitable subalgebras Mi of M′

i ∈ K, i ∈ I . Since
∏

i∈I Mi is a
subalgebra of

∏
i∈I M′

i , we have M ∈ SP (K).
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Let M ∈ PH(K). Then there are L-algebras M′
i and epimorphisms hi : M′

i → Mi , i ∈ I such that
M = ∏

i∈I Mi . A mapping h : ∏
i∈I M′

i → ∏
i∈I Mi defined by h(b)(i) = hi(b(i)) for all b ∈ ∏

i∈I M ′
i

is an epimorphism. Indeed, for a, b ∈ ∏
i∈I M ′

i we have,

a ≈
∏

i∈I M′
i b = ∧

i∈I

a(i) ≈M′
i b(i)�

∧
i∈I

hi(a(i)) ≈Mi hi(b(i))

= ∧
i∈I

h(a)(i) ≈Mi h(b)(i) = h(a) ≈
∏

i∈I Mi h(b).

For any n-ary f
∏

i∈I M′
i ∈ F

∏
i∈I M′

i , a1, . . . , an ∈ ∏
i∈I M ′

i , the fact

h
(
f

∏
i∈I M′

i (a1, . . . , an)
)

= f
∏

i∈I Mi (h(a1), . . . , h(an))

follows from the ordinary case. Moreover, h is evidently a surjective mapping. Hence, M ∈ HP(K).
The idempotency of H , S is evident. Let M ∈ IP IP (K), i.e. M�

∏
i∈I M′

i and M′
i�

∏
j∈Ji

Nij

for all i ∈ I , where every Nij belongs to K. Thus, there are isomorphisms h : M → ∏
i∈I M′

i and
hi : M′

i → ∏
j∈Ji

Nij , i ∈ I . Put K = {〈i, j〉 | i ∈ I, j ∈ Ji}. Now, a mapping g : M → ∏
〈i,j〉∈KNij

defined by g(a)(〈i, j〉) = hi (h(a)(i)) (j) is an isomorphism. For a, b ∈ M we have

a ≈M b = h(a) ≈
∏

i∈I M′
i h(b) = ∧

i∈I

h(a)(i) ≈M′
i h(b)(i) = ∧

i∈I

hi(h(a)(i))≈
∏

j∈Ji
Nij hi(h(b)(i))

= ∧
i∈I

∧
j∈Ji

hi(h(a)(i))(j) ≈Nij hi(h(b)(i))(j) = ∧
i∈I

∧
j∈Ji

g(a)(〈i, j〉) ≈Nij g(b)(〈i, j〉)

= ∧
〈i,j〉∈K

g(a)(〈i, j〉) ≈Nij g(b)(〈i, j〉) = g(a) ≈
∏

〈i,j〉∈KNij g(b).

The rest follows from the ordinary case. Hence, IP is idempotent. �

Definition 3.20. A nonempty class K of L-algebras of type F is called a variety if it is closed under
homomorphic images, subalgebras and direct products, that is, if H(K) ⊆ K, S(K) ⊆ K and P(K) ⊆ K.
If K is a class of L-algebras of the same type let V (K) denote the least variety containing K. We say that
V (K) is a variety generated by K.

Theorem 3.16. For the class operators V , HSP we have V = HSP .

Proof. Use Lemma 3.15 and the same arguments as in the ordinary case, see [11]. �

Definition 3.21. Let K be a class of L-algebras of the same type. Let M be an L-algebra generated by

M ′ ⊆ M , i.e. M = [
M ′]

M. If for each N ∈ K and every ≈-morphism h :
〈
M ′, ≈M ′〉 → 〈

N, ≈N
〉

there

exists a homomorphic extension h� : M → N of h (that is h� is an morphism and h�(a) = h(a) for every
a ∈ M ′), we say that M has a universal mapping property (UMP) for K over M ′. In this case M ′ is said
to be a set of free generators of M over K.

Theorem 3.17. Suppose that M has UMP for K over M ′. Let N ∈ K. Then for every ≈-morphism
h : M ′ → N there exists a unique morphism h� : M → N extending h.
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Proof. Suppose there are two homomorphic extensions, h�, h′ : M → N. Since M is generated by
M ′, for every a ∈ M there is a term t ∈ T (X), |X| = |M ′| such that tM(a1, . . . , ak) = a for some
a1, . . . , ak ∈ M ′. Thus,

h�(a) = h�

(
tM(a1, . . . , ak)

)
= tN (

h�(a1), . . . , h
�(ak)

) = tN (
h′(a1), . . . , h

′(ak)
)

= h′ (tM(a1, . . . , ak)
)

= h′(a).

Hence, h admits a unique homomorphic extension h�. �

Definition 3.22. Given a type F and a set of variables X, if T (X) �= ∅ then the term L-algebra of type F
over X, written T(X), has the universe T (X); functions are defined by

f T(X)(t1, . . . , tn) = f (t1, . . . , tn) (18)

for any n-ary f T(X) ∈ F T(X) and t1, . . . , tn ∈ T (X); the L-equality ≈T(X) is defined by

s ≈T(X) t =
{

1 for t = s,

0 otherwise.
(19)

for all s, t ∈ T (X). The set X is called a set of free generators of T(X).

Theorem 3.18. For a type F, a set X of variables, and a class K of L-algebras of type F, if T(X) exists,
then it has the universal mapping property for K over X.

Proof. The homomorphic extension h� : T(X) → M can be defined inductively by h�(x) = h(x) for
every variable x ∈ X and h�(f (t1, . . . , tn)) = f M

(
h�(t1), . . . , h

�(tn)
)

for every n-ary f ∈ F and terms
t1, . . . , tn ∈ T (X). Since ≈T(X) is a crisp identity relation, h� is evidently an ≈-morphism. The rest is
evident. �

Definition 3.23. Let K be a class of L-algebras of the same type, X be a set of variables. Put

	K(X) = {� ∈ ConL(T(X)) | T(X)/� ∈ IS(K)} , (20)

i.e. 	K(X) is the set of all congruences � on T(X) such that the factor L-algebra T(X)/� is isomorphic
to some subalgebra of some M ∈ K. Let

�K(X) = ⋂
	K(X) (21)

denote the intersection of all congruences from 	K(X). Then

FK(X) = T(X)/�K(X), (22)

where X = {
[x]�K(X) | x ∈ X

}
is the set of generators of T(X)/�K(X), is called a K-free L-algebra over

X. For x ∈ X we write x instead of [x]�K(X).

Theorem 3.19. For a type F, a set of variables X, and a class K of L-algebras of type F, if T(X) exists,
then FK(X) has the universal mapping property for K over X.
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Proof. Let M ∈ K and take a mapping g :
〈
X, ≈FK(X)

〉
→ 〈

M, ≈M
〉
. Furthermore, let n : T(X) → FK(X)

denote the natural morphism, that is n(t) = [t]�K(X) for all t ∈ T (X). Suppose nX is a restriction of
n on X, i.e. nX is a mapping nX : X → X. Thus, the universal mapping property of T(X) implies that
there is a morphism k : T(X) → M extending nX ◦ g. Moreover, from (i) of Theorem 3.8 it follows that
T(X)/�k is isomorphic to a subalgebra of M ∈ K, thus �k ∈ 	K(X), �K(X) ⊆ �k . It is immediate that g
is an ≈-morphism, since the following inequality holds for every x, y ∈ X:

x ≈FK(X) y = �K(X)(x, y)��k(x, y) = g(nX(x)) ≈M g(nX(y)) = g(x) ≈M g(y).

Now using (ii) of Theorem 3.8 we obtain FK(X)/(�k/�K(X))�T(X)/�k . Hence, there are mappings h, i
and j,

FK(X)
h→ FK(X)/(�k/�K(X))

i→ T(X)/�k
j→ M,

where h : FK(X) → FK(X)/(�k/�K(X)) is a natural mapping, i is an isomorphism between FK(X)/(�k/

�K(X)) and T(X)/�k . Finally, using (i) of Theorem 3.8, j : T(X)/�k → M is defined by j ([t]�k
) = k(t)

for every t ∈ T (X). Thus,

(h ◦ i ◦ j)(x) = j (i (h(x))) = j
(
i
(
[x]�k/�K(X)

)) = j
(
[x]�k

) = k(x) = g (nX(x))

= g
(
[x]�K(X)

) = g(x).

Altogether h ◦ i ◦ j is a homomorphic extension of g. �

Theorem 3.20. Suppose T(X) exists. Then for K �= ∅ we have FK(X) ∈ ISP (K). Thus if K is closed
under I , S, P , in particular if K is a variety, then FK(X) ∈ K.

Proof. Theorem 3.9 and Lemma 3.11 yield that for FK(X) = T(X)/�K(X) there is a subdirect embedding
h : T(X)/�K(X) → ∏

�∈	K(X) T(X)/�. Using PS(K) ⊆ SP (K) and Lemma 3.15 we obtain

FK(X) ∈ IPS ({T(X)/� | � ∈ 	K(X)})
⊆ IPS ({T(X)/� | � ∈ ConL(T(X)) and T(X)/� ∈ IS(K)})
⊆ IPSIS(K) ⊆ ISP IS(K) ⊆ ISIPS(K) ⊆ ISISP (K) ⊆ ISP (K)

completing the proof. �

Theorem 3.21. Let K denote a class of L-algebras of the same type, M ∈ K. Then for some sufficiently
large set of variables X we have M ∈ H(FK(X)).

Proof. Choose a set of variables X such that |M|� |X|. Every surjective mapping v : X → M has a
homomorphic extension h : FK(X) → M. Hence, we have M ∈ H(FK(X)). �

Thus, we have the following consequence.

Corollary 3.2. K ⊆ H
({

FK(X) | X is a set of variables
})

.
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Theorem 3.22. Every variety K of L-algebras is closed under direct unions. Moreover, K = HSP

({FK(X)}) for X being a denumerable set of variables.

Proof. Let {Mi ∈ K | i ∈ I } be a directed family of L-algebras. Lemma 3.14 yields that
⋃

i∈I Mi�N/�
for a suitable L-algebra N ∈ Sub(

∏
i∈I Mi ) and � ∈ ConL(N). Since K = HSP(K), we have N ∈

SP (K) = K and N/� ∈ H({N}) ⊆ K, i.e.
⋃

i∈I Mi ∈ I (K) = K. Thus, every variety is closed under
the formation of direct unions.

Let us have M ∈ K. Every finitely generated L-algebra
[
M ′]

M, is an image of FK(X), where X is a
denumerable set of variables. Indeed, let h : X → [

M ′]
M be any mapping such that h(X) = M ′. This

mapping can be extended to a morphism h� : FK(X) → [
M ′]

M. Take an element a ∈ [
M ′]

M. Since[
M ′]

M is finitely generated, we can express a = tM(a1, . . . , an), where M ′ = {a1, . . . , an}, t ∈ T (X).
Thus for xi1, . . . , xin ∈ X such that h�(xi1) = a1, . . . , h

�(xin) = an we have

h�

([
t (xi1, . . . , xin)

]
�K(X)

)
= h�

(
tFK(X)(xi1, . . . , xin)

)
= tM (

h�(xi1), . . . , h
�(xin)

) = a.

Hence, h� : FK(X) → [
M ′]

M is a surjective morphism. Consequently,
[
M ′]

M ∈ H({FK(X)}) ⊆
HSP({FK(X)}). Using Theorem 3.15 it follows that

M�
⋃{[

M ′]
M ∈ HSP({FK(X)}) | M ′ is a finite subset of M

}
for every M ∈ K. Since HSP({FK(X)}) is a variety, i.e. it is closed under direct unions, we have
M ∈ HSP({FK(X)}), i.e. K ⊆ HSP({FK(X)}). The converse inclusion follows from Theorem 3.20.

�

In [6], a characterization of varieties of L-algebras is presented in a way analogous to a well-known
result by Birkhoff [10]. Given an L-set 
 of identities, one may consider the class Mod(
) (models of 
)
of all L-algebras M such that for each identity t ≈ t ′, the degree

∥∥t ≈ t ′
∥∥

M to which t ≈ t ′ is true in M
is at least 
(t ≈ t ′). The following is the main result of [6]:

Theorem 3.23. A class K of L-algebras of the same type is a variety iff there is an L-set 
 of identities
such that K = Mod(
).

4. Conclusions and further research

In the paper, we presented examples, fundamental notions, and several results related to algebras
with fuzzy equalities. The presented examples demonstrate that algebras with fuzzy equalities are natural
“fuzzy structures” which appear in the study of mathematical fuzzy logic (namely, they are the semantical
structures for equational fragment of first-order fuzzy logic) and also as abstractions of natural examples
in “fuzzy mathematics” (e.g., functions mapping similar to similar, closure operators, concept lattices).
The presented results provide us with a new look on classical results from universal algebra not only since
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they show that the classical results have generalizations which are not artificial and come from natural
examples but also since they explicitly show the assumptions necessary for the results to be true. The
latter is particularly apparent if the results in fuzzy setting need restrictive assumptions as in the case of
subdirect representation theorem.

The follow-up paper [30] deals with advanced topics in algebras with fuzzy equalities (direct limits,
reduced products, etc.). Note also that results of this paper and those of [30] are substantially used in our
further study of the equational fragment of first-order fuzzy logic; two papers continuing [4,6] are under
submission.
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