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Abstract We present a logic for reasoning about attribute dependencies in data in-
volving degrees such as a degree to which an object is red or a degree to which two
objects are similar. The dependencies are of the form A ⇒ B and can be interpreted
in two ways: first, in data tables with entries representing degrees to which objects
(rows) have attributes (columns); second, in database tables where each domain is
equipped with a similarity relation. We assume that the degrees form a scale equipped
with operations representing many-valued logical connectives. If 0 and 1 are the only
degrees, the algebra of degrees becomes the two-element Boolean algebra and the
two interpretations become well-known dependencies in Boolean data and functional
dependencies of relational databases. In a setting with general scales, we obtain a new
kind of dependencies with naturally arising degrees of validity, degrees of entailment,
and related logical concepts. The deduction rules of the proposed logic are inspired by
Armstrong rules and make it possible to infer dependencies to degrees—the degrees
of provability. We provide a soundness and completeness theorem for such a setting
asserting that degrees of entailment coincide with degrees of provability, prove the
independence of deduction rules, and present further observations.
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786 R. Belohlavek, V. Vychodil

1 Introduction

Rules of the form A ⇒ B where A and B are collections of attributes, such as

{car, registered in US, registered after 1994} ⇒ {meets Clean Air Act},

are abundant in human reasoning. Such rules play a substantial role in data processing.
In data analysis, such rules are known as attribute implications [6,9,12]. They are
interpreted in tables with Boolean attributes describing which objects have which
attributes and have the following meaning: each object which has all attributes in A
has also all attributes in B. Association rules [29] generalize this semantics in that
they allow for exceptions from this rule. In relational databases, such rules are known
as functional dependencies. They are interpreted in relations (tables with arbitrarily-
valued attributes) and have the following meaning: every two tuples with the same
values on attributes in A have the same values on attributes in B.

The two interpretations mentioned above share a bivalent character of the truth
conditions: an object either has an attribute or not in the first case; two attribute
values either match (are equal) or not. It has been argued on various accounts, see e.g.
[1,10,28], that there is a need to extend the currently available methods to account
for indeterminacy, imprecision, and approximation, which relate both to data and
human understanding and reasoning about the data. Two examples relevant to our
coniderations are graded (or, fuzzy) attributes, such as red or obese, and similarity
relations which enable similarity queries and reasoning involving similarity in general.
Both of these cases are conveniently modeled by degrees, namely a degree to which
a given attribute applies to a particular object and a degee to which two attribute
values are similar. The approach based on degrees, sometimes referred to as a graded
approach, constitutes the core idea of fuzzy logic [27], whose formal facet has recently
been considerably developed, see [7,17] for an overview.

In our previous work, see e.g. [3,5], we developed an approach to the rules A ⇒ B
suitable for describing dependencies in data with grades. In particular, we developed
two semantics. One based on data tables with graded attributes and the other based on
an extension of Codd’s model of data in which domains are equipped with similarity
relations. We developed a logic for reasoning with such dependencies and proved its
completeness theorem which says that A ⇒ B follows from a set T of dependencies
if and only if A ⇒ B is provable from T . Note that similar attempts appeared e.g. in
[24,26] (see also [4] for a comparative overview).

These attempts, however, do not truly capture an important facet of such dependen-
cies. Namely, in presence of grades, the key logic notions involved, such as validity
or entailment, naturally come in degrees. That is to say, instead of “A ⇒ B is valid in
data (or not)” and “T entails A ⇒ B (or not)”, we naturally come to a degree to which
A ⇒ B is valid in data and a degree to which T entails A ⇒ B. In this perspective, the
ordinary validity and entailment are particular cases of the more broadly conceived
notions of degrees of validity and entailment, and correspond to the boundary cases,
i.e. validity and entailment to degree 1.

In this paper, we develop a logic for attribute dependencies which captures validity
and entailment to degrees and enables inference from partially true dependencies. Our

123



A logic of graded attributes 787

logic is a particular case of Pavelka’s abstract fuzzy logic, which is surveyed in Sect. 2,
and uses deduction rules inspired by thewell-knownArmstrong rules [2,20].We prove
that the logic is sound and complete, i.e. that the degree to which a dependence follows
from a theory T of partially true dependencies equals the degree of its provability from
T , and provide further observations on the proposed logic.

2 Preliminaries

2.1 Residuated lattices

We assume that the truth degrees form a scale L that is equipped with truth functions
of logical connectives. In particular, we assume that L conforms to the structure of a
complete residuated lattice with a hedge, i.e. an algebra L = 〈L ,∧,∨,⊗,→, ∗, 0, 1〉
such that 〈L ,∧,∨, 0, 1〉 is a complete lattice with 0 and 1 being the least and greatest
element of L , respectively; 〈L ,⊗, 1〉 is a commutative monoid (i.e.⊗ is commutative,
associative, and a ⊗ 1 = 1 ⊗ a = a for each a ∈ L); ⊗ and → satisfy so-called
adjointness property: a ⊗ b ≤ c iff a ≤ b → c; for each a, b, c ∈ L; hedge ∗
satisfies (i) 1∗ = 1, (ii) a∗ ≤ a, (iii) (a → b)∗ ≤ a∗ → b∗, (iv) a∗∗ = a∗,
for all a, b ∈ L . ⊗ and → are (truth functions of) “fuzzy conjunction” and “fuzzy
implication”. Accordingly, if ||ϕ|| and ||ψ || denote the truth degrees of formulas ϕ

and ψ , then ||ϕ|| ⊗ ||ψ || and ||ϕ|| → ||ψ || are the truth degrees of “ϕ and ψ” and
“ϕ implies ψ”, respectively. ∗, called an (idempotent truth-stressing) hedge, is a (truth
function of) logical connective “very true”, see [18,19]. That is, ||ϕ||∗ is the truth
degree of “ϕ is very true”.

The conditions assumed for L are justified by natural requirements on properties of
logical connectives and requirements onmodus ponens in presence of degrees. Resid-
uated structures of truth degrees are the main structures used in modern fuzzy logic
[7,17]. The reader may find more information, including the properties of residuated
lattices, in [11,15,16,18].

Examples of L include those where L = [0, 1] (unit interval), ∧ and ∨ being mini-
mumandmaximum,⊗ being a left-continuous t-norm and→ being the residuumof⊗.
Three most important pairs of adjoint operations on the unit interval are: Łukasiewicz
(a⊗b = max(a+b−1, 0), a → b = min(1−a+b, 1)), Gödel: (a⊗b = min(a, b),
a → b = 1 if a ≤ b, a → b = b else), Goguen (product): (a ⊗ b = a · b, a → b = 1
if a ≤ b, a → b = b

a else). Examples of finite L include equidistant subchains
of [0, 1] equipped with the restrictions of Łukasiewicz or Gödel operations, or any
other discrete t-norm [21]. Importantly, if L = {0, 1} then L essentially becomes the
two-element Boolean algebra of classical logic. Two boundary cases of hedges are (i)
identity: a∗ = a (a ∈ L); (ii) globalization [25]: a∗ = 1 if a = 1, a∗ = 0 else. In
what follows, L always denotes a complete residuated lattice with hedge.

For a given L, we define usual notions: an L-set (fuzzy set) A in universe U is
a mapping A : U → L , A(u) being interpreted as “the degree to which u belongs
to A”; A is also denoted by A = {a/u, . . .} where a = A(u). Let LU denote the
collection of all L-sets in U . The operations with L-sets are defined componentwise.
For instance, the intersection of L-sets A, B ∈ LU is an L-set A ∩ B in U such that

123



788 R. Belohlavek, V. Vychodil

(A ∩ B)(u) = A(u) ∧ B(u) for each u ∈ U , etc. For a ∈ L and A ∈ LU , we define
L-sets a ⊗ A (a-multiple of A) and a → A (a-shift of A) by

(a ⊗ A)(u) = a ⊗ A(u) and (a → A)(u) = a → A(u), (1)

for each u ∈ U . Given A, B ∈ LU , we define the degree S(A, B) of inclusion of A in
B by

S(A, B) = ∧
u∈U

(
A(u) → B(u)

)
, (2)

which generalizes the classical subsethood relation ⊆. Described verbally, S(A, B)

represents the degree to which every element from A belongs to B. It is easily shown
that S(A, B) = 1 if and only if A(u) ≤ B(u) for each u ∈ U , in which case we say
that A is (fully) included in B and denote this fact by A ⊆ B.

2.2 Pavelka’s abstract fuzzy logic

A suitable logical framework which captures degrees of entailment and other notions
and which is nowadays known as abstract fuzzy logic has been proposed in part I of
Pavelka’s seminal paper [23]. We first present this framework (see also [14,18]) and
then comment on related work.

An abstract fuzzy logic is a tuple 〈F ,L,S,R〉1 consisting of
- an (abstract) set F of formulas;
- a complete lattice L = 〈L ,≤, · · · 〉 (possibly with additional operations);
- an L-semantics S, which is an arbitrary set S ⊆ LF of L-sets of formulas;
- a setR of deduction rules, as explained below.

The formulas in F may be built up inductively from atomic ones as usual but need
not have any inner structure. The elements in L are called truth degrees and L plays
the role of a structure (algebra) of truth degrees; they include the boundary 0 and 1;
in general a ∈ L may but need not be numbers. The elements E ∈ S play the role
of truth evaluations (semantic structures in which formulas assume truth degrees); for
ϕ ∈ F and E ∈ S, we denote E(ϕ) ∈ L also by ||ϕ||E and call it the truth degree
of ϕ in E . Each (n-ary) deduction rule R ∈ R is a pair R = 〈Rsyn, Rsem〉 consisting
of a partial function Rsyn : Fn → F (syntactic part) and a function Rsem : Ln → L
(semantic part) and is usually visualized as

〈ϕ1, a1〉, . . . , 〈ϕn, an〉
〈ϕ, a〉 , (3)

where ϕ = Rsyn(ϕ1, . . . , ϕn) and a = Rsem(a1, . . . , an). The intended meaning is
that from the validity of ϕi to degree (at least) ai , i = 1, . . . , n, we may infer that ϕ

is valid to degree (at least) a. An example, which in fact motivated this conception, is

1 The literature contains variations of this view; e.g. a fuzzy set of axioms is sometimes added as another
member of the tuple.
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Goguen’s generalization of ordinary modus ponens [15]: 〈ϕ, a〉,〈ϕ⇒ψ, c〉
〈ψ, a⊗c〉 , where ⊗ is a

truth function of a many-valued conjunction. We shall utilize the fact that without any
impact on the results in question, Rsem may be conceived as depending also on ϕi s,
i.e. a = Rsem(〈ϕ1, a1〉, . . . , 〈ϕn, an〉), cf. Remark 4.

A theory T is an arbitrary fuzzy set of formulas, i.e. T ∈ LF ; a model of a theory
T is any fuzzy set E ∈ S for which T (ϕ) ≤ E(ϕ) for any ϕ ∈ F (degree to which ϕ

is true in E is greater than or equal to that prescribed by T ). Denoting the models of
T by Mod(T ), the degree ||ϕ||T to which ϕ semantically follows from T is defined by

||ϕ||T = ∧
E∈Mod(T ) ||ϕ||E ,

i.e. the infimum of degrees to which ϕ is true in models of T .
An L-weighted proof from T is a finite sequence 〈ϕ1, a1〉, …, 〈ϕn, an〉 of L-

weighted formulas, i.e. pairs 〈ϕi , ai 〉 of ϕi ∈ F and ai ∈ L , such that for each i ,
ai = T (ϕi ) (assumption) or 〈ϕi , ai 〉 is obtained from some 〈ϕ j , a j 〉s, j < i , by some
rule R ∈ R, i.e. ϕi = Rsyn(. . . , ϕ j , . . . ) and ai = Rsem(. . . , a j , . . . ). A degree |ϕ|T
of provability of a formula ϕ ∈ F from a theory T ∈ LF is defined as

|ϕ|T =
∨

{an | 〈ϕ1, a1〉, . . . , 〈ϕn, an〉 is a proof from T with ϕn = ϕ} .

An abstract fuzzy logic 〈F ,L,S,R〉 is (Pavelka-style) complete if for each theory
T ∈ LF and formulaϕ ∈ F wehave |ϕ|T = ||ϕ||T , i.e. degrees of semantic entailment
equal degrees of provability.

Pavelka’s abstract fuzzy logics encompass both truth-functional and non-truth-
functional calculi. The first example of the former is represented by Pavelka’s propo-
sitional logics developed in part II and III of [23], whose predicate extension with
Łukasiewicz operations has later been extensively studied by Novák, see e.g. [22].
Abstract fuzzy logics have been thoroughly examined by Gerla—[14] contains many
particular logics including non-truth-functional logics such as probabilistic logics [13].
Interestingly, Hájek showed, see e.g. [18], that Pavelka’s truth-functional Łukasiewicz
logic may be “simulated” within the ordinary Łukasiewicz logic expanded by truth
constants for rationals (in that the notion of degree of provability may be defined
in it) and simplified considerably the resulting system, which stimulated a stream of
papers on fuzzy logics with truth constants in language, see e.g. [8] for an overview.
Note, however, that these logics are conceptually different from Pavelka’s abstract
fuzzy logic and that general abstract fuzzy logics cannot be “simulated” in the sense
mentioned above.

3 Logic of graded attributes

3.1 Graded attribute implications and basic semantic notions

Wenowpresent our logic for reasoning about particular dependencies regarding graded
attributes. The logic is defined over a given nonempty set Y of attributes andwe present
it as a particular abstract fuzzy logic 〈F ,L,S,R〉 (Sect. 2.2). First, the structure L is
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an arbitrary complete residuated lattice (Sect. 2.1). Second, the formulas are the so-
called graded attribute implications over Y [3,5] which may be seen as expressions
of the form

A ⇒ B

where A and B are L-sets of attributes in Y , thus of the form

{a1/y1, . . . , ap/yp}⇒{b1/z1, . . . , bq/zq},

such as

{0.5/unhealthy food, 0.9/little activity}⇒{0.7/high blood pressure}.

Formally, such formulas are pairs 〈A, B〉 of L-sets, i.e. the set of formulas is F =
{〈A, B〉 | A, B ∈ LY }, but for convenience and following common usage in database
theory we denote them A ⇒ B.

The L-semantics S is derived from the intended interpretation of graded attribute
implications. Namely, the implications are interpreted in tables representing to what
degrees (taken from L) the graded attributes (columns) apply to objects (rows), such
as

I y1 y2 y3
x1 1.0 0.9 0.8
x2 1.0 0.7 0.8
x3 0.9 0.5 0.8

. (4)

An implication in such tables is “tested” in objects. As objects are represented by
L-sets of attributes, such as the L-set M = {1/y1, 0.9/y2, 0.8/y3} representing x1, the
basic semantic components involved are L-sets in Y—these are the structures of our
logic in which te formulas are interpreted. The degree ||A ⇒ B||M ∈ L to which
A ⇒ B is true in M ∈ LY is defined by

||A ⇒ B||M = S(A, M)∗ → S(B, M), (5)

where S(· · ·) denotes the degree of inclusion defined in (2), ∗ is the hedge and → the
residuum of L (the rationale is explained in Remark 1). Each M ∈ LY thus induces
a mapping EM : F → L defined by EM (A ⇒ B) = ||A ⇒ B||M and the L-
semantics S consists of all such mappings (evaluations), i.e. S = {EM | M ∈ LY }.
For convenience and again to follow common practice, we identify EM with M . That
is to say, the semantics structures in which the formulas A ⇒ B are evaluated are
L-sets M of attributes in Y (representing table rows).

Remark 1 (a) Let M ∈ LY represent an object x . According to the principles of fuzzy
logic, ||A ⇒ B||M is the truth degree of the proposition “if (it is very true that) x has
all attributes in A, then x has all attributes in B”. Hence, (5) generalizes the notion
of validity of ordinary attribute implications. In particular, one easily checks that if
L = {0, 1}, we get the notion of ordinary attribute implication and (5) becomes the
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A logic of graded attributes 791

ordinary condition of validity. The hedge ∗ may be thought of as a parameter. In
particular, setting ∗ to globalization and identity (Sect. 2.1) yields two natural truth
conditions, as explained in (b).

(b) Let us look at the truth condition (5) from an intuitive point of view. Consider
the implication

A ⇒ B =
{
1/y1,

0.5/y3
}
⇒

{
0.8/y2

}

and the object x1 from (4), which is represented byM1 = {1/y1, 0.9/y2, 0.8/y3}. Since x1
has all the attributes to the degrees prescribed by A as well as B, i.e. A(y1) ≤ M1(y1),
A(y3) ≤ M1(y3), and B(y2) ≤ M1(y2), the implicatiion should be ruled true on
intuitive grounds. Indeed, in this case, S(A, M1) = 1 and S(B, M1) = 1, and thus
||A ⇒ B||M1 = S(A, M1)

∗ → S(B, M1) = 1 → 1 = 1 for any possible choice of
→ and ∗.

Next, consider x2 and its corresponding M2. Now, x2 has all the attributes to the
degrees prescribed by A, i.e. S(A, M2) = 1, but does not have y2 to the degree required
by B because B(y2) = 0.8 > 0.7 = M2(y2). Nevertheless, the prescribed degree 0.8 is
almost attained by x2 and onewould consider A ⇒ B almost true on intuitive grounds.
In particular, if → is the Łukasiewicz implication, we have 0.8 → 0.7 = 0.9, whence
||A ⇒ B||M2 = 1∗ → 0.9 = 1 → 0.9 = 0.9 (for every ∗), and we obtain similar
results with Goguen and Gödel connectives.

The object x3 does not even have the attributes to the degrees prescribed by A,
and hence S(A, M3) < 1. Arguably, one has two reasonable options now. First, one
may consider A ⇒ B satisfied for free because x3 does not satisfy A. This op-
tion corresponds to the choice of globalization for ∗ because then, ||A ⇒ B||M3 =
S(A, M3)

∗ → S(B, M3) = 0 → S(B, M3) = 1 for arbitrary →. Second, one
may want to take into account the degree S(A, M3) < 1 to which x3 has all the
attributes in A in evaluating the validity of A ⇒ B. This option corresponds to
the choice of identity of ∗ because then, for → being the Łukasiewicz implication,
||A ⇒ B||M3 = S(A, M3) → S(B, M3) = 0.9 → 0.7 = 0.8. This example explains
the role of ∗ in (5): We keep the semantics general as to account for both of the options
mentioned above.

(c) Consider now themeaning of A ⇒ B being fully true for an object x represented
by M , i.e. ||A ⇒ B||M = 1. If ∗ is the identity, then since a → b = 1 iff a ≤ b, being
fully true means S(A, M) ≤ S(B, M), i.e. the degree to which x has all attributes in
A is less than or equal to the degree to which x has all attributes in B, representing one
possible meaning of A ⇒ B being fully true. If ∗ is the globalization, being fully true
means that if x has y to degree ≥ A(y) for each y ∈ Y , then x also has y to degree
≥ B(y) for each y ∈ Y , representing another possible meaning of A ⇒ B being
fully true, in which the degrees A(y) and B(y) are naturally understood as validity
thresholds.

The abstract fuzzy logic now yields the following notions (cf. Sect. 2.2). A theory
is an L-set T of graded attribute implications, the degree T (A ⇒ B) being intuitively
understood as a degree to which we can assume validity of A ⇒ B when making
inferences from T ; the set Mod(T ) of all models of T is defined by
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Mod(T ) = {M ∈ LY | T (A ⇒ B) ≤ ||A ⇒ B||M for each A ⇒ B};

the degree ||A ⇒ B||T ∈ L to which A ⇒ B semantically follows from a theory T is
defined by

||A ⇒ B||T = ∧
M∈Mod(T ) ||A ⇒ B||M .

Remark 2 Note that for L = {0, 1} (ordinary case in which 0 and 1 are the only truth
degrees), the above notions yield their well-known ordinary counterparts.

Remark 3 The choice of Pavelka’s abstract fuzzy logic for treating the present at-
tribute dependencies is motivated by the simplicity and generality of this framework.
Importantly, the notions and, as we shall see in the next section, also the arguments
within this framework are conceptually similar to those of the ordinary, bivalent theory
of attribute dependencies.

It should, nevertheless, be mentioned that we could alternatively formalize the de-
pendencies within the propositional or predicate logics developed by Pavelka [23,
partII,III] and Novák [22] which are particular abstract fuzzy logics and are men-
tioned at the end of Sect. 2.2. Alternatively, we could formalize them within the logics
with truth constants mentioned in Sect. 2.2, which are based on a bivalent notion
of entailment and in which degrees of provability may additionally be defined. In
these calculi, considered over an arbitrary but fixed complete residuated lattice with
a hedge, graded attribute implications could naturally be represented by particular
propositional formulas, such as �((a ⇒ y1) ∧ (b ⇒ y2)) ⇒ (c ⇒ y3), where ⇒ is
the symbol of implication in the particular logic, representing the attribute implication
{a/y1, b/y2}⇒{c/y3}. This would thus amount to studying certain fragments of these
calculi. It follows from our results below that such fragments would obey a Pavelka-
style completeness even though, as is well-known, Pavelka-style completeness fails
in general for such calculi (as was first observed in [23]). A study of this and other
fragments thus represents a possibly interesting direction of study.

3.2 Deduction rules, proofs, and degrees of provability

The deduction rules are pairs R = 〈Rsyn, Rsem〉 of mappings, as described in Sect. 2.2,
which we depict using schemes such as (3). In particular, our logic uses the following
deduction rules:

(Ax) 〈A ∪ B ⇒ A, 1〉 ,

(Cut)
〈A ⇒ B, a〉, 〈B ∪ C ⇒ D, b〉

〈A ∪ C ⇒ D, a∗ ⊗ b〉 ,

(Sh)
〈A ⇒ B, a〉

〈A ⇒ C, S(C, a ⊗ B)〉 ,

where A, B,C, D ∈ LY , a, b ∈ L , and S(· · ·) denotes the degree of inclusion defined
by (2). The rules are inspired by Armstrong axioms, see [20].
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A logic of graded attributes 793

Remark 4 Note that in order for our rules to conform to the form desribed above,
i.e. Rsyn(ϕ1, . . . , ϕn) and Rsem(〈ϕ1, a1〉, . . . , 〈ϕn, an〉), we may consider (Ax) as a
shorthand for a collection of rules (AxA,B) for A, B ∈ LY , (Cut) as a collection of
(CutC ) for C ∈ LY , (Sh) as a collection of (ShC ) for C ∈ LY , c ∈ L . Similar remarks
apply also to the derivable rules which are presented below.

Moreover, instead of (Sh), we might consider a collection of rules (ShB,C ) for
B,C ∈ LY . The semantic part of each such rule is a mapping a �→ S(C, a ⊗ B),
i.e. a mapping of L to L . The semantic parts of all the rules are then of the form
Rsem(a1, . . . , an) and all the rules are then rules in the sense of the original Pavelka’s
approach [23].

Notice that if L = {0, 1}, (Ax) and (Cut) can be identified with the ordinary rule of
axiom and the rule of cut, because then, the effective instances of the rules read “infer
〈A∪B ⇒ A, 1〉” and “from 〈A ⇒ B, 1〉 and 〈B∪C ⇒ D, 1〉 infer 〈A∪C ⇒ D, 1〉”.

With these rules, we now obtain from the general notions of Pavelka’s abstract
fuzzy logic (Sect. 2.2) the notion of an (L-weighted) proof of an L-weighted formula
〈A ⇒ B, a〉 from a theory T ; and that of degree |A ⇒ B|T of provability of A ⇒ B
from T i.e.

|A ⇒ B|T = ∨{a | . . . , 〈A ⇒ B, a〉 is a proof from T }.

As usual, we call a rule of the form (3) derivable from a setR of rules if there exists a
weighted proof 〈ϕ1, a1〉, . . . , 〈ϕn, an〉, . . . , 〈ϕ, b〉 with a ≤ b using rules fromR, for
every 〈ϕi , ai 〉 for which R is defined.

Lemma 1 Rules (Ax), (Cut), and (Sh) are independent, i.e. none of the rules is deriv-
able from the remanining two.

Proof (Ax): Clearly, (Ax) is not derivable from (Cut) and (Sh).
(Cut): Observe first that for L = {0, 1}, (Ax) and (Cut) may be identified with the

ordinary rules of axiom and cut, and (Sh) becomes the rule (Pro) of projectivity saying
“from A ⇒ B infer A ⇒ C , provided C ⊆ B”. Therefore, if (Cut) were derivable
from (Ax) and (Sh), this would imply that in the ordinary case, (Cut) is derivable from
(Ax) and (Pro) which is not the case, since (Ax) and (Pro) only yield rules A ⇒ B
with A ⊇ B.

(Sh): If T is crisp, i.e. T (A ⇒ B) = 0 or T (A ⇒ B) = 1 for every A ⇒ B, then
the only 〈C ⇒ D, a〉 which may be inferred from T using (Ax) and (Cut) clearly
have a = 1. On the other hand, (Sh) may infer 〈C ⇒ D, a〉 with a < 1, finishing the
proof.

The following lemma provides further, derivable rules which shall be used below.

Lemma 2 The following rules are derivable from (Ax)–(Sh):

(Ref) 〈A ⇒ A, 1〉 , (Wea)
〈A ⇒ B, a〉

〈A ∪ C ⇒ B, a〉 , (Pro)
〈A ⇒ B ∪ C, a〉

〈A ⇒ B, a〉 ,

(Add)
〈A ⇒ B, a〉, 〈A ⇒ C, b〉

〈A ⇒ B ∪ C, a ∧ b〉 , (Tra)
〈A ⇒ B, a〉, 〈B ⇒ C, b〉

〈A ⇒ C, a∗ ⊗ b〉 ,
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(Mul)
〈A ⇒ B, a〉

〈c∗ ⊗ A ⇒ c∗ ⊗ B, a〉 , (Sh↑)
〈A ⇒ B, a〉

〈A ⇒ a ⊗ B, 1〉 , (Sh↓)
〈A ⇒ B, 1〉

〈A ⇒ a → B, a〉 ,
for each A, B,C ∈ LY , and a, b, c ∈ L.

Proof (Ref): This rule results from (Ax) when putting B = ∅.
(Wea): Apply (Cut) to 〈A ∪ C ⇒ A, 1〉 (infer this by (Ax)) and 〈A ∪ A ⇒ B, a〉 =
〈A ⇒ B, a〉.
(Pro): Apply (Sh) and observe that a ≤ S(B, a ⊗ (B ∪ C)).
(Tra): Use (Cut).
(Sh↑): Use (Sh) for C = a ⊗ B and observe that 1 = S(a ⊗ B, a ⊗ B).
(Sh↓): Use (Sh) for C = a → B and observe that a ≤ S(a → B, 1 ⊗ B).
(Mul): Apply (Sh↑) to 〈A ⇒ B, a〉 to obtain

〈A ⇒ a ⊗ B, 1〉. (6)

Use (Ax) to infer 〈c∗ ⊗ A ⇒ c∗ ⊗ A, 1〉 from which (Sh) yields

〈c∗ ⊗ A ⇒ A, S(A, c∗ ⊗ A)〉. (7)

Now (Cut) applied to (7) and (6) yields 〈c∗ ⊗ A ⇒ a ⊗ B, S(A, c∗ ⊗ A)∗〉, from
which we obtain

〈c∗ ⊗ A ⇒ c∗ ⊗ a ⊗ B, S(c∗ ⊗ a ⊗ B, S(A, c∗ ⊗ A)∗ ⊗ a ⊗ B)〉. (8)

using (Sh). Now observe that S(c∗ ⊗ a ⊗ B, S(A, c∗ ⊗ A)∗ ⊗ a ⊗ B) = 1, i.e.
c∗ ⊗a⊗ B ⊆ S(A, c∗ ⊗ A)∗ ⊗a⊗ B. Indeed, due to adjointness, c∗ ≤ S(A, c∗ ⊗ A),
whence isotony and idempotency of ∗ yields c∗ ≤ S(A, c∗ ⊗ A)∗ from which c∗ ⊗
a ⊗ B ⊆ S(A, c∗ ⊗ A)∗ ⊗ a ⊗ B readily follows. Therefore, the inferred weighted
formula (8) is

〈c∗ ⊗ A ⇒ c∗ ⊗ a ⊗ B, 1〉,

from which (Sh↓) yields

〈c∗ ⊗ A ⇒ a → (c∗ ⊗ a ⊗ B), a〉.

Since a → (c∗ ⊗ a ⊗ B) ⊇ c∗ ⊗ B, we may apply (Pro) to obtain

〈c∗ ⊗ A ⇒ c∗ ⊗ B), 1〉,

verifying that (Mul) is derivable.
(Add): Use (Sh↑) to infer

〈A ⇒ a ⊗ B, 1〉
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from 〈A ⇒ B, a〉; use (Wea) to infer 〈A ∪ a ⊗ B ⇒ C, b〉 from 〈A ⇒ C, b〉 and
then use (Sh↑) to infer 〈A∪a⊗ B ⇒ b⊗C, 1〉; then apply (Cut) to the last weighted
formula and to 〈b ⊗ C ∪ a ⊗ B ⇒ b ⊗ C ∪ a ⊗ B, 1〉 to infer

〈a ⊗ B ∪ A ⇒ b ⊗ C ∪ a ⊗ B, 1〉;

then use (Cut) to 〈A ⇒ a ⊗ B, 1〉 and 〈a ⊗ B ∪ A ⇒ b ⊗ C ∪ a ⊗ B, 1〉 and infer

〈A ⇒ b ⊗ C ∪ a ⊗ B, 1〉.

Use (Sh↓) to the last weighted formula to infer

〈A ⇒ (a ∧ b) → (b ⊗ C ∪ a ⊗ B), a ∧ b〉

Finally, since B ∪ C ⊆ (a ∧ b) → b ⊗ C ∪ a ⊗ B, use (Pro) to the last displayed
formula to infer 〈A ⇒ B ∪ C, a ∧ b〉.
Remark 5 Note that in the system consisting of (Ax) (Cut), and (Sh), one can replace
(Sh) by more elementary rules, namely by (Sh↑), (Sh↓), and
(E)

〈A ⇒ a → (a ⊗ B), a〉
〈A ⇒ B, a〉 ,

for A, B ∈ LY and a ∈ L . Indeed, since (E) is a particular instance of (Pro), Lemma 2
and its proof imply that (Sh↑), (Sh↓), and (E) are derivable from (Sh).

Conversely, (Sh) is derivable from (Sh↑), (Sh↓), and (E) as follows. Apply (Sh↑)
to 〈A ⇒ B, a〉 to obtain 〈A ⇒ a ⊗ B, 1〉 and then (Sh↓) to obtain

〈A ⇒ S(C, a ⊗ B) → (a ⊗ B), S(C, a ⊗ B)〉.

Apply (Sh↑) again to obtain

〈A ⇒ S(C, a ⊗ B) ⊗ (S(C, a ⊗ B) → (a ⊗ B)), 1〉.

Since S(C, a ⊗ B) ⊗ (S(C, a ⊗ B) → (a ⊗ B)) ⊇ S(C, a ⊗ B) ⊗ C and since the
instance of (Pro) with a = 1 is readily derivable from (Cut), applying this instance to
the last weighted formula, we obtain

〈A ⇒ S(C, a ⊗ B) ⊗ C, 1〉,

from which we get by (Sh↑)

〈A ⇒ S(C, a ⊗ B) → (S(C, a ⊗ B) ⊗ C), S(C, a ⊗ B)〉.

Finally, (E) yields

〈A ⇒ C, S(C, a ⊗ B)〉.
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3.3 Soundness and completeness

A rule R is called sound if for each ϕ1, . . . , ϕn (for which Rsyn is defined) and for
each a1, . . . an ∈ L we have

Mod({a1/ϕ1, . . . ,
an/ϕn}) ⊆ Mod({Rsem(〈ϕ1, a1〉,...)/Rsyn(ϕ1, . . .)}),

i.e., for arbitrary M ∈ LY : if each ϕ1, . . . is true in M at least to degree a1, . . ., then
Rsyn(ϕ1, . . .) is true in M at least to degree Rsem(〈ϕ1, a1〉, . . .).
Lemma 3 Each of the rules (Ax)–(Sh) is sound. Therefore, (Ref)–(Sh↓) are sound
as well.

Proof (Ax): Soundnessmeans that ||A∪B ⇒ A||M = 1 for everyM , which is obvious
because S(A ∪ B, M)∗ ≤ S(A ∪ B, M) ≤ S(A, M) and a ≤ b iff a → b = 1.

(Cut): We need to show that if a ≤ ||A ⇒ B||M and b ≤ ||B ∪ C ⇒ D||M then
a∗ ⊗b ≤ ||A∪C ⇒ D||M . a ≤ ||A ⇒ B||M = S(A, M)∗ → S(B, M) is equivalent
to

a ⊗ S(A, M)∗ ≤ S(B, M). (9)

From (α ∨ β) → γ = (α → γ ) ∧ (β → γ ) it follows that S(B ∪ C, M) =
S(B, M) ∩ S(C, M). Therefore, b ≤ ||B ∪ C ⇒ D||M is equivalent to

b ⊗ S(B ∪ C, M)∗ = b ⊗ (S(B, M) ∧ S(C, M))∗ ≤ S(D, M)

=
∧

y∈Y
(D(y) → M(y)),

which holds true iff for each y ∈ Y ,

b ⊗ (S(B, M) ∧ S(C, M))∗ ⊗ D(y) ≤ M(y). (10)

Now, a∗ ⊗b ≤ ||A∪C ⇒ D||M is equivalent to a∗ ⊗b⊗ S(A∪C, M)∗ → S(D, M)

which holds iff for each y ∈ Y we have a∗ ⊗ b ⊗ S(A ∪ C, M)∗ ⊗ D(y) ≤ M(y).
That is, since again, S(A ∪ C, M) = S(A, M) ∧ S(C, M), we need to check

b ⊗ a∗ ⊗ (S(A, M) ∧ S(C, M))∗ ⊗ D(y) ≤ M(y). (11)

Let us first verify

a∗ ⊗ (S(A, M) ∧ S(C, M))∗ ≤ (a ⊗ S(A, M)∗ ∧ S(C, M))∗. (12)

For one, since α∗ = α∗∗, (α ∧ β)∗ ≤ α∗ ∧ β∗, and α∗ ≤ α, we have

a∗ ⊗ (S(A, M) ∧ S(C, M))∗ = a∗ ⊗ (S(A, M) ∧ S(C, M))∗∗

≤ a∗ ⊗ (S(A, M)∗ ∧ S(C, M)∗)∗ ≤ a∗ ⊗ (S(A, M)∗ ∧ S(C, M))∗.
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Therefore, to verify (12), it is enough to verify

a∗ ⊗ (S(A, M)∗ ∧ S(C, M))∗ ≤ (a ⊗ S(A, M)∗ ∧ S(C, M))∗.

Due to adjointness, this inequality is equivalent to

(S(A, M)∗ ∧ S(C, M))∗ ≤ a∗ → (a ⊗ S(A, M)∗ ∧ S(C, M))∗

which holds true because it is derived as follows. Due to α ≤ β → (β ⊗ α), (α →
β)∗ ≤ α∗ → β∗, and α ⊗ (β ∧ γ ) ≤ (α ⊗ β) ∧ γ , we have

(S(A, M)∗ ∧ S(C, M))∗

≤ (a → (a ⊗ (S(A, M)∗ ∧ S(C, M))))∗

≤ a∗ → (a ⊗ (S(A, M)∗ ∧ S(C, M)))∗

≤ a∗ → (a ⊗ S(A, M)∗ ∧ S(C, M))∗.

We established (12). Now, from (12), (9), and (10) we get

b ⊗ a∗ ⊗ (S(A, M) ∧ S(C, M))∗ ⊗ D(y)

≤ b ⊗ (a ⊗ S(A, M)∗ ∧ S(C, M))∗ ⊗ D(y)

≤ b ⊗ (S(B, M) ∧ S(C, M))∗ ⊗ D(y) ≤ M(y),

proving (11).
(Sh): We need to check that if a ≤ ||A ⇒ B||M , i.e. a ⊗ S(A, M)∗ ≤ S(B, M),

then S(C, a ⊗ B) ≤ ||A ⇒ C ||M , i.e. S(C, a ⊗ B) ⊗ S(A, M)∗ ≤ S(C, M). The last
inequality holds true iff for each y ∈ Y we have C(y) ⊗ S(C, a ⊗ B) ⊗ S(A, M)∗ ≤
M(y). Since the assumption clearly implies S(A, M)∗ ≤ a → S(B, M), we get

C(y) ⊗ S(C, a ⊗ B) ⊗ S(A, M)∗

≤ C(y) ⊗ S(C, a ⊗ B) ⊗ (a → (B(y) → M(y)))

≤ C(y) ⊗ (C(y) → a ⊗ B(y)) ⊗ (a → (B(y) → M(y)))

≤ a ⊗ B(y) ⊗ (a → (B(y) → M(y))) ≤ B(y) ⊗ (B(y) → M(y)) ≤ M(y),

by repeating application of α ⊗ (α → β) ≤ β, verifying soundness of (Sh).
Soundness of (Ref)–(Sh↓) is now a direct consequence of Lemma 2.

Before turning to the soundness and completeness theorem, we recall the notions
of a syntactic and semantic closure of a theory, which we essentially borrow from
[23]. Let us first note that in the ordinary Pavelka-style framework, Rsem-parts of
rules are required to preserve suprema, which property has important consequences
we mention below. Our rules do not have this property, i.e. in general they do not
satisfy Rsem(. . . , 〈ϕ,

∨
Ji a ji 〉, . . . ) = ∨

Ji Rsem(. . . , 〈ϕ, a ji 〉, . . . ) for any Ji ⊆ L . As
one easily checks, however, they satisfy a weaker condition, namely isotony, i.e. if
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a1 ≤ b1, …, then Rsem(〈ϕ, a1〉, . . . ) ≤ Rsem(〈ϕ, b1〉, . . . ), which turns out sufficient
to establish soundness and completeness in our setting.

We call a theory T syntactically closed w.r.t. R if for each rule R ∈ R and all
implications . . . , Ai ⇒ Bi , . . . for which Rsyn is defined we have

Rsem(. . . , 〈Ai ⇒ Bi , T (Ai ⇒ Bi )〉, . . .) ≤ T (Rsyn(. . . , Ai ⇒ Bi , . . .)).

This means that “nothing new” may be derived from T by rules inR in that if A ⇒ B
may be derived from T to degree a, then a ≤ T (A ⇒ B). This is clear because
then, for some rule R ∈ R, we have A ⇒ B = Rsyn(. . . , Ai ⇒ Bi , . . .) and a =
Rsem(. . . , 〈Ai ⇒ Bi , T (Ai ⇒ Bi )〉, . . .). As in the original Pavelka’s framework, it is
easily observed that due to the isotony of Rsem-parts of deduction rules, syntactically
closed theories form a closure system, hence we may denote by syn(T ) the least
syntactically closed theory containing T . We call a theory T semantically closed if
for each A ⇒ B we have

||A ⇒ B||T ≤ T (A ⇒ B),

i.e., T already contains all semantic consequences of T . Since semantically closed
theories form a closure system [23], we may again denote by sem(T ) the least semac-
tically closed theory containing T .

The following lemma is essential for the proof of the soundness and completeness
theorem for the system of rules (Ax)–(Sh). Note that the restriction to finite L which
we utilize to establish Lemma 4 (a), along with our restriction to finite Y , comes in fact
from our adherence to finitary deduction rules in a similar manner as the restriction to
finite Y in the proof of completeness of classical Armstrong rules [20] (this is seen in
the proof of Theorem 1).

Lemma 4 For any theory T and A ⇒ B we have

(a) (syn(T ))(A ⇒ B) = |A ⇒ B|T for any finite L;
(b) (sem(T ))(A ⇒ B) = ||A ⇒ B||T .
Proof (a): The part (syn(T ))(A ⇒ B) ≥ |A ⇒ B|T is proven the same way as in the
ordinary Pavelka’s framework [23], since isotony—which is needed in the proof—is
satisfied by (Ax)–(Sh). The proof of part (syn(T ))(A ⇒ B) ≤ |A ⇒ B|T , however,
makes use of preservation of suprema in the ordinary Pavelka’s framework [23]. An
inspection of the argument reveals that the step in which preservation of suprema is
needed has, the form

Rsem(. . . , 〈ϕ,
∨

a∈P a〉, . . . ) = ∨
a∈P Rsem(. . . , 〈ϕ, a〉, . . . ),

where P is the set of all a’s such that there exists a weighted proof . . . , 〈ϕ, a〉 from T .
Clearly, such equality is satisfied if P has a largest element, which is our case because
L is finite and because

(Sup)
〈A ⇒ B, a〉, 〈A ⇒ B, b〉

〈A ⇒ B, a ∨ b〉
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is a derived rule. To verify the latter claim, observe that applying (Sh↑) to 〈A ⇒ B, a〉
and 〈A ⇒ B, b〉 we obtain

〈A ⇒ a ⊗ B, 1〉 and 〈A ⇒ b ⊗ B, 1〉,

respectively, from which we get

〈A ⇒ a ⊗ B ∪ b ⊗ B, 1〉

by (Add). Due to a ⊗ B ∪ b ⊗ B = (a ∨ b) ⊗ B, the last weighted formula is equal
to 〈A ⇒ (a ∨ b) ⊗ B, 1〉 from which we obtain

〈A ⇒ (a ∨ b) → ((a ∨ b) ⊗ B), a ∨ b〉

by (Sh↓). Since B ⊆ (a ∨ b) → ((a ∨ b) ⊗ B), an application of (Pro) finally yields

〈A ⇒ (a ∨ b) → ((a ∨ b) ⊗ B), a ∨ b〉,

veryfying that (Sup) is a derived rule.
(b): Since the semantic notions of our logic are a particular case of the semantic

notions of the ordinary Pavelka’s framework, the result is a particular case of the
corresponding result from [23].

The following theorem presents the main result of this paper. Note that provability
refers to rules (Ax)–(Sh), i.e. |A ⇒ B|T denotes a degree of provability using rules
(Ax)–(Sh).

Theorem 1 (Soundness and completeness) Let L be finite. For each theory T of
graded attribute implications and graded attribute implication A ⇒ B we have

||A ⇒ B||T = |A ⇒ B|T .

Proof “≥”: As in Pavelka’s framework, each semantically closed T is also syntacti-
cally closed w.r.t. any set of sound rules. Since each of (Ax)–(Sh) is sound (Lemma
3) and since sem(T ) is semantically closed, sem(T ) is also syntactically closed and
so syn(sem(T )) = sem(T ). Therefore, using Lemma 4 (a), the fact that T ⊆ sem(T )

and hence also syn(T ) ⊆ syn(sem(T )), we get |A ⇒ B|T = (syn(T ))(A ⇒ B) ⊆
(syn(sem(T )))(A ⇒ B) = (sem(T ))(A ⇒ B) = ||A ⇒ B||T .

“≤”: We aim at establishing that each syntactically closed theory is semanti-
cally closed, because then sem(syn(T )) = syn(T ) and, analogously to the “≥”-part,
Lemma 4 (b), and T ⊆ syn(T ) imply ||A ⇒ B||T = (sem(T ))(A ⇒ B) ⊆
(sem(syn(T )))(A ⇒ B) = (syn(T ))(A ⇒ B) = |A ⇒ B|T .

Let thus T be syntactically closed. To establish that T is semantically closed, we
need to show sem(T ) ⊆ T . Due to Lemma 4, (sem(T ))(A ⇒ B) = ||A ⇒ B||T . By
way of contradiction, assume that there exists A ⇒ B for which

||A ⇒ B||T �≤ T (A ⇒ B). (13)
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It is now sufficient to show that there exists a model A+ ∈ Mod(T ) such that ||A ⇒
B||A+ ≤ T (A ⇒ B) since then,

||A ⇒ B||T = ∧
M∈Mod(T ) ||A ⇒ B||M ≤ ||A ⇒ B||A+ ≤ T (A ⇒ B)

is a contradiction to (13).
To this end, put A+ = ⋃

B∈LY T (A ⇒ B) ⊗ B, where T (A ⇒ B) ⊗ B is the
multiplication of B defined by (1). Observe first that T (A ⇒ A+) = 1. Indeed, since
T is syntactically closed, (Sh↑) applied to 〈A ⇒ B, T (A ⇒ B)〉 and syntactical
closedness of T yield 1 = T (A ⇒ T (A ⇒ B) ⊗ B) for each B ∈ LY . Since both
Y and L are finite, a repeated application of (Add) and syntactical closedness of T
yields T (A ⇒ A+) = 1.

We now verify: (a) ||A ⇒ B||A+ ≤ T (A ⇒ B) and (b) A+ is a model of T .
(a):Observe first that A ⊆ A+ and thus S(A, A+)∗ = 1. Indeed, syntactical closedness
of T applied to (Ref) yields T (A ⇒ A) = 1 and thus A = T (A ⇒ A) ⊗ A ⊆ A+.
Now,

||A ⇒ B||A+ = S(A, A+)∗ → S(B, A+) = 1 → S(B, A+) = S(B, A+).

It now suffices to show S(B, A+) ≤ T (A ⇒ B). Since S(B, A+) ⊗ B ⊆ A+, using
(Ax) we infer the weighted formula

〈S(B, A+) ⊗ B ∪ A+ ⇒ S(B, A+) ⊗ B, 1〉 = 〈A+ ⇒ S(B, A+) ⊗ B, 1〉.

Now, we apply (Sh↓) with a = S(B, A+) and obtain

〈A+ ⇒ S(B, A+) → (S(B, A+) ⊗ B), S(B, A+)〉.

Since B ⊆ S(B, A+) → (S(B, A+) ⊗ B, (Pro) now yields

〈A+ ⇒ B, S(B, A+)〉.

Now, (Tra) applied to 〈A ⇒ A+, T (A ⇒ A+)〉 = 〈A ⇒ A+, 1〉 and the previous
weighted formula yields the weighted formula

〈A ⇒ B, 1 ⊗ S(B, A+)〉 = 〈A ⇒ B, S(B, A+)〉.

Syntactical closedness of T now yields S(B, A+) ≤ T (A ⇒ B), proving (a).
(b): We need to show T (C ⇒ D) ≤ ||C ⇒ D||A+ for any C ⇒ D. This amounts to
checking T (C ⇒ D) ≤ S(C, A+)∗ → S(D, A+) which is equivalent to

S(C, A+)∗ ⊗ T (C ⇒ D) ⊗ D ⊆ A+. (14)

To verify (14), it suffices to show that

T (A ⇒ S(C, A+)∗ ⊗ T (C ⇒ D) ⊗ D) = 1. (15)
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Indeed, denoting E = S(C, A+)∗ ⊗ T (C ⇒ D) ⊗ D, (15) implies

A+ = ⋃
B∈LY T (A ⇒ B) ⊗ B ⊇ T (A ⇒ E) ⊗ E = E,

establishing (14). Therefore, it remains to show (15). We have T (A ⇒ A+) = 1.
Because A+ ⊇ S(C, A+)∗ ⊗ C , (Ax) yields the weighted formula

〈A+ ⇒ S(C, A+)∗ ⊗ C, 1〉. (16)

(Tra) applied to 〈A ⇒ A+, T (A ⇒ A+)〉 = 〈A ⇒ A+, 1〉 and (16) yields

〈A ⇒ S(C, A+)∗ ⊗ C, 1〉. (17)

Now, (Mul) applied to 〈C ⇒ D, T (C ⇒ D)〉 and a = S(C, A+) yields

〈S(C, A+)∗ ⊗ C ⇒ S(C, A+)∗ ⊗ D, T (C ⇒ D)〉. (18)

The last step is to apply (Tra) to (16) and (18) which gives 〈A ⇒ S(C, A+)∗ ⊗
D, T (C ⇒ D)〉. Next, (Sh↑) yields 〈A ⇒ S(C, A+)∗ ⊗ T (C ⇒ D) ⊗ D, 1〉. The
fact that T is syntactically closed now implies (15), finishing the proof.

Remark 6 Note that, as is seen from the proof and the fact that |A ⇒ B|T ≤
(syn(T ))(A ⇒ B) holds for every isotone deduction rules, |A ⇒ B|T ≤ ||A ⇒ B||T
holds for any, possibly infinite L . Note also that the completeness theorem may be
obtained for arbitrary L when using infinitary deduction rules but we refrain from
elaborating on this issue.
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