
Replacing full rectangles by dense rectangles:
concept lattices and attribute implications

Radim Belohlavek and Vilem Vychodil
Dept. Comp. Science, Palacky University, Tomkova 40, CZ-779 00, Olomouc, Czech Republic

e-mail: {radim.belohlavek, vilem.vychodil}@upol.cz

Abstract— Maximal full rectangles in tabular data are useful in several
areas of data engineering. This paper presents a survey of results in
which we replace “full rectangles” by “dense rectangles”. This way,
we go from exact to approximate. We develop issues directly related
to maximal dense rectangles: closure-like structures, concept lattices,
attribute implications, a computationally tractable description of non-
redundant bases of implications, and an algorithm for their computation.
We present illustrative examples and results of experiments.

I. PROBLEM SETTING

Data tables describing objects (table rows), attributes (table
columns) and their relationship (table entry is× or blank depending
on whether an object has or does not have an attribute) belong to
fundamental means of data representation. An example is presented
in Fig. 1. In extracting useful information from such data tables,
maximal rectangles (i.e. rectangular subtables) which are full of
×’s proved to be very useful. Two exemplary areas are formal
concept analysis (FCA), see [5], [6], and if then rules (called also
attribute implications [6], association rules in data mining [1], [13]
or functional dependencies in databases [2], [9]).

Maximal full rectangles are certain patterns in data with sur-
prisingly nice properties, connections to some useful mathematical
structures (lattices, Galois connections, etc.), and are computationally
tractable (an algorithm with polynomial time delay for computing all
maximal full rectangles from a given table exists [6]). In this paper,
we present a survey of results inspired by the following question:
What happens if we replace “maximal full rectangle” by “maximal
dense rectangle”? By a dense rectangle we mean a rectangle which
contains at most a reasonable small number of reasonably distributed
blanks. This question is legitimate since full rectangles do not capture
all interesting rectangular patterns and can be seen as extremal case
of dense rectangles. Replacing “full” by “dense” corresponds to
replacing strict conditions by approximate ones. Note that there exist
related approaches. For instance, the authors in [4] consider full
rectangles instead of maximal full rectangles.

Section II recalls preliminaries. Section III presents basic consid-
erations and definitions related to the concept of a dense rectangle.
Section IV surveys results concerning formal concepts and concept
lattices built over dense rectangles. Section V is devoted to attribute
implications with validity defined by means of dense rectangles.
Illustrative examples and further issues are the content of Section
VI. Due to a limited extent of the paper, we omit proofs of theorems
(they will be published in a full version of the paper).

The main message of the paper is the following: By replacing full
rectangles with dense rectangles we focus on different patterns. Still,
many of the nice properties due to which maximal full rectangles are
useful, are available for dense rectangles as well (related structures
like Galois connections and concept lattices, approximate validity of
if-then rules based on dense rectangles and computationally tractable
description of non-redundant bases of all approximately valid if-then
rules, etc.). Therefore, dense rectangles are worth of further study,
both experimental and theoretical.

a b c d e f g h i

leech 1 × × ×
bream 2 × × × ×

frog 3 × × × × ×
dog 4 × × × × ×

spike-weed 5 × × × ×
reed 6 × × × × ×
bean 7 × × × ×

maize 8 × × × ×
Fig. 1. Data table [6]; the attributes are:a: needs water to live,b: lives
in water,c: lives on land,d: needs chlorophyll to produce food,e: two seed
leaves, f : one seed leaf,g: can move around,h: has limbs,i: suckles its
offspring.

II. PRELIMINARIES

This section fixes terminology, notation, and recalls basic notions
of data tables and formal concept analysis [6] which will be used
throughout the paper.A data table(with binary attributes) can be
identified with a triplet〈X,Y, I〉 whereX is a non-empty finite set (of
objects), Y is a non-empty finite set (ofattributes), and I ⊆ X×Y
is an (object-attribute) relation. If〈x,y〉 ∈ I (indicated by× in the
table), we say that objectx has attributey, If 〈x,y〉 6∈ I (indicated by
blank in the table), we say that objectx does not have attributey.
For eachA⊆ X andB⊆Y denote byA⇑ andB⇓ a subset ofY and
a subset ofX defined by

A⇑ = {y∈Y | for eachx∈ A: 〈x,y〉 ∈ I},
B⇓ = {x∈ X | for eachy∈ B: 〈x,y〉 ∈ I}.

That is, A⇑ is the set of all attributes fromY shared by all objects
from A (and similarly for B⇓). A formal conceptin 〈X,Y, I〉 is a
pair 〈A,B〉 of A⊆ X andB⊆Y satisfyingA⇑ = B andB⇓ = A. That
is, a formal concept consists of a setA (so-calledextent) of objects
which are covered by the concept and a setB (so-calledintent) of
attributes which are covered by the concept such thatA is the set
of all objects sharing all attributes fromB and, conversely,B is the
collection of all attributes fromY shared by all objects fromA. Thus,
formal concepts in〈X,Y, I〉 represent particular clusters which are
hidden in〈X,Y, I〉. Alternatively, formal concepts can be defined as
maximal rectangles of〈X,Y, I〉 which are full of ×’s: For A ⊆ X
and B⊆Y, 〈A,B〉 is a formal concept in〈X,Y, I〉 iff A×B⊆ I and
there is noA′ ⊃ A or B′ ⊃ B such thatA′ ×B ⊆ I or A×B′ ⊆ I .
The setB(X,Y, I) = {〈A,B〉 |A⇑ = B,B⇓ = A} of all formal concepts
in 〈X,Y, I〉 can be equipped with a partial order≤ (modeling the
subconcept-superconcept hierarchy) defined by

〈A1,B1〉≤〈A2,B2〉 iff A1 ⊆ A2 (or, equivalently,B2 ⊆ B1).

Under≤, B(X,Y, I) happens to be a complete lattice, called a concept
lattice, the basic structure of which is described by the so-called main
theorem of concept lattices [6], [12].

An attribute implication (over Y) is an if-then rule of the form
A⇒ B, whereA,B⊆Y are sets of attributes. Except for FCA, rules
of this form are widely used in several disciplines like data mining

1170-7803-9788-6/06/$20.00 ©2006 IEEE.

(as association rules extracted from data), database systems (as
rules describing functional dependencies). A primary interpretation
of attribute implications in data tables is the following. An attribute
implication A⇒ B is true in a data table〈X,Y, I〉 if for each object
x∈X: if x has all attributes fromA then it has also all attributes from
B. Realizing that “objectx has all attributes fromA” is equivalent to
x ∈ A⇓, we can restate the interpretation as follows:A⇒ B is true
in 〈X,Y, I〉 if for each objectx∈ X: if x∈ A⇓ then x∈ B⇓. That is,
A⇒ B is true in 〈X,Y, I〉 if A⇓ ⊆ B⇓.

Example 1:Consider data table〈X,Y, I〉 from Fig. 1. For instance,
{ f}⇒ {d} is true in the table while{a,b}⇒ { f} is not (frog serves
as a counterexample).

From the point of view of association rules (in sense of Agrawal et
al. [1]), attribute implications which are true in data are the so-called
exact association rules,i.e. association rules with confidence 1.

III. D ENSE RECTANGLES

A rectangleover setsX andY is a pair〈A,B〉 with A⊆X andB⊆
Y. A rectangle〈A,B〉 is asubrectangle of a rectangle〈C,D〉 (〈C,D〉 is
a superrectangle of〈A,B〉) if A⊆C andB⊆D. Occasionally, we also
speak of a rectangle〈A,B〉 in a data table〈X,Y, I〉. A rectangle〈A,B〉
in 〈X,Y, I〉 corresponds to a subtable (submatrix) of table〈X,Y, I〉
delineated by rows given by objects fromA and columns given by
attributes fromB. For brevity, the corresponding subtables will also
be called rectangles.〈A,B〉 is a proper subrectangle of a rectangle
〈C,D〉 if 〈A,B〉 is a subrectangle of〈C,D〉, andA⊂C or B⊂ D.

We will consider properties of rectangles over given setsX andY.
For a propertyD and a data table〈X,Y, I〉, we denote byD(A,B) (or
DI (A,B)) the fact thatrectangle〈A,B〉 has propertyD in 〈X,Y, I〉.
In particular, we are interested in propertiesD such thatD(A,B)
means that〈A,B〉 is a dense rectangle in〈X,Y, I〉. By 〈A,B〉 being
dense we mean that “almost all entries of a subtable of〈X,Y, I〉 given
by 〈A,B〉 contain×”. In the following, we will be concerned with
properties which result by imposing restrictions on the number of
blanks in columns. We call these properties column-like properties.
A definition follows.

Definition 2: Let D be a property of rectangles over setsX and
Y, 〈X,Y, I〉 be a data table. If there is anY-indexed collectionl =
{ly |y∈Y} of non-negative integersly such thatDI (A,B) iff, for each
y∈ B, we have|{x∈ A| 〈x,y〉 6∈ I}| ≤ ly, thenD, denoted bycol(l),
is called acolumn-like property in〈X,Y, I〉. If, for eachy∈Y, ly = l
thenD is denoted bycol(l).

If for each I ′ ⊆ X×Y, D is a column-like property in〈X,Y, I ′〉,
thenD is called acolumn-like property.
Column-like properties can be axiomatized (we omit details). In an
analogous way, one can introduce row-like properties.

Remark 3:By definition, if D is a column-like propertycol(l),
where l = {ly |y∈Y}, then a rectangle〈A,B〉 has propertyD iff, in
each columny∈B, the number of blanks is at mostly. If D is col(l),
where l is a single non-negative integer, then〈A,B〉 has propertyD
iff, in each columny∈ B, the number of blanks does not exceedl .
Thus,col(0) means “no blank in any column”,col(2) means “at most
two blanks in each column”, etc.

Examples will be presented in Section VI.

IV. M AXIMAL DENSE RECTANGLES: CONCEPT LATTICES AND

RELATED STRUCTURES

Let 〈X,Y, I〉 be a data table,D be a property of rectangles over
setsX andY. A rectangle〈A,B〉 in 〈X,Y, I〉 is calledmaximalw.r.t.
D if 〈A,B〉 has D and no proper superrectangle of〈A,B〉 has D.
In case of maximal full rectangles in〈X,Y, I〉 (i.e., rectangles which
are full of ×’s), given A⊆ X, there is a unique maximal (hence, the

largest)B such that〈A,B〉 is a rectangle full of×’s, namelyB = A⇑.
Likewise, for B ⊆ Y, B⇓ is the largest one such that〈B⇓,B〉 is a
rectangle full of×’s. The mappings⇑ and⇓ form a so-called Galois
connection between〈2X ,⊆〉 and〈2Y,⊆〉 and maximal full rectangles
are just fixed points of⇑ and ⇓, i.e. pairs〈A,B〉 satisfyingA⇑ = B
andB⇓ = A. The set of all these fixed points is just a concept lattice
B(X,Y, I).

For general column-like propertiesD, the situation is different.
While for A ⊆ X there is still a largestB ⊆ Y such thatD(A,B),
for B ⊆ Y, there might be several maximal setsA ⊆ X such that
D(A,B). In the following, we propose an approach in which maximal
dense rectangles are identified by means of fixed points of mappings
resembling very much Galois connections. The mapping will be
described in the sequel.

Let ≤ be a binary relation defined on 22X
by

A1 ≤ A2 iff for each A1 ∈ A1 there isA2 ∈ A2 such thatA1 ⊆ A2,
(1)

for each setsA1,A2 ∈ 22X
. A couple〈22X

,≤〉 is a quasiordered set.
That is,≤ is a quasiorder (i.e., a reflexive and a transitive relation) on
22X

. Note that ifX 6= /0 then≤ defined on 22
X

is not antisymmetric,
i.e. it is not a partial order. For a quasiordered set〈22X

,≤〉, we define
a binary relation≡≤ on 22X

by

A1 ≡≤ A2 iff A1 ≤ A2 andA2 ≤ A1.

It is well known that≡≤ is an equivalence in 22
X
.

Definition 4: Let 〈X,Y, I〉 be a data table,D be a column-like
property. For eachA∈ 2X , let the largestB with D(A,B) be denoted
by A↑. For eachA ∈ 22X

andB∈ 2Y, put

A↑ =
T

A∈A A↑, B↓ = {A∈ 2X |A is maximal such thatD(A,B)}.
Remark 5:Note that in Definition 4, we use↑ for a mapping of

2X to 2Y as well as for a mapping of 22X
to 2Y. It will always be

clear from the context which mapping we mean by↑. Note also that
↑ : 22X → 2Y is an extension of↑ : 2X → 2Y in that forA⊆ X we have
A↑ = {A}↑. B↓ is a set of allA’s such that〈A,B〉 is a maximal dense
rectangle.
The following theorem shows properties of↑ and↓.

Theorem 6:For all A1,A2 ∈ 22X
andB1,B2 ∈ 2Y:

A1 ≤ A2 implies A↑
2 ⊆ A↑

1 , B1 ⊆ B2 implies B↓2 ≤ B↓1, (2)

A ≤ A↑↓, B⊆ B↓↑. (3)
Call any pair of mappings↑ : U → V and ↓ : V → U between a

quasiordered set〈U,≤〉 and a partially ordered set〈V,⊆〉 satisfying
(2) and (3) aGalois connectionbetween〈U,≤〉 and〈V,⊆〉. Therefore,
↑ and↓ introduced above form a Galois connection between〈22X

,≤
〉 and 〈2Y,⊆〉. Basic properties of Galois connections between a
quasiordered set and a partially ordered set are slightly different from
the ordinary case and are shown in the next

Theorem 7:Mappings↑ : 22X→ 2Y and ↓ : 2Y→ 22X
satisfying (2)

and (3) have the following properties.
(i) A↑ = A↑↓↑ for eachA ∈ 22X

.
(ii) B↓ ≡≤ B↓↑↓ andB↓↑↓ = B↓↑↓↑↓ for eachB∈ 2Y.

(iii) A mapping CX : 22X→ 22X
defined byCX(A) = A↑↓ satisfies:

A ≤ CX(A), A1 ≤ A2 implies CX(A1) ≤ CX(A2); CX(A) ≡≤
CX(CX(A)) andCX(CX(A)) = CX(CX(CX(A))).

(iv) A mapping CY : 2Y → 2Y defined byCY(B) = B↓↑ is a closure
operator in〈2Y,⊆〉, i.e.CY satisfies:B⊆CY(B), B1⊆B2 implies
CY(B1)⊆CY(B2); CY(B) = CY(CY(B)).

Definition 8: Let 〈X,Y, I〉 be a data table,D be a column-like
property. AD-concept lattice of〈X,Y, I〉 is a set

BD(X,Y, I) = {〈A ,B〉 ∈ 22X×2Y |A↑ = B, B↓ = A}
equipped with a binary relation≤ defined by

118

〈A1,B1〉 ≤ 〈A2,B2〉 iff A1 ≤ A2 (iff B1 ⊇ B2).
Following further the terminology of formal concept analysis, pairs

〈A ,B〉 ∈ BD(X,Y, I) are called (formal) D-concepts. If 〈A ,B〉 ∈
BD(X,Y, I), A is called a D-extent, B is called a D-intent. A
collection of allD-intents will be denoted by IntD(X,Y, I), i.e.

IntD(X,Y, I) = {B∈ 2Y | 〈A ,B〉 ∈ BD(X,Y, I)for someA ∈ 22X
}.

The structure ofD-concepts is characterized by the following theo-
rem.

Theorem 9:For a column-like propertyD and a data table
〈X,Y, I〉, BD(X,Y, I) equipped with≤ is a complete lattice with
infima

V
and suprema

W
given byV

j∈J〈A j ,B j 〉=〈{
T

j∈J A j |A j ∈ A j}↑↓↑↓,(
S

j∈J B j)↓↑〉,W
j∈J〈A j ,B j 〉=〈(

S
j∈J A j)↑↓↑↓,

T
j∈J B j 〉.

Remark 10:Note that the Main theorem of concept lattices [6]
follows directly from Theorem 9: if we consider col(0) as a property
D, then we can show thatBD(X,Y, I) is isomorphic toB(X,Y, I).

We have BD(X,Y, I) = {〈B↓,B〉 |B ∈ fix(CY)} where fix(CY) =
{B ⊆ Y |B = CY(B)} is a set of all fixed points ofCY (note that
CY(B) = B↓↑). Thus,B is a D-intent iff B = B↓↑. Therefore, in order
to obtainBD(X,Y, I) it suffices to compute fix(CY). Theorem 7 (iv)
says thatCY is a closure operator in〈2Y,⊆〉. An algorithm for
computing of all fixed points of a given closure operator is known
(NEXTCLOSURE, also known as Ganter’s algorithm, see [6]) and
works with polynomial time delay. In order to apply NEXTCLOSURE,
we need to be able to computeCY(B) (for B⊆Y).

To find an efficient algorithm for computation ofCY for a general
column-like propertyD seems to be an interesting problem. Note that
for particular choices ofD, we can use the following idea. LetD
be given bycol(l), wherel = {ly |y∈Y, ly = 0 or ly = 1}, see above.
That is, we allow for at most one zero in columnsy with ly = 1. In
order to computeCY(B) = B↓↑, we need to computeA = B↓ andA↑

(namely,CY(B) = A↑).
Given A ∈ 22X

, computation ofA↑ is obvious. Namely, we have
A↑ =

T
A∈A A↑ and A↑ = {y ∈ Y |D(A,{y})}. In order to compute

B↓, put B0 = {y∈ B| ly = 0}, B1 = {y∈ B| ly = 1}, and consider the
following undirected graphG. Vertices: The set of vertices ofG is
the setX− (B⇓∪Z) where

Z = {x∈ X | there isy∈ B0 : 〈x,y〉 6∈ I}.

That is, vertices are particular objects fromX. Edges: There is an
edge between verticesx1 andx2 of G iff there is noy∈ B1 such that
〈x1,y〉 6∈ I and 〈x2,y〉 6∈ I , i.e. neither ofx1 andx2 has attributey.

Recall that a clique inG is any setM of vertices ofG such that
for eachx1,x2 ∈M there is an edge betweenx1 andx2. A clique M
is maximal if no other vertex can be added toM so thatM be still a
clique. For technical reasons, if the set of vertices ofG is empty, we
consider/0 (empty set) as a clique ofG (this is then the only maximal
clique of G). It is then easy to see the following assertion.

Lemma 11:For B⊆Y we have

B↓ = {B⇓∪M |M is a maximal clique inG}.
Recall that efficient algorithms for listing all maximal cliques

exist (see e.g. [8]). For more general propertiesD, the same idea
leads to analogous clique-characterizations. For instance, forD being
col(l), we get maximal cliques in uniform hypergraph with edges of
size l −1. These topics need to be explored both theoretically and
experimentally.

V. ATTRIBUTE IMPLICATIONS BASED ON DENSE RECTANGLES:
FROM APPROXIMATE VALIDITY TO NON-REDUNDANT BASES

In this section we develop attribute implications from the point
of view of dense rectangles: their validity and results leading to

computationally tractable definition of non-redundant bases.

A. Approximate validity by means of dense rectangles

First, we introduce a notion of aD-truth (a kind of approximate
validity) of a given attribute implication in a data table. We have seen
above that in the ordinary case,A⇒B is true in〈X,Y, I〉 iff A⇓ ⊆B⇓.
Realizing that the partial order⊆ is replaced by a quasiorder≤ in
the setting of dense rectangles leads to the following definition.

Definition 12: Let 〈X,Y, I〉 be a data table,D be a column-like
property in〈X,Y, I〉, A⇒B be an attribute implication overY. A⇒B
is calledD-true in 〈X,Y, I〉, written ||A⇒ B||DI = 1, if A↓ ≤ B↓. If
A⇒ B is not D-true in 〈X,Y, I〉, we put ||A⇒ B||DI = 0.

By (1) and Definition 12,A⇒B is D-true in data table〈X,Y, I〉, if
for eachM ∈A↓ there isN∈B↓ such thatM⊆N. That is,A⇒B is D-
true in the table if for each (dense) rectangle〈M,A〉 whereM ∈ A↓

there is a (dense) rectangle〈N,B〉 such thatN ∈ B↓ and 〈M,A〉 is
vertically contained in〈N,B〉. Recall that for rectangles〈M,A〉 and
〈N,B〉, we haveD(M,A) andD(N,B). If D differs fromcol(0), both
the rectangles can contain blanks.

Remark 13:Even if the notions of truth andD-truth of attribute
implications are different in general, forD being col(0), the notion
of a truth in a data table coincides with the notion of aD-truth (i.e.,
col(0)-truth) in a data table.

In the sequel we show several equivalent formulations ofD-truth
and show thatD-truth can be expressed as a validity in all dense
intents. For technical reasons, we introduce the following notation.
An attribute implicationA ⇒ B is true (valid) in M ⊆ Y, written
||A⇒ B||M = 1, if we have:

if A⊆M thenB⊆M.

If A⇒B is not true inM we put||A⇒B||M = 0. Note that in|| · · · ||M
we do not use superscriptD because the definition of|| · · · ||M does
not depend onD.

Lemma 14:The following assertions are equivalent:
(i) A⇒B is D-true in〈X,Y, I〉, (ii) B⊆A↓↑, (iii) ||A⇒B||A↓↑ = 1.

If we are given a data table〈X,Y, I〉 and a column-like property
D, the set IntD(X,Y, I) of D-intents is a set of subsets ofY. Thus,
for an attribute implicationA⇒ B, we can ask if||A⇒ B||M = 1
for eachD-intent M ∈ IntD(X,Y, I). This way we obtain a natural
notion of a truth (validity) of attribute implications in a collection of
all dense intents. Interestingly enough, the next assertion shows that
the attribute implications which areD-true in〈X,Y, I〉 are exactly the
attribute implications which are true in eachD-intent.

Theorem 15:Let 〈X,Y, I〉 be a data table,D be a column-like
property in〈X,Y, I〉, A⇒ B be an attribute implication overY. Then
||A ⇒ B||DI = 1 if and only if, for eachM ∈ IntD(X,Y, I), ||A ⇒
B||M = 1.

B. Completeness of sets of implications

In this section we characterizeD-true attribute implications using
entailments from particular sets of attribute implications.

Given a setT of attribute implications,M ⊆Y is called amodelof
T if, for eachA⇒ B∈ T, ||A⇒ B||M = 1. The system of all models
of T will be denoted by Mod(T). An attribute implicationA⇒ B
semantically followsfrom a setT of attribute implications, written
||A⇒ B||T = 1, if A⇒ B is true in each model ofT, see also [6].

Definition 16: A set T of attribute implications is calledD-
complete in data table〈X,Y, I〉 if, for eachA⇒ B, ||A⇒ B||DI = 1 if
and only if ||A⇒ B||T = 1.

Remark 17:(1) By definition, T is D-complete in data table
〈X,Y, I〉 if each attribute implication follows fromT iff it is D-true

119

in 〈X,Y, I〉. In other words, aD-complete set describes all attribute
implications, which areD-true in data, via semantic entailment.

(2) If D is equivalent tocol(0), thenT is D-complete in〈X,Y, I〉
if and only if T is complete in〈X,Y, I〉 in the usual sense [6].

In Definition 16, we definedD-completeness using a semantic
entailment from a set of attribute implications. One might as well
define it in terms of syntactic entailment because reasoning with
attribute implications is syntactico-semantically complete. In more
detail, A⇒ B semantically follows fromT iff A⇒ B is derivable
from T using the so-called Armstrong inference rules [2], [6], [9].
Hence, we have the following

Theorem 18:Let T beD-complete in〈X,Y, I〉. Then the following
assertions are equivalent:

(i) A⇒ B is D-true in 〈X,Y, I〉,
(ii) A⇒ B semantically follows fromT,

(iii) A⇒B is derivable fromT using Armstrong inference rules[2],
[9] .

The following assertion shows an important characterization ofD-
completeness: a setT is D-complete in data iff the models ofT are
exactly theD-intents.

Theorem 19: Tis D-complete in data table〈X,Y, I〉 if and only if
Mod(T) = IntD(X,Y, I).

C. Non-redundant bases of approximately valid implications

In this section we describe particularD-complete sets of attribute
implications which are minimal.

Definition 20: A set T of attribute implications overY is called
a non-redundantD-basis of〈X,Y, I〉, if T is D-complete in〈X,Y, I〉
and no proper subset ofT is D-complete in〈X,Y, I〉.

In order to describe particular non-redundantD-bases, we intro-
duce a notion of a pseudoD-intent as follows:

Definition 21: Let 〈X,Y, I〉 be a data table,D be a column-like
property.P⊆ Y is called a pseudoD-intent of 〈X,Y, I〉 if P 6= P↓↑

and, for each pseudoD-intent Q of 〈X,Y, I〉 such thatQ⊂ P, we
haveQ↓↑ ⊆P. The collection of all pseudoD-intents of〈X,Y, I〉 will
be denoted byP .

Remark 22:(1) Described verbally,P is a pseudoD-intent iff P is
not aD-intent and eachD-intentQ↓↑, which is a closure of a pseudo
D-intent Q⊂ P, is a subset ofP.

(2) Since Y is supposed to be finite, given〈X,Y, I〉 and D,
Definition 21 recursively defines a unique systemP of all pseudo
D-intents of〈X,Y, I〉.

(3) The notion of a pseudoD-intent is an analogy of the notion of a
pseudo intent, see [7], [6]. However, one cannot directly adopt results
from [7], [6] in case of dense rectangles because↓ and ↑ no longer
form a Galois connection in the classical sense. On the other hand,
we show that, with appropriate modifications, all important properties
of pseudo intents are preserved in case of our pseudoD-intents and
arbitrary column-like propertyD.

The following assertion says that the collectionP of all pseudo
D-intents can be used to obtain a non-redundantD-basis.

Theorem 23:Let 〈X,Y, I〉 be a data table,D be a column-like
property,T = {P⇒ P↓↑ |P∈ P}. Then

(i) T is a non-redundantD-basis of〈X,Y, I〉.
(ii) If T ′ is D-complete in〈X,Y, I〉, then |T| ≤ |T ′|.
We now focus on computing non-redundantD-bases given by

collections of pseudoD-intents. Note first that due to Theorem 23 (ii),
T = {P ⇒ P↓↑ |P ∈ P} is a minimal non-redundantD-basis of
〈X,Y, I〉. That is, there is noD-complete set which has strictly lesser
number of attribute implications thanT has. Since↓↑ is a closure
operator, we can use the ideas from [6] to compute pseudoD-intents
(and thus the desired setT) as fixed points of a special closure

operator. GivenM ⊆ Y and a setT of attribute implications over
Y, we define a sequenceMD

T,0 ⊆MD
T,1 ⊆ ·· · of subsets ofY by

MD
T,0 = M, MD

T,i+1 = MD
T,i ∪

S
{B|A⇒ B∈ T andA⊂MD

T,i}.

Furthermore, we define an operatorCD
T : 2Y→ 2Y by

CD
T (M) =

S∞
i=0MD

T,i .

The following assertion shows thatCD
T can be used to obtain pseudo

D-intents.
Theorem 24:Let 〈X,Y, I〉 be a data table,D be a column-like

property,T = {P⇒ P↓↑ |P∈ P}. Then

P = {M ⊆Y |M = CD
T (M) andM 6= M↓↑}. (4)

From Theorem 24 it follows that pseudoD-intents are particular
fixed points ofCD

T . For computation of all fixed points ofCD
T we

can use NEXTCLOSURE [6], see Section IV. In addition to that,
each closureCD

T (M) of M can be computed using a modification
of L INCLOSURE (see [9] for details) which has linear complexity
with respect to the size ofT. Combining these two algorithms
together with Theorem 23 and (4), we get the following algorithm
for computing of non-redundantD-bases:

Algorithm 25: Denote by NEXTCLOSURE(M,CD
T) a subset ofY

which is the lexically smallest fixed point ofCD
T strictly greater than

M ⊆Y, see [6]. The algorithm goes as follows:
Input: data table〈X,Y, I〉, column-like propertyD
Output: non-redundantD-basisT of 〈X,Y, I〉

M := /0, T := /0
if M 6= M↓↑: add M⇒M↓↑ to T
while M 6= Y:

M := NEXTCLOSURE(M,CD
T)

if M 6= M↓↑: add M⇒M↓↑ to T
Remark 26:Correctness of Algorithm 25 follows from Theo-

rem 24 and Theorem 23. The only place we need to take care about
is that during the computation, we use operatorCD

T whereT = {P⇒
P↓↑ |P ∈ P ′}, however,P ′ may not contain all pseudoD-intents
of 〈X,Y, I〉, cf. Theorem 24. On the other hand, NEXTCLOSURE

generates all fixed points in lexical order [6] which is a total order
extending the strict subsethood relation⊂, i.e. in each computational
step, we already have computed all (strictly smaller) pseudoD-intents
which are necessary to determine the lexically-next one.

VI. I LLUSTRATIVE EXAMPLES AND FURTHER ISSUES

In this section we present illustrative examples and results of
experiments. For brevity, we adopt the following convention for
denoting column-like properties. Given a data table〈X,Y, I〉, we
assume thatY = {y1, . . . ,yn} is ordered byy1 < y2 < · · ·< yn. Then,
each column-like propertyD for 〈X,Y, I〉 is uniquely given by a
sequencely1, ly2, . . . , lyn of nonnegative integers, meaning thatD is
equivalent tocol(l), wherel = {ly1, . . . , lyn}, see above. If there is no
danger of confusion, we writely1 ly2 · · · lyn instead ofly1, ly2, . . . , lyn and
we denoteD by col(ly1 ly2 · · · lyn). For instance, ifY = {y1, . . . ,y4},
thencol(0101) represents column-like propertyD which allows one
blank in columnsy2 andy4 and disallow any blanks elsewhere.

Example 27:Consider a data table〈X,Y, I〉 presented in Fig. 1.
The ordinary concept latticeB(X,Y, I) induced by 〈X,Y, I〉 has
19 formal concepts (maximal rectangles), which are denoted by
C0, . . . ,C18:
C0 = 〈X,{a}〉, C1 = 〈{1,2,3,4},{a,g}〉,
C2 = 〈{2,3,4},{a,g,h}〉, C3 = 〈{5,6,7,8},{a,d}〉,
C4 = 〈{5,6,8},{a,d, f}〉, C5 = 〈{3,4,6,7,8},{a,c}〉,
C6 = 〈{3,4},{a,c,g,h}〉, C7 = 〈{4},{a,c,g,h, i}〉,
C8 = 〈{6,7,8},{a,c,d}〉, C9 = 〈{6,8},{a,c,d, f}〉,

120

C0

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12
C13

C14C15

C16
C17

C18

C18

D3
C17

D2

D1

C16
D0

C15

C12

C11

C8

C5

C0

Fig. 2. Hierarchies ofD-concepts

C10 = 〈{7},{a,c,d,e}〉, C11 = 〈{1,2,3,5,6},{a,b}〉,
C12 = 〈{1,2,3},{a,b,g}〉, C13 = 〈{2,3},{a,b,g,h}〉,
C14 = 〈{5,6},{a,b,d, f}〉, C15 = 〈{3,6},{a,b,c}〉,
C16 = 〈{3},{a,b,c,g,h}〉, C17 = 〈{6},{a,b,c,d, f}〉, C18 = 〈{},Y〉.
Fig. 2 (left) depicts the concept latticeB(X,Y, I) [6], i.e. the partially
ordered hierarchy of formal conceptsC0, . . . ,C18. As mentioned
above if we takeD to becol(0) (no blanks allowed), theD-concept
lattice Bcol(0)(X,Y, I) is “the same” as the ordinary concept lattice
B(X,Y, I). In more detail, we have

Bcol(0)(X,Y, I) = {〈{A},B〉 | 〈A,B〉 ∈ B(X,Y, I)}.

On the other hand, by various choices ofD we can get simplified
or extended sets (hierarchies) ofD-concepts. For instance, ifD is
col(011000000), i.e. if we allow one blank in columns corresponding
to attributes “lives in water” and “lives on land”, we get the following
set ofD-concepts:
C0 = 〈{X},{a}〉, C5 = 〈{{3,4,5,6,7,8},{2,3,4,6,7,8},
{1,3,4,6,7,8}},{a,c}〉, C8 = 〈{{5,6,7,8}},{a,c,d}〉,
C11 = 〈{{1,2,3,5,6,8},{1,2,3,5,6,7}, {1,2,3,4,5,6}},{a,b}〉,
C12 = 〈{{1,2,3,4}},{a,b,g}〉,
C15 = 〈{{3,5,6,8},{3,5,6,7},{3,4,5,6},{2,3,6,8},
{2,3,6,7},{2,3,4,6},{1,3,6,8},{1,3,6,7},

{1,3,4,6}},{a,b,c}〉,
D0 = 〈{{2,3,4},{1,3,4}},{a,b,c,g}〉,
C16 = 〈{{2,3,4}},{a,b,c,g,h}〉, D1 = 〈{{4}},{a,b,c,g,h, i}〉,
D2 = 〈{{5,6,8},{5,6,7}},{a,b,c,d}〉,
C17 = 〈{{5,6,8}},{a,b,c,d, f}〉,
D3 = 〈{{7}},{a,b,c,d,e}〉, C18 = 〈{{}},Y〉.
The hierarchy ofD-concepts is depicted in Fig. 2 (middle). Observe
that D-concepts denoted byCi have the same intents as the corre-
spondingcol(0)-concepts. Extents of the correspondingD-concepts
and col(0)-concepts do not coincide in general because we use
two different column-like properties.BD(X,Y, I) is smaller than
B(X,Y, I). Thus, BD(X,Y, I) can be seen as a simplified view on
B(X,Y, I) in which we allowD-concepts which are not represented
by rectangles full of 1’s.BD(X,Y, I) contains fourD-concepts which
do not have their analogies inB(X,Y, I): D0 (D-concept of organisms

living in water and on land which can move around),D1 (D-concept
of a dog),D2 (D-concept of organisms living in water and on land
which need chlorophyll to produce food),D3 (D-concept of a bean).
Extents ofD-conceptsD1 (a dog) andD3 (a bean) are contained in
B(X,Y, I) (seeC7 andC10), however, intents of conceptsC7 andC10
differ from intents ofD1 andD3.

Let us mention that other choices ofD may extend the structure.
As an example, consider column-like propertycol(1) (one blank in
each column). In this particular case, we have 51D-concepts, see
Fig. 2 (right).

The next example deals with non-redundantD-bases of implica-
tions. We will use non-redundant bases (D-bases) which have shorter
description than bases described by Theorem 23. Instead of taking
a setT = {P⇒ P↓↑ |P ∈ P} of attribute implications, whereP is
a collection of pseudo intents (D-intents), we will use sets of the
form T = {P⇒ P◦ |P∈ P}, whereP◦ = {y∈Y |y∈ P↓↑ andy 6∈ P}.
That is, the attribute setP◦ results fromP↓↑ by removing attributes
which appear inP. Obviously, if P is a collection of pseudo intents
(D-intents) thenT is a (minimal) non-redundant basis (D-basis).

Example 28:Consider again a data table〈X,Y, I〉 from Fig. 1. The
non-redundant basis given by pseudo intents (i.e., pseudocol(0)-
intents) is the following:

T0 = {{a,b,c,g,h, i}⇒{d,e, f},{a,b,d}⇒{ f},
{a,c,d,e, f}⇒{b,g,h, i},{a,c,g}⇒{h},
{a,d,g}⇒{b,c,e, f ,h, i},{a,e}⇒{c,d},
{a, f}⇒{d},{a,h}⇒{g},{a, i}⇒{c,g,h},{}⇒{a}}.

In case ofD beingcol(1), the non-redundantD-basisT1 has only 7
implications (T0 consists of 10 implications):

T1 = {{a,b,c,d,g,h, i}⇒{ f},{a,c,d,e, f ,g}⇒{b,h, i},
{a,e}⇒{c,d},{a, f}⇒{d},{a,h}⇒{g},{a, i}⇒{c,g,h},
{}⇒{a}}.

Observe that all attribute implications fromT1 except for
{a,b,c,d,g,h, i}⇒{ f} and {a,c,d,e, f ,g}⇒{b,h, i} are contained
in T0. Nevertheless, these two implications are true in the usual sense
in the data table. Thus, each intent (col(0)-intent) is a model ofT1.
On the other hand, Theorem 19 and Theorem 23 say thatT1 is not
complete (col(0)-complete) in〈X,Y, I〉 because|T1|< |T0|, i.e. some
models ofT1 are not intents (col(0)-intents). Of course,T1 is col(1)-
complete in〈X,Y, I〉 because it is a non-redundantcol(1)-basis.

By other choices of column-like properties, we can get even smaller
non-redundantD-bases. For example, ifD is col(011101110), we get
the following D-basis:

T2 = {{a,e}⇒{b,c,d, f ,g,h},{a, f}⇒{d},{a,h}⇒{g},
{a, i}⇒{b,c,d, f ,g,h},{}⇒{a}}.

Unlike T1, T2 contains implications which are not true in〈X,Y, I〉 in
the usual sense. For instance,{a, i}⇒{b,c,d, f ,g,h} is not true in
〈X,Y, I〉.

Example 29:Fig. 3 shows an experimentally assessed dependence
of the number of formalcol(1)-concepts ofBcol(1)(X,Y, I) (the two
graphs left) and the number of implications in the minimal non-
redundant bases (the two graphs right) on the density of input data
tables (proportion of×’s). Experiments have shown that in dense
data tables,Bcol(1)(X,Y, I) is usually smaller thanBcol(0)(X,Y, I). On
the other hand, in data tables with average density the situation is
the opposite. The first graph depicts the situation for data tables with
5 attributes, the seconds graph depicts the situation for data tables
with 10 attributes. Solid line in a graph represents average number

121

10% 30% 50% 70% 90%

2

4

6

8

10

12

10% 30% 50% 70% 90%

5

10

20

40

60

90

360

10% 30% 50% 70% 90%

1

2

3

4

5

10% 30% 50% 70% 90%

1

5

10

15

20

25

Fig. 3. The first and the second graph: Average number ofcol(1)-concepts.
The third and the fourth graph: Average number of minimal non-redundant
bases.

of concepts (col(0)-concepts); dashed line represents average number
of col(1)-concepts.

The third and the fourth graphs show the corresponding behavior
of the number of implications of minimal non-redundant bases.
Surprisingly, the experiments have shown that sizes of minimal
col(1)-bases are usually smaller than sizes of minimalcol(0)-bases
and that this observation more or less does not depend on the density
of a data table. That is, with our approach to approximate validity of
attribute implications we get a smaller number of implications (which
are presented to the user). This is a beneficial feature. Again, the
first graph depicts the situation for data tables with 5 attributes, the
seconds graph depicts the situation for data tables with 10 attributes;
solid line in a graph represents average number of implications inD-
bases (approximate validity), dashed line represents average number
of implications in ordinary bases (exact validity).

Future research needs to focus on the following topics: connections
to association rules (the concept ofD-truth is an approach to
approximate validity which is different to the one based on confidence
used in association rules, a comparison of these two approaches to
approximate validity is an issue to be studied); experiments with large
datasets; algorithms for computing of closures↓↑, which are related to
computing of non-redundantD-bases; relationships between different
choices of density propertyD and a study of further types of density
properties.

ACKNOWLEDGMENT

Supported by grant No. 1ET101370417 of GA AV̌CR, by grant
No. 201/05/0079 of the Czech Science Foundation, and by institu-
tional support, research plan MSM 6198959214.

REFERENCES

[1] Agrawal R., Imielinski T., Swami A. N.: Mining association rules
between sets of items in large databases.Proc. ACM Int. Conf. of
Management of Data, pp. 207–216, 1993.

[2] Armstrong W. W.: Dependency structures in data base relationships.IFIP
Congress, Geneva, Switzerland, 1974, pp. 580–583.

[3] Belohlavek R., Vychodil V.: Dense rectangles in object-attribute data. In:
Proc. IEEE GrC 2006, 2006 IEEE International Conference on Granular
Computing, Atlanta, GA, May 10–12, 2006, pp. 586–591.

[4] Burgmann C., Wille R.: The basic theorem on preconcept lattices. In:
Missaoui R., Schmid J. (Eds.): ICFCA 2006,Lecture Notes in Artificial
Intelligence3874, pp. 80–88, Springer-Verlag, Berlin/Heidelberg, 2006.

[5] Carpineto C., Romano G.:Concept Data Analysis. Theory and Applica-
tions. J. Wiley, 2004.

[6] Ganter B., Wille R.: Formal Concept Analysis. Mathematical Founda-
tions. Springer, Berlin, 1999.

[7] Guigues J.-L., Duquenne V.: Familles minimales d’implications informa-
tives resultant d’un tableau de données binaires.Math. Sci. Humaines
95(1986), 5–18.

[8] Johnson D. S., Yannakakis M., Papadimitrou C. H.: On generating all
maximal independent sets.Inf. Processing Letters15(1988), 129–133.

[9] Maier D.: The Theory of Relational Databases.Computer Science Press,
Rockville, 1983.

[10] Norris E. M.: An algorithm for computing the maximal rectangles of a
binary relation.Journal of ACM21:356–266, 1974.

[11] Ore O.: Galois connections.Trans. Amer. Math. Soc.55:493–513, 1944.
[12] Wille R.: Restructuring lattice theory: an approach based on hierarchies

of concepts. In: Rival I.:Ordered Sets.Reidel, Dordrecht, Boston, 1982,
445—470.

[13] Zhang C., Zhang S.:Association Rule Mining. Models and Algorithms.
Springer, Berlin, 2002.

122

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

