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Abstract—Maximal full rectangles in tabular data are useful in several ‘ [a[bJcldfe[f[g[h[i]
areas of data engineering. This paper presents a survey of results in leech| 1] x | x X
which we replace “full rectangles” by “dense rectangles”. This way, bream 2| x | x X | x
we go from exact to approximate. We develop issues directly related frog[ 3] x | x | x < | x
to maximal dense rectangles: closure-like structures, concept lattices, dog| 4| x X X < <
attribute implications, a computationally tractable description of non- -
redundant bases of implications, and an algorithm for their computation. spike-weed S| x | x X X
We present illustrative examples and results of experiments. reed 6] x | x | x | x X
bean 7| x x | x| x
maize| 8|| x X | % X
|. PROBLEM SETTING Fig. 1. Data table [6]; the attributes ara: needs water to liveb: lives

in water,c: lives on land,d: needs chlorophyll to produce food, two seed

Data tables describing objects (table rows), attributes (tat;(f Sver?r.]f: one seed leafg: can move aroundh: has limbs,i: suckles its
columns) and their relationship (table entrysisor blank depending pring-
on whether an object has or does not have an attribute) belong to
fundamental means of data representation. An example is presented Il. PRELIMINARIES

in Fig.1. In extracting useful information from such data tables, hi ion fi inol . d lis basi .
maximal rectangles (i.e. rectangular subtables) which are full of This section fixes terminology, notation, and recalls basic notions

x's proved to be very useful. Two exemplary areas are form8 data tables and formal concept analysis [6] which will be used

concept analysis (FCA), see [5], [6], and if then rules (called aI%?roughout the papeA data table(with binary attribute} can be

attribute implications [6], association rules in data mining [1], [13 ggggd\{v"ghaa:‘gal?g;s If?n‘?tlgesrgtx (zgrir;ﬂ:;mggdf:ngexsity(m
or functional dependencies in databases [2], [9]). ) - a A A =
Maximal full Fr)ectan les are certain :Eltt]er[ni) in data with sufs 2" (object-attribute) relation. Ifx.y) €1 (indicated by in the
- . 9 ; P .{aPIe), we say that objeathas attributey, If (x,y) ¢ | (indicated by
prisingly nice properties, connections to some useful mathemau%T

h ! . . nk in the table), we say that objectdoes not have attributg.
structures (lattices, Galois connections, etc.), and are computation 0 1
! ) L . r eachA C X andB CY denote byAl" andB" a subset ofY and
tractable (an algorithm with polynomial time delay for computing all

maximal full rectangles from a given table exists [6]). In this pape‘?, subset oK defined by

we present a survey of results inspired by the following question: Al

What happens if we replace “maximal full rectangle” by “maximal g

dense rectangle”? By a dense rectangle we mean a rectangle which

contains at most a reasonable small number of reasonably distributédt is, Al is the set of all attributes frot¥ shared by all objects

blanks. This question is legitimate since full rectangles do not captdrem A (and similarly for B%). A formal conceptin (X,V,1) is a

all interesting rectangular patterns and can be seen as extremal gage(A,B) of AC X andB C Y satisfyingA" = B andBY = A. That

of dense rectangles. Replacing “full” by “dense” corresponds s, a formal concept consists of a eiso-calledextenj of objects

replacing strict conditions by approximate ones. Note that there exighich are covered by the concept and a Befso-calledintent) of

related approaches. For instance, the authors in [4] consider faffributes which are covered by the concept such #a the set

rectangles instead of maximal full rectangles. of all objects sharing all attributes froB and, converselyB is the
Section Il recalls preliminaries. Section Ill presents basic consigollection of all attributes fronY shared by all objects frorA. Thus,

erations and definitions related to the concept of a dense rectanfmal concepts inKX,Y,l) represent particular clusters which are

Section IV surveys results concerning formal concepts and concéffiden in(X,Y,I). Alternatively, formal concepts can be defined as

lattices built over dense rectangles. Section V is devoted to attribiie@ximal rectangles ofX,Y,l) which are full of x's: For A C X

implications with validity defined by means of dense rectangle8ndB CY, (A B) is a formal concept inX,Y,I) iff AxBC I and

lllustrative examples and further issues are the content of Sectii¢re is noA’ > A or B' © B such thatA’ xBC | or AxB CI.

VI. Due to a limited extent of the paper, we omit proofs of theoremiBhe setB(X.Y,1) = {(A B) |AT = B,B! = A} of all formal concepts

(they will be published in a full version of the paper). in (X,Y,1) can be equipped with a partial order (modeling the
The main message of the paper is the following: By replacing fuflbconcept-superconcept hierarchy) defined by

rectangles with dense re_ctangles we fpcus on different patterns. Sti”(Al,Bl> <(A2,Bp) iff A C Ay (or, equivalentlyB, C By).

many of the nice properties due to which maximal full rectangles are

useful, are available for dense rectangles as well (related structudesler<, B(X,Y,|) happens to be a complete lattice, called a concept

like Galois connections and concept lattices, approximate validity lafttice, the basic structure of which is described by the so-called main

if-then rules based on dense rectangles and computationally tractabkorem of concept lattices [6], [12].

description of non-redundant bases of all approximately valid if-then An attribute implication(over Y) is an if-then rule of the form

rules, etc.). Therefore, dense rectangles are worth of further stulys- B, whereA B CY are sets of attributes. Except for FCA, rules

both experimental and theoretical. of this form are widely used in several disciplines like data mining

{y e Y|for eachx € A: (x,y) €1},
{xe X|for eachy € B: (x,y) € 1}.
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(as association rules extracted from data), database systemsldagest)B such that(A,B) is a rectangle full ofx’s, namelyB = A,
rules describing functional dependencies). A primary interpretatidikewise, for B C Y, B! is the largest one such th&B' B) is a

of attribute implications in data tables is the following. An attributeectangle full ofx’s. The mappingd and¥ form a so-called Galois
implication A= B is true in a data tabléX,Y,!) if for each object connection betweet2X,C) and(2¥,C) and maximal full rectangles

x € X: if x has all attributes fronA then it has also all attributes from are just fixed points off and !, i.e. pairs(A, B) satisfying At =B

B. Realizing that “objeck has all attributes frond\” is equivalent to andBY = A. The set of all these fixed points is just a concept lattice
x e A¥, we can restate the interpretation as follows= B is true B(X,Y,1).

in (X,Y,1) if for each objectx € X: if xc At thenx € BY. That is, For general column-like propertie®, the situation is different.
A= Bis true in(X,Y,1) if At c B". While for A C X there is still a largesB C Y such thatD(A, B),

Example 1:Consider data tabléx,Y,I) from Fig. 1. For instance, for B C Y, there might be several maximal se&sC X such that
{f} = {d} is true in the table whilda,b} = {f} is not (frog serves D(A,B). In the following, we propose an approach in which maximal
as a counterexample). dense rectangles are identified by means of fixed points of mappings

From the point of view of association rules (in sense of Agrawal eésembling very much Galois connections. The mapping will be
al. [1]), attribute implications which are true in data are the so-calletéscribed in the sequel.
exact association rules,e. association rules with confidence 1. Let < be a binary relation defined or?XZby

a4, < 2, iff for eachA; € 4; there isA; € 4, such thatA; C Ay,
I1l. DENSE RECTANGLES 1)

A rectangleover setsX andY is a pair(A,B) with AC X andB C x - ) .

Y. A rectangle/A, B) is asubrectangle of a rectangl€, D) ((C,D) is 0" €ach setsl;, % € 27 A couple (2, <) is a quasiordered set.
asuperrectangle ofA, B)) if AC C andB C D. Occasionally, we also T?xat is,<isa quasmrder (i.e.,a r_eflexwe anq a tran5|t_|ve relano_n) on
speak of a rectangléd, B) in a data tableX, Y, I). A rectangle(A,B) 2~ - Note that ifX 7 0 then < defined on s not antisymmetric,

in (X,Y,I) corresponds to a subtable (submatrix) of tableY, 1) |.e._|t is not a partlal orderi For a quasiordered (28t , <), we define
delineated by rows given by objects frafand columns given by @ Pinary relation=< on Z by

attributes fromB. For brevity, the corresponding subtables will also A=A iff A< andd <.

be called rectanglesA,B) is a proper subrectangle of a rectangle B

(C,D) if (A,B) is a subrectangle ofC,D), andAc C or BC D. It is well known that=< is an equivalence in2.

We will consider properties of rectangles over given se&ndY. Definition 4: Let (X,Y,l) be a data table> be a column-like
For a propertyD and a data tabléX,Y, 1), we denote byD(A,B) (or  Property. For eacth € ZXX, let the largesB with D(A, B) be denoted
D) (A,B)) the fact thatrectangle (A, B) has propertyD in (X,Y,1). by Al. For each € 22" andB € 2, put
In particular, we are interested in propertiéx such thatﬂ)(A,.B) g0 — Naca Al B! = {Ac 2X|A is maximal such thaD(A B)}.
means thatA,B) is a“ dense rectangle iX,Y,1). By (A.B) b_elng Remark 5:Note that in Definition 4, we usé for a mapping of
dense we mean th‘:’,‘t almost all entries of a subtablXo¥, 1) given  ox 1 o 4¢ well as for a mapping of22 to 2". It will always be
by (A, B.> contain . In the .fOIIOW'.ng' we YV”.I be concemed with cjfear from the context which mapping we mean'byNote also that
propertl_es which result by imposing restr_lctlons on the number_ 0122 _ 5 is an extension of: 2X — 27 in that forAC X we have
zlazir:-:‘lf‘?niltri‘oﬁoflglﬂcz We call these properties column-like propertieg; _ {A}!. Bl is a set of allA's such that(A,B) is a maximal dense

’ r ngle.
Definition 2: Let D be a property Qf rec_tangles over s<_2¢sand Tehc;afoglalc?wing theorem shows properties bfand |.
Y, (X,Y,l) be a data tqblg. If there is arrindexed cgllectlori = Theorem 6:For all 45, 4, € 22* and By, By € 2:
{ly|y € Y} of non-negative integells such thatD (A, B) iff, for each
y € B, we have|{xe A[{x,y) £ 1}| <ly, then D, denoted bycol(l), A1 < 4, implies ﬂl; C ﬂ{, B; C B, implies Bﬁ <Bl, 2
is called acolumn-like property inX,Y,1). If, for eachyeY, Iy =1 a<a4all, BcBl. 3)

thenD is denoted bycol(l). - _ _ Call any pair of mapping$:U —V and!:V — U between a
If for eachl” € X xY, D is a column-like property inX.Y,l"),  guasiordered selU, <) and a partially ordered seV,C) satisfying
thenD is called acolumn-like property. (2) and (3) aGalois connectiometweenU, <) and(V, C). Therefore,

Column-like properties can be axiomatized (we omit details). In angnq! introduced above form a Galois connection betweé“ﬁ,g

analogous way, one can introduce row-like properties. ) and (2¥,C). Basic properties of Galois connections between a

Remark 3:By definition, if 2 is a column-like propertycol(l), g asjordered set and a partially ordered set are slightly different from
wherel = {ly|y € Y}, then a rectangléA, B) has propertyD iff, in o ordinary case and are shown in the next

each columry € B, the number of blanks is at mast If D is col(l), Theorem 7:Mappings': 22— 2¥ and !: 2¥ — 22° satisfying (2)

wherel is a single non-negative integer, thei, B) has propertyD 44 (3) have the following pro)perties.

iff, in each columny € B, the number of blanks does not excded (5 71— g1l1 for eachq € 2.

Thus,col(0) means “no blank in any columneol(2) means “at most (i) B! = B!!! andB!l/ =B.I!1! for eachB € 2".

two blanks in each column”, etc. (i) A mapping Cx : 22 — 22" defined byCx(4) = 4!} satisfies:

Examples will be presented in Section VI. A <Cx(A4), A1 < Ay implies Cx (A1) < Cx(Az); Cx(4) =<
- X(Cx()) and Gy (Cx (A)) = Cx (Cx (Cx(A))).

(iv) A mappingCy : 2¥ — 2" defined byCy(B) = B!! is a closure
operator in<2Y,g), i.e.Cy satisfiesB C Cy(B), B; C By implies
Cr(B1) CCr(B2); Cr(B) =Cy(Cy(B)).

Let (X,Y,1) be a data tablep be a property of rectangles over pefinition 8: Let (X,Y,1) be a data table?> be a column-like
setsX andY. A rectangle(A,B) in (X,Y,1) is calledmaximalw.rt.  property. A D-concept lattice ofX,Y, 1) is a set

D if (A,B) hasD and no proper superrectangle @& B) has D. X oy
’ ) . ) ’ . — — | —

In case of maximal full rectangles iX,Y,I) (i.e., rectangles which Bp(X,Y,1)={(4,B) € 2* x2'| 2! =B, Bl = 4}

are full of x's), given A C X, there is a uniqgue maximal (hence, theequipped with a binary relatios defined by

IV. M AXIMAL DENSE RECTANGLES: CONCEPT LATTICES AND
RELATED STRUCTURES

118



(41,B1) < (42,Bp) iff A3 <A (iff By D Byp). computationally tractable definition of non-redundant bases.
Following further the terminology of formal concept analysis, pairs
(4,B) € Bp(X,Y,l) are called formal) D-concepts If (4,B) €
Bp(X,Y,l), 4 is called aD-extent B is called a D-intent A
collection of all D-intents will be denoted by Igf(X,Y,1), i.e. First, we introduce a notion of @-truth (a kind of approximate
V x validity) of a given attribute implication in a data table. We have seen
Intp(X,Y,1) ={B€2"[(4,B) € Bp(X,Y,l)for someA €27 }.  apove that in the ordinary cask= B is true in(X,Y, 1) iff At C BY.
The structure ofD-concepts is characterized by the following theoRealizing that the partial ordet is replaced by a quasiordet in
rem. the setting of dense rectangles leads to the following definition.
Theorem 9:For a column-like properwﬂ and a data table Definition 12: Let <XY|> be a data tableﬂ) be a column-like
(X,Y,1), Bp(X,Y,1) equipped with< is a complete lattice with Property in(X,Y,l), A= B be an attribute implication ovef. A=-B

A. Approximate validity by means of dense rectangles

infima/\ and Suprema/ given by is called D-true in <X7Y7|>, written HA:> BHID = 1, if Al < Bl If
. i A= B is not D-true in (X,Y,1), we put||A=B||P =0.

Niea(Ai:Bj) = {NjeaAjlAj € i} (Ujea B)) ), By (1) and Definition 12A = B is D-true in data tabléX, Y, 1), if

Vjea(45,Bj) = ((Ujes 2) 14, Nje By)- for eachM € Al there isN € B! such thaM C N. That is, A= Bis D-

Remark 10:Note that the Main theorem of concept lattices [61rue in the table if for each (dense) rectangié, A) whereM € Al
follows directly from Theorem 9: if we consider ¢0) as a property there is a (dense) rectang{®l, B) such thatN € B! and (M,A) is
D, then we can show thab,(X,Y,1) is isomorphic toB(X,Y,I). vertically contained in{N,B). Recall that for rectangleéM,A) and

We have By (X,Y,1) = {(B},B)|B € fix(Cy)} where fiXCy) = (N,B), we haveD(M,A) andD(N,B). If D differs fromcol(0), both
{BCY|B=Cy(B)} is a set of all fixed points oCy (note that the rectangles can contain blanks.

Cy(B) =B!T). Thus,B is a D-intent iff B=B!I. Therefore, in order ~ Remark 13:Even if the notions of truth aneD-truth of attribute

to obtainB,(X,Y,1) it suffices to compute fiCy). Theorem 7 (iv) implications are different in general, fab being col(0), the notion
says thatCy is a closure operator if2Y,C). An algorithm for of a truth in a data table coincides with the notion abaruth (i.e.,
computing of all fixed points of a given closure operator is knowgol(0)-truth) in a data table.

(NEXTCLOSURE, also known as Ganter’s algorithm, see [6]) and |n the sequel we show several equivalent formulation®efuth
works with polynomial time delay. In order to applyEMTCLOSURE,  and show thatD-truth can be expressed as a validity in all dense
we need to be able to compul¥ (B) (for BCY). intents. For technical reasons, we introduce the following notation.

To find an efficient algorithm for computation @% for a general An attribute implicationA = B is true (valid) inM C Y, written
column-like propertyD seems to be an interesting problem. Note thata = B||y = 1, if we have:
for particular choices ofD, we can use the following idea. Le® ]
be given bycol(l), wherel = {ly|y €Y, ly =0 or ly = 1}, see above. if ACM thenBC M.

That is, we allow for at most one zero in columysvith Iy = 1. In
order to comput€y (B) = BT, we need to computél = Bl and 4!
(namely,Cy (B) = 41).

Given 4 € 22", computation of4! is obvious. Namely, we have
A" = NacaAl and AT = {y € Y| D(A,{y})}. In order to compute
B!, putBg = {y € B|ly =0}, By = {y € B|ly = 1}, and consider the
following undirected graplG. Vertices: The set of vertices @ is D, the set Ing(X,Y,1) of D-intents is a set of subsets ¥ Thus,

the setX — (B'UZ) where for an attribute implicatiorA =- B, we can ask if|[A=B|ju =1
Z={xeX|thereisyeBp: (x,y) €1}. for each D-intent M € Inty(X,Y,1). This way we obtain a natural

notion of a truth (validity) of attribute implications in a collection of
all dense intents. Interestingly enough, the next assertion shows that
the attribute implications which ar®-true in (X,Y,1) are exactly the
attribute implications which are true in eadhintent.

Theorem 15:Let (X,Y,l) be a data table> be a column-like
property in(X,Y,l), A= B be an attribute implication ovef. Then
||A= B||P =1 if and only if, for eachM € Intp(X,Y,1), ||A=

If A= Bis not true inM we put||A=>B||m = 0. Note that in|---||m
we do not use superscrifit because the definition df---||w does
not depend orD.

Lemma 14:The following assertions are equivalent:
(i) A= Bis D-true in(X,Y,1), (i) BC A, (i) [JA=B||ar =1.

If we are given a data tabléx,Y,I) and a column-like property

That is, vertices are particular objects frofn Edges: There is an
edge between verticeg andx, of G iff there is noy € B; such that
(x1,y) €1 and (x2,y) €1, i.e. neither ofx; andx has attributey.
Recall that a clique irG is any setM of vertices ofG such that
for eachxi,xo € M there is an edge betwees andx,. A clique M
is maximal if no other vertex can be addedMoso thatM be still a
clique. For technical reasons, if the set of vertice§&saé empty, we

consider® (empty set) as a clique @ (this is then the only maximal Blim =1.
cligue of G). It is then easy to see the following assertion.
Lemma 11:For BCY we have B. Completeness of sets of implications
Bl = {BU UM|M is a maximal clique inG}. In this section we characterizB-true attribute implications using

Recall that efficient algorithms for listing all maximal cliquesentailments from particular sets of attribute implications.
exist (see e.g. [8]). For more general propertisthe same idea  Given a sefl’ of attribute implicationsM C Y is called amodelof
leads to analogous clique-characterizations. For instanc® bming T if, for eachA=Be& T, ||JA= B||w = 1. The system of all models
col(l), we get maximal cliques in uniform hypergraph with edges oif T will be denoted by ModT). An attribute implicationA = B
size| — 1. These topics need to be explored both theoretically aggmantically followsrom a setT of attribute implications, written
experimentally. [|[A= B||T =1, if A= B is true in each model df, see also [6].
Definition 16: A set T of attribute implications is calledD-
V. ATTRIBUTE IMPLICATIONS BASED ON DENSE RECTANGLES  complete in data tabléX,Y, 1) if, for eachA= B, ||A= B2 =1if
FROM APPROXIMATE VALIDITY TO NON-REDUNDANT BASES and only if||A= B||r = 1.
In this section we develop attribute implications from the point Remark 17:(1) By definition, T is ©D-complete in data table
of view of dense rectangles: their validity and results leading tX,Y,1) if each attribute implication follows fronT iff it is D-true
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in (X,Y,I). In other words, aD-complete set describes all attributeoperator. GivenM CY and a sefT of attribute implications over

implications, which areD-true in data, via semantic entailment. Y, we define a sequendd?; C M¥, C --- of subsets off by
(2) If D is equivalent tacol(0), thenT is D-complete in(X,Y,I) » » » ' »

if and only if T is complete in(X,Y,1) in the usual sense [6]. Mro=M, M7 =M7jUU{B|JA=BeT andACM7}}.
In.Definition 16, we defingd@-cgmp!etehess using a Semantiqiurthermore, we define an opera@p: 2Y 2 by

entailment from a set of attribute implications. One might as well

define it in terms of syntactic entailment because reasoning with CTI’(M) :Ui""ZOM%.

attribute implications is syntactico-semantically complete. In more . . ' .

detail, A= B semantically follows fromT iff A= B is derivable The following assertion shows th@%’ can be used to obtain pseudo

from T using the so-called Armstrong inference rules [2], [6], [o]2-Intents. _
Hence, we have the following Theorem 24:Let (X,Y,l) be a data table> be a column-like

Theorem 18:Let T be D-complete in(X,Y,1). Then the following ProPery.T = {P = P[P e P}. Then
assertions are equivalent: P={MCY|M=CPM)andM %M} 4
((,i)) ﬁ:> E is l)-trt:_e iIrI] <>f(7|\|(7|>, - From Theorem 24 it follows that pseudb-intents are particular
) A= 5 semanucally rollows tromt, . fixed points ofC?. For computation of all fixed points aE? we
(i) A=-Bis derivable fromT using Armstrong inference rulgg], can upse I‘EXT(SLTOSURE [6] psee Section IV. In gdditioﬁo that
[91. D ' C o
. . . s each closur M) of M can be computed using a modification
The following asser tion shows an _mportapt characterizatiof-of of LINCLOSGUCI;E((S)ee [9] for details) w?ﬂch has Ii%ear complexity
completeness: a sat is D-complete in data iff the models df are with respect to the size of. Combining these two algorithms

exactly theD-intents. . . .. together with Theorem 23 and (4), we get the following algorithm
M()T(;](c_erc;re:n;nig(xﬂ\s( fID)-compIete in data tableX, Y, ) if and only if ¢ - computing of non-redundarb-bases:
AR Algorithm 25: Denote by NEXTCLOSURE(M,C?) a subset ofY
which is the lexically smallest fixed point df? strictly greater than
C. Non-redundant bases of approximately valid implications M CY, see [6]. The algorithm goes as follows:
Input: data tablgX,Y,I), column-like propertyD

In thi ti i iculdr- I f attri :
n this section we describe particuldr-complete sets of attribute Output: non-redundard-basisT of (XY, 1)

implications which are minimal.

Definition 20: A set T of attribute implications ovel is called M:=0T:=0
a non-redundan®-basis of(X,Y,1), if T is D-complete in(X,Y, 1) if M#M!:add M=M!to T
and no proper subset df is D-complete in(X,Y,I). while M#£Y:

In order to describe particular non-redundaibases, we intro- M = NEXTCLOSURE(M,C%))

duce a notion of a pseudd-intent as follows: if M- add M= M to T
Definition 21: Let (X,Y,1) be a data table be a column-like Remark Zgé)rrectness of Agont?lm 25 follows from Theo-

property.P C Y is called a pseuda-intent of (X,Y, ) if P # plt  rem24 and Theorem 23. The only place we need to take care about

and, for each pseud®-intent Q of (X,Y,1) such thatQ c P, we is that duri/ng the comput/ation, we use opgr&l&rwhereT :'{Pé
haveQ!! C P. The collection of all pseud@-intents of (X,Y,1) will P' |P € #'}, however,#' may not contain all pseude-intents
be denoted by. of (X,Y,I), cf. Theorem 24. On the other handgNrCLOSURE

Remark 22:(1) Described verbally is a pseudaD-intent iff P is generates all fixed points in lexical order [6] which is a total order
not ad-intent and eactD-intentQ!!, which is a closure of a pseudoextending the strict subsethood relationi.e. in each computational
D-intentQ C P, is a subset oP step, we already have computed all (strictly smaller) psexdotents

(2) SinceY is supposed to be finite, giverX.Y,l) and D, which are necessary to determine the lexically-next one.
Definition 21 recursively defines a unique systégmof all pseudo
D-intents of (X,Y,1). VI. ILLUSTRATIVE EXAMPLES AND FURTHER ISSUES

(3) The notion of a pseud®-intent is an analogy of the notion ofa  In this section we present illustrative examples and results of
pseudo intent, see [7], [6]. However, one cannot directly adopt resuttsperiments. For brevity, we adopt the following convention for
from [7], [6] in case of dense rectangles becabsnd ! no longer denoting column-like properties. Given a data tabkY,l), we
form a Galois connection in the classical sense. On the other haagsume that = {y1,...,yn} is ordered byy; <y» <--- <yn. Then,
we show that, with appropriate modifications, all important propertiemch column-like propertyD for (X,Y,I) is uniquely given by a
of pseudo intents are preserved in case of our psediatents and sequencdy,,ly,,...,ly, of nonnegative integers, meaning thatis

arbitrary column-like propertyD. equivalent tocol(l), wherel = {ly,,...,ly,}, see above. If there is no
The following assertion says that the collectighof all pseudo danger of confusion, we writg, ly, - - -ly, instead ofy, ,ly,,...,ly, and
D-intents can be used to obtain a non-redundariasis. we denoteD by col(ly,ly,---ly,). For instance, ifY = {y1,...,ys},
Theorem 23:Let (X,Y,I) be a data tableD be a column-like thencol(0101) represents column-like propert which allows one
property, T = {P = P!T|P e ?}. Then blank in columnsy, andys and disallow any blanks elsewhere.
() T is a non-redundanD-basis of (X,Y,I). Example 27:Consider a data tabléX,Y,l) presented in Fig.1.
(i) If T'is D-complete in(X,Y,I), then|T| < |T’|. The ordinary concept latticeB(X,Y,l) induced by (X,Y,I} has

We now focus on computing non-redundaftbases given by 19 formal concepts (maximal rectangles), which are denoted by
collections of pseud®-intents. Note first that due to Theorem 23 (ii),Co, . . . ,C1g:
T ={P= P |Pc P} is a minimal non-redundan®-basis of Co= (X,{a}), C; = ({1,2,3,4},{a,g}),
(X,Y,l). That is, there is na-complete set which has strictly lesselC, = ({2,3,4},{a,g,h}), Cs = ({5,6,7,8},{a,d}),
number of attribute implications thah has. Sincel! is a closure C4= ({5,6,8},{a,d, f}), Cs = ({3,4,6,7,8},{a,c}),
operator, we can use the ideas from [6] to compute psaddutents Cg = ({3,4},{a,c,g,h}), C7 = ({4},{a,c,g,h,i}),
(and thus the desired s@t) as fixed points of a special closureCg = ({6,7,8},{a,c,d}), Co = ({6,8},{a,c,d, f}),
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living in water and on land which can move around), (D-concept
of a dog),D, (D-concept of organisms living in water and on land
which need chlorophyll to produce food)z (D-concept of a bean).
Extents of D-conceptsD; (a dog) andD3 (a bean) are contained in
B(X,Y,l) (seeC; andCyp), however, intents of concep® andCio
differ from intents ofD; andDs.

Let us mention that other choices &f may extend the structure.
As an example, consider column-like propecyl(1) (one blank in
each column). In this particular case, we have Bioncepts, see
Fig. 2 (right).

The next example deals with non-redunddhbases of implica-
tions. We will use non-redundant basg’-bases) which have shorter
description than bases described by Theorem 23. Instead of taking
a setT = {P = P!T|P ¢ P} of attribute implications, where? is
a collection of pseudo intent&Xintents), we will use sets of the
form T = {P= P°|P ¢ P}, whereP° = {y e Y |y e P!l andy ¢ P}.
That is, the attribute sé®° results fromP!! by removing attributes
which appear irP. Obviously, if 2 is a collection of pseudo intents
(D-intents) thenT is a (minimal) non-redundant basi®{basis).

Example 28:Consider again a data tab{¥,Y, 1) from Fig. 1. The
non-redundant basis given by pseudo intents (i.e., psenl(@)-
intents) is the following:

Fig. 2. Hierarchies ofD-concepts .
TO = {{a7 b,c,g,h,l}=>{d,e, f}v{a7 bvd}:>{f}7

{a,c,d,e f}=1{b,g,h,i},{ac,g}={h},

glo = ég}é{%c’{d’ﬁ}%})clé: “%é 3}5’{6}5{"’" EB {a.d,g}={b,c.e f,hi},{ae}={cd},
= , 2, ,1a,0,9;5), = 5 18,0,0, s .
cﬁ: ({5,6},{a,b,d, f}), clfsz ({3.6},{a,b,c}), {a, f}={d},{a,h}={g}.{a,i}={c,g,h}, {}={a}}.

Cie= ({3}, {a,b,c,g.h}), C17 = ({6},{a b,c.d. f}), Cis=({},Y).  In case ofD beingcol(1), the non-redundand-basisT; has only 7
Fig. 2 (left) depicts the concept lattic®(X,Y,1) [6], i.e. the partially jmplications [T, consists of 10 implications):

ordered hierarchy of formal concepty,...,Cig. As mentioned

above if we takeD to becol(0) (no blanks allowed), thé@-concept Ty ={{a,b,c,d,g,h,i}={f},{ac,d e f,g}={bh,i},

lattice Bo0)(X,Y,1) is “the same” as the ordinary concept lattice {a,e}={c,d},{a f} = {d},{ah}={g},{ai}={c,g,h},
B(X,Y,l). In more detail, we have O=1{a}}

Beoi0) (X, Y, 1) = {{{A},B) [ (A.B) € BX, Y1)} Observe that all attribute implications fronT; except for
On the other hand, by various choices Dfwe can get simplified {&b,c,d,g,h,i}={f} and {a,c,d,e f,g} = {b,h,i} are contained
or extended sets (hierarchies) #Fconcepts. For instance, D is in To. Nevertheless, these two implications are true in the usual sense
c0l(011000000, i.e. if we allow one blank in columns correspondingn the data table. Thus, each inteobl(0)-intent) is a model off.
to attributes “lives in water” and “lives on land”, we get the followingOn the other hand, Theorem 19 and Theorem 23 sayTthé not

set of D-concepts: complete ¢ol(0)-complete) in(X,Y,I) becausdT:| < |To|, i.e. some
Co= ({X},{a}), Cs = ({{3,4,5,6,7,8},{2,3,4,6,7,8}, models ofT; are not intentsqol(0)-intents). Of courseT; is col(1)-
{1,3,4,6,7,8}},{a,c}), Cg = ({{5,6,7,8}},{a,c,d}), complete in(X,Y,I) because it is a non-redundardl(1)-basis.

Ci= ({{1,2,3,5,6,8},{1.2,3,5,6,7}, {1,2,3,4,5,6}},{a,b}) By other choices of column-like properties, we can get even smaller
Cio= ({{17 2?3’47}}7.{517,b g}7> U e e non-redundan®>-bases. For example, # is col(011101110, we get
Cis= ({{3,5,6,8},{3,5,6,7},{3,4,5,6},{2,3,6,8}, the following D-basis:

{2.3,6,7},{2,3,4,6},{1,3,6,8},{1,3,6,7}, T, = {{a.e}={b,cd g} {af}={d} {ah}={g},

{1,3,4,6}},{a,b,c}),

Do = ({{2.3.4}.{1.3.4}}. {a.b.c.q}), taiy={bcdton.{j={a}.

Cis=({{2,3,4}},{a,b,c,g,h}), D1 = ({{4}},{a,b,c,9,h,i}), Unlike Ty, T> contains implications which are not true {X,Y, 1) in

D2 = ({{5,6,8},{5,6,7}},{a,b,c,d}), the usual sense. For instanda,i} = {b,c,d, f,g,h} is not true in
Ci7=({{5,6,8}},{a,b.c.d, f}), (X, Y,1).

D3 = ({{7}},{a,b,c,d,e}), Ci1g= ({{}},Y). Example 29:Fig. 3 shows an experimentally assessed dependence

The hierarchy ofD-concepts is depicted in Fig. 2 (middle). Observef the number of formatol(1)-concepts ofq 1) (X,Y,I) (the two

that D-concepts denoted b have the same intents as the corregraphs left) and the number of implications in the minimal non-
spondingcol(0)-concepts. Extents of the correspondifigconcepts redundant bases (the two graphs right) on the density of input data
and col(0)-concepts do not coincide in general because we usbles (proportion ofx’s). Experiments have shown that in dense
two different column-like propertiesB,(X,Y,l) is smaller than data tablesB.qq)(X,Y,1) is usually smaller thamoig) (X, Y,1). On
B(X,Y,I). Thus, Bp(X,Y,l) can be seen as a simplified view ornthe other hand, in data tables with average density the situation is
B(X,Y,I) in which we allow D-concepts which are not representedhe opposite. The first graph depicts the situation for data tables with
by rectangles full of 1'sB;(X,Y,I) contains fourD-concepts which 5 attributes, the seconds graph depicts the situation for data tables
do not have their analogies (X, Y, |): Do (D-concept of organisms with 10 attributes. Solid line in a graph represents average number
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Fig. 3. The first and the second graph: Average numbeofifL)-concepts.
The third and the fourth graph: Average number of minimal non-redundant
bases.

of concepts €ol(0)-concepts); dashed line represents average number
of col(1)-concepts.

The third and the fourth graphs show the corresponding behavior
of the number of implications of minimal non-redundant bases.
Surprisingly, the experiments have shown that sizes of minimal
col(1)-bases are usually smaller than sizes of miniewl(0)-bases
and that this observation more or less does not depend on the density
of a data table. That is, with our approach to approximate validity of
attribute implications we get a smaller number of implications (which
are presented to the user). This is a beneficial feature. Again, the
first graph depicts the situation for data tables with 5 attributes, the
seconds graph depicts the situation for data tables with 10 attributes;
solid line in a graph represents average number of implicatioi¥-in
bases (approximate validity), dashed line represents average number
of implications in ordinary bases (exact validity).

Future research needs to focus on the following topics: connections
to association rules (the concept db-truth is an approach to
approximate validity which is different to the one based on confidence
used in association rules, a comparison of these two approaches to
approximate validity is an issue to be studied); experiments with large
datasets; algorithms for computing of closutéswhich are related to
computing of non-redundar®-bases; relationships between different
choices of density propert® and a study of further types of density
properties.

ACKNOWLEDGMENT

Supported by grant No. 1ET101370417 of GA &R, by grant
No. 201/05/0079 of the Czech Science Foundation, and by institu-
tional support, research plan MSM 6198959214.

REFERENCES

[1] Agrawal R., Imielinski T., Swami A. N.: Mining association rules
between sets of items in large databasesc. ACM Int. Conf. of
Management of Datgpp. 207-216, 1993.

[2] Armstrong W. W.: Dependency structures in data base relationdFifs.
Congress Geneva, Switzerland, 1974, pp. 580-583.

[3] Belohlavek R., Vychodil V.: Dense rectangles in object-attribute data. In:
Proc. IEEE GrC 2006, 2006 IEEE International Conference on Granular
Computing, Atlanta, GA, May 10-12, 2006, pp. 586-591.

122

Burgmann C., Wille R.: The basic theorem on preconcept lattices. In:
Missaoui R., Schmid J. (Eds.): ICFCA 2006gcture Notes in Atrtificial
Intelligence3874 pp. 80-88, Springer-Verlag, Berlin/Heidelberg, 2006.
Carpineto C., Romano GConcept Data Analysis. Theory and Applica-
tions. J. Wiley, 2004.

Ganter B., Wille R.: Formal Concept Analysis. Mathematical Founda-
tions. Springer, Berlin, 1999.

Guigues J.-L., Duquenne V.: Familles minimales d'implications informa-
tives resultant d'un tableau de ddres binairesMath. Sci. Humaines
95(1986), 5-18.

Johnson D. S., Yannakakis M., Papadimitrou C. H.: On generating all
maximal independent setfnf. Processing Letter45(1988), 129-133.
Maier D.: The Theory of Relational Databas€omputer Science Press,
Rockville, 1983.

Norris E. M.: An algorithm for computing the maximal rectangles of a
binary relation.Journal of ACM21:356-266, 1974.

Ore O.: Galois connection3rans. Amer. Math. S0c55:493-513, 1944.
Wille R.: Restructuring lattice theory: an approach based on hierarchies
of concepts. In: Rival I.Ordered SetsReidel, Dordrecht, Boston, 1982,
445—A470.

Zhang C., Zhang SAssociation Rule Mining. Models and Algorithms.
Springer, Berlin, 2002.



	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

