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Abstract— We present an extension of Codd’s relational model of data.
Our extension is motivated by similarity-based querying. It consists in
equipping each domain of attribute values with a similarity relation and
in modifying the classical relational model in order to account for issues
generated by adding similarities. As a counterpart to data tables over
a set of domains of Codd’s model, we introduce ranked data tables
over domains with similarities. We present a relational algebra, and
tuple and domain calculi for our model and prove their equivalence.
An interesting point is that our relational algebra contains operations
like topk (k best results matching a query). Then, we study functional
dependencies extended by similarities, argue that they form a new
type of data dependency not captured by the classical model, prove a
completeness result w.r.t. Armstrong-like rules, describe non-redundant
bases and provide an algorithm for computing the bases. In addition to
that, we compare our model with other approaches and outline future
research.

I. INTRODUCTION

A. Motivation and outline of the paper

Codd’s relational model of data is one of the most important
contributions to computer science and perhaps the most important
concept in data management (“A hundred years from now, I’m
quite sure, database systems will still be based on Codd’s relational
foundation.” [11, p. 1]). The main virtues of the model, i.e. logical
and physical data independence, access flexibility, data integrity,
etc., are mainly due to the reliance of the model on a simple yet
powerful mathematical concept of a relation and first-order logic
(“The relational approach really is rock solid, owing (once again)
to its basis in mathematics and predicate logic.” [11, p. 138]).

Since the inception of the relational model, there have been
proposed various extensions of the model. Relevant to this paper are
the extensions aiming at the capability of the relational model to deal
with various forms of uncertainty. Management of uncertainty is one
of the six currently most-important research directions proposed in
the report from the Lowell debate by 25 senior database researchers
[1]. In particular, it was pointed out in [1] that “. . . current DBMS
have no facilities for either approximate data or imprecise queries.”

Similarity, approximate matches, and the corresponding queries are
the main motivations for our extension of the relational model. In
particular, our primary concern is with the situation when domains
are equipped with similarity relations, i.e. when it is desirable to
consider degrees of similarity rather than only “equal” and “not
equal”. Such a concern comes primarily from the standpoint of
information retrieval when considering similarity-based queries like
“show all candidates with age about 30”. Therefore, our attempt can
be seen as extending the relational model by taking into account
issues raised by similarity-based information retrieval. In addition
to similarity-based queries, domains with similarity generate topics
related to data mining. An example dealt with in more detail in our
paper are functional dependencies which, in their extended version,
represent new type of data dependencies like “similarity in values of
attributes A implies similarity in values of attributes B”.

The main concept we deal with is that of a ranked data table (rela-
tion) over domains with similarities. This concept is our counterpart
to the concept of a data table (relation) over domains of a classical

TABLE I
RANKED DATA TABLE OVER DOMAINS WITH SIMILARITIES

D(t)
1.0
1.0
0.9
0.8
0.4
0.3

name age education

Adams 30 Comput. Sci.
Black 30 Comput. Eng.
Chang 28 Accounting
Davis 27 Comput. Eng.
Enke 36 Electric. Eng.
Francis 39 Business

n1 ≈n n2 =
{

1 if n1 = n2

0 if n1 �= n2

a1 ≈a a2 = sa(|a1 −a2|)
with scaling sa : Z

+ → [0,1]

≈e A B CE CS EE

A 1 .7

B .7 1

CE 1 .9 .6

CS .9 1 .7

EE .6 .7 1

relational model. The concept is illustrated in Tab. I. It consists of
three parts: data table (relation), domain similarities, and ranking. The
data table (right top table in Tab. I) coincides with a data table of a
classical relational model. Domain similarities and ranking are what
makes our model an extension of the classical model. The domain
similarities (bottom part of Tab. I) assign degrees of similarity to
pairs of values of the respective domain. For instance, a degree of
similarity of “Computer Science” and “Computer Engineering” is 0.9
while a degree of similarity of “Computer Science” and “Electrical
Engineering” is 0.6. The ranking assigns to each row (tuple) of the
data table a degree of a scale bounded by 0 and 1 (left top table
in Tab. I), e.g. 0.9 assigned to the tuple 〈Chang,28,Accounting〉.
The ranking allows us to view the ranked table as an answer to
a similarity-based query (rank = degree to which a tuple matches
a query). For instance, the ranked table of Tab. I can result as an
answer to query “show all candidates with age about 30”. In a data
table representing stored data (i.e. prior to any querying), ranks of
all tuples of the table are equal to 1. Therefore, the same way as
tables in the classical relational model, ranked tables represent both
stored data and outputs to queries. This is an important feature of
our model.

We use fuzzy logic as our formal framework. In particular, we use
a formal system of first-order fuzzy logic the same way as the system
of first-order classical logic is used in the classical relational model.
Using a formal system of first-order fuzzy logic enables us to utilize
both the symbolical and the numerical character of fuzzy logic. That
is, we work with first-order formulas which can be read in natural
language and have thus a clear meaning (symbolical character).
According to the rules of fuzzy logic, the formulas get assigned
degrees, e.g. from [0,1], which are being processed according to
the rules of fuzzy logic (numerical character). This way, our model
keeps the user-friendly symbolical character of the classical model
and adds a quantitative layer which takes care of the management
of uncertainty. This is an important distinction from other “fuzzy
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approaches” to the relational model which, from our point of view,
are often ad-hoc.

The paper is organized as follows. In Section I-B we review related
approaches. Section I-C contains preliminaries from fuzzy logic.
In Section II-A we introduce our model and basic related notions.
Section II-B outlines relational algebra, tuple relational calculus, and
domain relational calculus for our model and outlines their equiva-
lence. Here, instead of going to technical details, we aim to emphasize
the fact that the manipulative part of our model contains interesting
operations which cannot be expressed in the classical model. We
focus on non-classical issues like similarity-based selection, join, etc.
An interesting point is that queries like topk (top k answers to a
similarity-based query, see e.g. [13]) can be made a natural part of our
relational algebra. Section II-C deals with functional dependencies
(FDs) in our extended model. Here, we present more technical details,
primarily for the purpose of demonstrating the formal facet of our
model. The main aim is to show that taking similarity into account,
FDs describe an interesting type of data dependencies, tractable both
theoretically and computationally. We show completeness results with
Armstrong-like axioms, describe a non-redundant basis of all FDs of
a ranked data table, and describe an algorithm for computing the
bases. Section III outlines future research.

B. Related approaches

Extensions of the classical relational model of data attempting to
capture uncertainty and indeterminacy can be classified in a number
of ways. One of them is according to the type of uncertainty. Before
going to the approaches directly related to our paper we need to
clearly distinguish our approach from probabilistic ones to prevent a
confusion. The probabilistic models, see e.g. [12], [15], basically aim
at modeling of probabilistic uncertainty of data which is very different
from what we deal with, see e.g. [21]. Our model is deterministic;
the only point where we depart from the classical model is that we
use graded (fuzzy) predicates.

The first paper on a “fuzzy approach” to the relational model is
[7]; [6] provides an overview with many references. We found over
100 contributions related to “fuzzy approach” to the relational model.

A main feature of almost all of the approaches is that they are
ad-hoc. An ad-hoc choice of fuzzy logic connectives, the lack of
symbolic level in the formalism, plus not clearly justifying why this
and that is fuzzy rather than bivalent in a model has some important
consequences. First of all are the impression of arbitrariness of the
model; difficulties to handle the model theoretically and to arrive
at some important features of the model; several concepts of the
models are difficult to read and thus user-unfriendly; the impression
of unjustified theorizing due to not explaining the meaning of fuzzy
membership degrees. In our opinion, this is the main reason why the
use of fuzzy logic in information systems did not spread wider that it
did. In fact, most of the contributions were presented inside the fuzzy
community. The primary reason of the above-described shortcomings
is that an analogy of a clear relationship between a relational model
and first-order fuzzy logic is missing in the approaches. This is partly
because fully fledged logical calculi have not been developed until
quite recently, see e.g. [16], [17].

Another feature of the approaches is that a consideration of
computational tractability of the proposed concepts seems to be an
exception rather than a rule.

On the other hand, several ideas including some of those presented
in our paper were already discussed in the literature. For instance,
the idea of considering domains with similarity relations goes back to
[7]. The idea of assigning ranks to tuples appeared in [28] although
with not quite a clear meaning of ranks (values of a “possibility

distribution function”, “fuzzy measure of association among a set of
domain values” [28]). Quite several approaches exist in the literature
on “fuzzy functional dependencies” and we comment on them in
Section II-C. Another idea, which we do not consider here is the
possibility for the tuples to contain also fuzzy sets of (or possibility
distributions on) attribute values in addition to the attribute values
themselves, [27] is perhaps the first paper developing this issue.

We comment on the relationships of our model to previous ap-
proaches later on; a detailed description will be presented elsewhere.

C. Preliminaries

We use fuzzy logic to represent and manipulate truth degrees of
propositions like “u is similar to v”. Moreover, we need to process
(aggregate) the degrees. For instance, consider a query “show all
candidates which are about 30 years old and a degree in specialization
similar to Computer Science”. According to Tab. I, Davis satisfies
subqueries concerning age and education in degrees 0.8 and 0.9,
respectively. Then, we combine the degrees using a fuzzy conjunction
connective ⊗ to get a degree 0.8⊗ 0.9 to which Davis satisfies the
conjunctive query.

When using fuzzy logic, we have to pick an appropriate scale L
of truth degrees (which serve e.g. as grades for evaluating similarity
of two objets) and appropriate fuzzy logic connectives (conjunction,
implication, etc.). Most of the existing fuzzy approaches to databases
use the real interval [0,1] and one particular couple of connectives
on [0,1]. Our approach is different in that we do not say which
particular scale and connectives we take. Rather, we postulate the
required properties of the scale and of the connectives. Thus, we
take an arbitrary partially-ordered scale 〈L,≤〉 of truth degrees and
require the existence of infima and suprema (for technical reasons,
to be able to evaluate quantifiers). Furthermore, instead of taking
one particular fuzzy conjunction ⊗ and fuzzy implication →, we
take any ⊗ and → which satisfy certain conditions. For, instance,
our fuzzy conjunctions are order-preserving functions on L satisfying
some further requirements. This way, we obtain a structure L = 〈L,≤
,⊗,→, . . .〉 of truth degrees with logical connectives. Although more
general than one particular choice of a scale and connectives, such an
approach is easier to handle theoretically and supports the symbolical
character of our model.

In what follows, we present technical details of the preliminaries;
for further information, the reader is referred to [16], [17], [20].

For structures L of truth degrees, we use so-called complete
residuated lattices, i.e. structures L = 〈L,∧,∨,⊗,→,0,1〉 such that
〈L,∧,∨,0,1〉 is a complete lattice with 0 and 1 being the least and
greatest element of L, respectively; 〈L,⊗,1〉 is a commutative monoid
(i.e. ⊗ is commutative, associative, and a⊗ 1 = 1⊗ a = a for each
a ∈ L); ⊗ and → satisfy so-called adjointness property, i.e. a⊗b ≤ c
iff a ≤ b → c, for each a,b,c ∈ L. A truth-stressing hedge (shortly, a
hedge) [17] on L is a unary operation ∗ : L → L satisfying (i) 1∗ = 1,
(ii) a∗ ≤ a, (iii) (a → b)∗ ≤ a∗ → b∗, (iv) a∗∗ = a∗, for all a,b ∈ L.
Elements a of L are called truth degrees. Hedge ∗ is a (truth function
of) logical connective “very true” and properties (i)–(iv) have natural
interpretations, see [17].

A favorite choice of L is L = [0,1] or a subchain of [0,1]. Examples
of pairs of important pairs of adjoint operations are Łukasiewicz (a⊗
b = max(a+b−1,0), a → b = min(1−a+b,1)), and Gödel (a⊗b =
min(a,b), a→ b = 1 if a≤ b, a→ b = b else). Two boundary cases of
hedges are (i) identity, i.e. a∗ = a (a ∈ L); (ii) globalization: 1∗ = 1,
and a∗ = 0 (a �= 1). Note that a special case of a complete residuated
lattice with a hedge is a two-element Boolean algebra of classical
(bivalent) logic.

Having L, we define usual notions [16], [17], [20]: an L-set
(fuzzy set) A in universe U is a mapping A : U → L, A(u) being
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interpreted as “the degree to which u belongs to A”. If U is finite,
we write A = {. . . ,a/u, . . .} to denote that A(u) = a �= 0. Let LU

denote the collection of all L-sets in U . The operations with L-
sets are defined componentwise. Binary L-relations (binary fuzzy
relations) between X and Y can be thought of as L-sets in the
universe X ×Y . A fuzzy relation E in U is called reflexive if for
each u ∈U we have E(u,u) = 1; symmetric if for each u,v ∈U we
have E(u,v) = E(v,u). A reflexive and symmetric fuzzy relation is
called a similarity. We often denote a similarity by ≈ and use an
infix notation, i.e. we write (u ≈ v) instead of ≈(u,v). For fuzzy sets
A,B ∈ LU , a degree S(A,B) to which A is a subset of B is defined
by S(A,B) =

V
u∈U (A(u) → B(u)).

II. RELATIONAL MODEL OVER DOMAINS WITH SIMILARITIES

A. Basic concepts

In this section, we describe the basic concepts of our extended
relational model. If not defined otherwise, we use the notions related
to the relational model as defined in [23]. In our description, we
concentrate on the issues related to domain similarities and table
ranks. We use Y for a set of attributes (attribute names) and denote
the attributes by y,y1, . . . ; L denotes a fixed structure of truth degrees
and connectives.

Definition 1: A ranked data table over domains with similarity
relations (with Y and L) is given by

• domains: for each y ∈ Y , Dy is a non-empty set (domain of y,
set of values of y);

• similarities: for each y ∈Y , ≈y is a binary fuzzy relation (called
similarity) in Dy (i.e. a mapping ≈y: Dy ×Dy → L) which is
reflexive (i.e. u ≈y u = 1) and symmetric (u ≈y v = v ≈y u);

• ranking: for each tuple t ∈ ×y∈Y Dy, there is a degree D(t) ∈ L
(called rank of t in D) assigned to t.

Remark 2: (1) D can be seen as a table with rows and columns
corresponding to tuples and attributes, like in Tab. I. By t[y] we denote
a value from Dy of tuple t on attribute y. We require that there is only
a finite number of tuples which get assigned a non-zero degree (i.e.
the corresponding table is finite). Clearly, if L = {0,1} and if each
≈y is equality, the concept of a ranked data table with similarities
coincides with that of a data table (relation) of a classical model.

(2) Formally, D is a fuzzy relation between domains Dy (y ∈ Y ).
As mentioned above, D(t) is interpreted as a degree to which the
tuple t satisfies requirements posed by a query. We use “non-ranked
table” if for each tuple t, D(t) = 0 or D(t) = 1. This accounts for
tables representing strored data (prior to querying).

(3) Sometimes, we add additional requirements for ≈y, e.g. tran-
sitivity w.r.t. a binary operation � on L or separability (u ≈y v = 1
iff u = v). We are not concerned here with how the similarities are
represented (we assume they can either be computed or, if Dy is
small, are stored).

(4) Ranked tables over domains with similarities appear in [28].
However, the authors consider only [0,1] as a scale and no logical
connectives.

B. Relational algebra and calculus

1) Relational algebra: Relational algebra of the classical model
is based on the calculus of classical relations. In the same spirit,
since ranked tables are in fact fuzzy relations, our relational algebra
is based on the calculus of fuzzy relations [16], [20]. Due to the
limited scope, we present in detail only selected parts of our algebra
and leave the rest in an outline. Details will be presented in a full
version of the paper.

TABLE II
ILLUSTRATION OF SIMILARITY-BASED JOIN

D(t)
1.0
1.0

position education

programmer Comput. Sci.
syst. technician Comput. Eng.

D(t)
1.0
1.0
0.9
0.9

name position

Adams programmer
Black syst. technician
Adams syst. technician
Black programmer

Our relational algebra is relative to L and manipulates ranked data
tables with common Y , domains, and similarities. Operations of our
relational algebra can be classified as follows.

Counterparts to Boolean operations of classical model Here, for any
binary (and similar for other arities) operation � with fuzzy relations,
we define a corresponding operation (denoted again) � which yields
for any two ranked tables D1 and D2 (with common Y , domains, and
similarities) a ranked table D assigning to any tuple t a rank D(t)
defined componentwise by

D(t) = D1(t)�D2(t).

This accounts for operations based on ∧, ∨, ⊗, →, etc. (this way,
we obtain our counterparts to intersection, union, etc.). Note that,
one has to be careful when reducing operations to other operations.
For instance, unlike classical case, De Morgan law is not available
in fuzzy logic in general and, as a consequence, union cannot be
expressed by intersection and complement.

New operations based on calculus of fuzzy relations The calculus of
fuzzy relations contains operations which either have no counterparts
with classical relations or the counterparts are trivial. An interesting
example is a so-called a-cut of a fuzzy relation. For a ranked table
D and a rank a ∈ L, an a-cut of D is a ranked table aD defined by

[aD](t) =
{

1 if D(t) ≥ a,
0 otherwise.

That is, aD is a non-ranked table which contains those tuples of D
with ranks greater or equal to a. This is quite a natural operation for
manipulation of ranked tables which allows the user to select only a
part of a query result given by threshold a. Note that in combination
with intersection, a-cut is able to keep the original ranks. Namely,
we have [D ∧ aD](t) = D(t) if D(t) ≥ a and = 0 otherwise.

Counterparts to selection, join, projection, etc. These operation stem
basically from the classical ones by taking into account similarity
relations (or, in general fuzzy relations θ in place of classical
comparators). For illustration, we consider a similarity-based join. For
simplicity, consider a ranked table D1 from Tab. I (result to a query
“. . . candidates with age about 30”) and a ranked table D2 from Tab. II
(top) describing open positions with required education. A similarity-
based join D1 �� D2 then describes possible job assignments. A rank
[D1 �� D2](n,a,e, p) of tuple 〈n,a,e, p〉 in D1 �� D2 is given by

W
e1,e2

(D1(n,a,e1)⊗ (e1 ≈e e)⊗ (e ≈e e2)⊗D2(p,e2))

where e1,e2 range over the domain corresponding to education. That
is, the join runs not only over equal values but also over similar
values at the cost of decreasing the value of the resulting tuples by
degrees of similarity. The bottom table of Tab. II shows a result of a
0.9-cut of D1 �� D2 projected to name and position.
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Further operations (topk etc.) Here, we put operations interesting
from the point of information retrieval which cannot be accounted
for in classical model. As an example, consider topk which gained a
considerable interest recently, see [13], [14] and also [18]. We define
topk(D) to contain the first k tuples (according to rank ordering) of D
with their ranks (if there are less than k ranks in D then topk(D) = D;
and topk(D)) includes also the tuples with rank equal to the rank of
the k-th tuple). Note that topk is a part of a query language described
in [26].

2) Tuple and domain relational calculi: The tuple calculus of
classical model is based on classical predicate logic. In the same
spirit (here again, as with relational algebra), our tuple calculus is
based on fuzzy predicate logic. It is important for our purpose that
predicate fuzzy logic(s) are developed nowadays and that they are
in a relationship to the calculus of fuzzy relations similar to the
relationship of classical predicate logic to the calculus of classical
relations. Expressions of our tuple calculus are of the form

{x(R) | f (x)}
with the usual meaning of the components (x the only free variable
in a legal formula f , R a set of attributes). Formulas f (x) are built
from atoms using symbols of connectives of fuzzy logic in the usual
way. In addition to this, atoms include truth constants a ∈ L, and we
need a unary connective ∆ (Baaz’s delta [17]). We have also non-
standard quantifiers [17] in our language like Q<k (“less than k”)
with (Q<kx) f (x) having truth degree 1 if the number of tuples for
which f (x) evaluates to a non-zero degree is less than k and having
truth degree 0 otherwise. Due to inclusion of Q<k, tuple calculus has
expressions equivalent to topk, one of them being a formula

D(x)∧ (Q<ky)(¬∆(D(y) → D(x))∧∆(D(x) → D(y))).

The situation is similar for a domain relational calculus.
Taking appropriate care of the details, one can obtain the following

theorem (the details and proof will be presented in a full version).

Theorem 3 (equivalence theorem): Our relational algebra, domain
calculus, and tuple calculus are mutually equivalent.

That is, for any expression EA of our relational algebra there is an
expression ED of our domain calculus such that for any state of a
database d, the ranked tables EA(d) and ED(d), to which EA and ED

evaluate, coincide and vice versa (and the same for the other cases).

Remark 4: Previous approaches either consider only similarities
[9] or only ranks [29] but not both. Most importantly, our approach
provides more expressive power (inclusing e.g. topk) and a firm
connection to predicate fuzzy logic due to which both the relational
algebra and calculi are open for further extensions (e.g. by other
non-standard quantifiers, aggregation operators, etc.). [22] presents an
interesting framework different from our one but with similar aims.

C. Functional dependencies

Functional dependencies (FDs) describe a particular form of re-
lationship. FDs are traditionally used for issues related to database
design [23] and for obtaining information from data [24]. We are
going to argue that in our setting, FDs extended by taking into
account the domain similarities (1) provide us with a new type
of data dependency; (2) leave many of the previous approaches to
fuzzy FD particular cases; (3) are tractable both theoretically and
computationally in an analogous way as with classical FDs. Claim
(3) is particularly important since most of the previous approaches
to fuzzy FD are confined to definitions and illustrative examples.

1) Definition and related approaches: In our setting, a (fuzzy)
FD is a formula A ⇒ B where A and B are fuzzy sets of attributes
(A,B ∈ LY ). We first present a definition of validity of A ⇒ B in a
ranked data table D and then add comments.

Definition 5: For a ranked data table D , tuples t1, t2 and a fuzzy
set C ∈ LY of attributes, we introduce a degree t1(C) ≈D t2(C) to
which t1 and t2 have similar values on attributes from C by

t1(C) ≈D t2(C) =

= (D(t1)⊗D(t2)) →
V

y∈Y (C(y) → (t1[y] ≈y t2[y])). (1)

A degree ||A ⇒ B||D to which a FD A ⇒ B is true in D is defined by

||A ⇒ B||D =
V

t1,t2

(
(t1(A) ≈D t2(A))∗ → (t1(B) ≈D t2(B))

)
. (2)

Remark 6: (1) By basic rules of semantics of predicate fuzzy logic
[17], t1(C) ≈D t2(C) is just the truth degree of a formula “if t1, t2
are from D then for each attribute y from C, t1 and t2 have similar
values on y”.

(2) Therefore, using predicate fuzzy logic again, ||A ⇒ B||D is a
truth degree of a formula “for any tuples t1, t2: if t1 and t2 have similar
values on attributes from A then t1 and t2 have similar values on
attributes from B”. Note that due to our adherence to predicate fuzzy
logic, the meaning of A ⇒ B is given by a simple formula which we
just described in natural language. Note that, in fact, the antecedent
in formula (2) is modified by a hedge ∗. This has technical reasons
not discussed in detail here (note only that setting ∗ to globalization
or identity enables as to have some of the previous approaches as
particular cases of our ones).

(3) Note also that ||A ⇒ B||D is a truth degree from our scale
L, not necessarily being 0 or 1. That is, our FDs may be true
to a degree, e.g., 0.9 (approximately true) which is natural when
considering approximate concepts like similarity. The particular value
of ||A⇒B||D depends on our choice of the scale and the connectives.
For illustration, if the ranks in D are all 0 or 1 and ∗ is globalization
then for any choice of a scale L and connectives ⊗,→ we have that
||A ⇒ B||D = 1 (A ⇒ B is fully true in D) means that for any tuples
t1, t2 from D: if A(y) ≤ (t1[y] ≈y t2[y]) for any attribute y ∈ Y then
B(y) ≤ (t1[y] ≈y t2[y]) for any attribute y ∈ Y . This also shows that
degrees A(y) and B(y) serve basically as similarity thresholds.

(4) Compared to previous approaches to fuzzy FDs, see [4], [5],
[10], [19], [27], [28], [30] for a representative sample, the following
are the main distinctions of our approach. (i) Previous approaches
use ordinary sets A and B in a fuzzy FD A ⇒ B which is a special
case in our setting since we allow fuzzy sets for A and B. This
allows us to express similarity thresholds (see above) which means a
greater but still natural expressive power. (ii) Previous approaches do
not consider approximate validity of FDs and related notions (like
degree of entailment). (iii) Previous approaches use one particular
scale, namely [0,1], and one particular choice of connectives and do
not consider relationship to predicate fuzzy logic. As a result, a simple
natural language description of the meaning of fuzzy FD is missing.
Furthermore, most of the previous approaches are a particular case
of our approach. Due to the limited scope of our paper, we present
a detailed comparison elsewhere.

2) Armstrong-like axioms and completeness: In this section, we
present two kinds of complete axiomatization of our FDs by means
of Armstrong-like axioms. Instead of proceeding directly (which is
possible), we follow a shorter path by using results from [2] where
complete axiomatizations were shown for fuzzy FDs evaluated over
non-ranked data tables (i.e., ranks equal to 1 or 0 in our setting).

First, we need the following concepts. For a set T of fuzzy FDs, let
Mod(T ) be a set of all ranked data tables with similarities in which
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each FD from T is true in degree 1, i.e. Mod(T ) = {D | for each A⇒
B ∈ T : ||A ⇒ B||D = 1}. D ∈ Mod(T ) are called models of T . A
degree ||A ⇒ B||T to which A ⇒ B semantically follows from T is
defined by

||A ⇒ B||T =
V

D∈Mod(T ) ||A ⇒ B||D
where the infimum ranges over all models of T . Note that according
to standard rules of fuzzy logic, ||A ⇒ B||T is a degree to which it
is true that A ⇒ B is true in each model of T . The following is our
“reduction result” which provides a connection to [2].

Theorem 7: For any set T of FDs, we have

||A ⇒ B||T =
V

D∈M (T ) ||A ⇒ B||D , (3)

where M (T ) = {D ∈ Mod(T ) | for each t : D(t) ∈ {0,1}}.
Proof: “≤” is trivial because M (T ) ⊆ Mod(T ).

“≥”: It suffices to check that for each data table D ∈Mod(T ) there
is D ′ ∈M (T ) such that ||A⇒B||D = ||A⇒B||D ′ . Take D ∈Mod(T ).
Consider a set I for which we have |I|= |Supp(D)|, i.e. the cardinality
of I is the same as the cardinality of the set of tuples which belong
to D to a nonzero degree. I will be used as a set of identifiers of
tuples from D . Fix any bijective mapping f : I → Supp(D). We now
define D ′ as follows:

– each domain D′
y equals to I, i.e. we put D′

y = I;
– similarities ≈′

y on domains D′
y are defined by:

i ≈′
y j = (D( f (i))⊗D( f ( j))) → (( f (i))[y] ≈y ( f ( j))[y])

for each i, j ∈ D′
y, y ∈ Y ;

– for each t ∈ Supp(D), D ′ fully contains a tuple t ′
(i.e., D(t ′) = 1) such that t ′[y] = f−1(t) (y ∈ Y ).

We can show that ||A ⇒ B||D = ||A ⇒ B||′D . Indeed, observe that
for any t ′1, t

′
2 ∈ D ′, for the corresponding t1, t2 ∈ Supp(D), and for

each fuzzy set C of attributes we have

t ′1(C) ≈D ′ t ′2(C) =

= (D(t ′1)⊗D(t ′2)) →
V

y∈Y (C(y) → (t ′1[y] ≈′
y t ′2[y])) =

= 1 → V
y∈Y (C(y) → (t ′1[y] ≈′

y t ′2[y])) =

=
V

y∈Y (C(y) → (t ′1[y] ≈′
y t ′2[y])) =

=
V

y∈Y (C(y) → ((D(t1)⊗D(t2)) → (t1[y] ≈y t2[y]))) =

= (D(t1)⊗D(t2)) →
V

y∈Y (C(y) → (t1[y] ≈y t2[y])) =

= t1(C) ≈D t2(C).

The rest follows from definition of || · · · ||D .

Our axiomatic system consists of the following deduction rules.

(Ax) infer A∪B ⇒ A,

(Cut) from A ⇒ B and B∪C ⇒ D infer A∪C ⇒ D,

(Mul) from A ⇒ B infer c∗ ⊗A ⇒ c∗ ⊗B

for each A,B,C,D ∈ LY , and c ∈ L. Here, c∗ ⊗A ∈ LY is defined by
(c∗ ⊗A)(y) = c∗ ⊗A(y). As usual, A ⇒ B is called provable from a
set T of FDs, written T � A ⇒ B, if there is a sequence ϕ1, . . . ,ϕn

of FDs such that ϕn is A ⇒ B and for each ϕi we either have ϕi ∈ T
or ϕi is inferred (in one step) from some of the preceding FDs (i.e.,
ϕ1, . . . ,ϕi−1) using some deduction rule (Ax)–(Mul).

Theorem 8 (completeness): Let T be a set of FDs, L and Y be
finite. For each A ⇒ B we have

T � A ⇒ B iff ||A ⇒ B||T = 1.
Proof: Sketch of the proof: The “⇒”-part of the claim (sound-

ness) is routine to check by induction on length of a proof. Hint:
observe that (Ax) is fully true in each ranked data table, and (Cut)
and (Mul) infer fully true FDs (in D) from fully true FDs (in D).

Due to Theorem 7, we can restrict ourselves only to models from
M (T ).

In order to show the “⇐”-part of the claim, it suffices to show that
T � A ⇒ B implies ||A ⇒ B||T �= 1. Assuming T � A ⇒ B, we find a
ranked data table D ∈ Mod(T ) such that ||A ⇒ B||D �= 1. Consider a
system SA = {C ∈ LY |T � A ⇒C} of fuzzy sets of attributes. SA has
a greatest element (this follows from finiteness of Y , L, and since
A∈ SA). Denote the greatest element of SA by A+. Take any data table
D which consists of two tuples t1, t2 such that D(t1) = D(t2) = 1,
and t1[y] ≈y t2[y] = A+(y) (y ∈ Y ). Using the fact T � A ⇒ B, one
can check that D ∈ M (T ) (i.e., D is a model of T ), and that ||A ⇒
B||D �= 1. Details are postponed to the full version of the paper.

Theorem 8 says that for a set T and a FD A ⇒ B, A ⇒ B is fully
entailed by T (i.e., in degree 1) iff A ⇒ B is provable from T . Next,
we extend this result to graded completeness (see [17] for details on
this concept) to account for a general degree of entailment (i.e., other
than 1). We proceed by reduction to the above-concept of provability
(this is a luck in our setting which is not available in other situations;
however, reasoning directly is also possible). For a set T of FDs and
for A ⇒ B define a degree |A ⇒ B|T ∈ L to which A ⇒ B is provable
from T by

|A ⇒ B|T =
W{c ∈ L |T � A ⇒ c⊗B}.

Then, the concept of a degree of provability coincides with that of a
degree of semantic entailment.

Theorem 9 (graded completeness): Let L and Y be finite. Then for
every T and A ⇒ B we have

|A ⇒ B|T = ||A ⇒ B||T .
Proof: Due to Theorem 8, it is enough to show that ||A ⇒

B||T =
W{c ∈ L | ||A ⇒ c⊗B||T = 1}, which is indeed true (follows

from properties of a residuated implication, details are omitted).
The idea of graded completeness generalizes also for fuzzy sets T

of formulas (i.e. for reasoning from partially true premises). Details
are omitted due to the limited scope.

Remark 10: (1) The presented results generalize well-known re-
sults on completeness of Armstrong axioms [23]. Our results “be-
came” the classical ones if we take a two-element Boolean algebra
for our scale of truth degrees with connectives (classical conjunction
and implication for ⊗ and →, and identity for ∗).

(2) Compared to the previous approaches to axiomatization of
fuzzy FDs, note first that we deal with more general notion of
a FD (see above). Our axioms differ from those reported in the
literature on fuzzy FDs in that all of the reported results use only
a set of classical Armstrong axioms. Contrary to that, we need a new
rule (Mul). Furthermore, the previous approaches did not consider
entailment in degrees and thus there are no attempts reported on
graded completeness.

(3) Note also that in the previous approaches, the authors prove
their completeness results directly. Since they use only the classical
Armstrong axioms, it might be interesting to see if their completeness
results follow from the completeness of classical FDs. This is, indeed,
the case; we omit details (sketch for the case presented in [28]: for
each data table with similarities one can construct a classical data
table such that the tables have the same true FDs; the result then
follows by a simple reasoning on semantic entailment).

3) Computing non-redundant basis: In this section, we focus on
non-redundant bases of FDs of ranked data tables, i.e. minimal sets
T of FDs which are fully true in a given ranked table D and
such that any other FD true in D follows semantically from T in
degree 1. Non-redundant bases are therefore minimal sets of FDs
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which convey information about all fully true FDs in the table.
The interest in obtaining non-redundant bases is basically twofold.
First, from the point of view of knowledge extraction, a ranked data
table D represents an answer to a similarity-based query. A non-
redundant basis of D thus represents an additional information to
the query which describes all dependencies satisfied by the result
to the query. Second, as in the classical case, non-redundant sets of
FDs are important in considerations concerning data redundancy and
normalization (this applies particularly to non-ranked tables).

Computational aspects of fuzzy approaches to FDs are scarcely
discussed in the literature and [30] seems to be an exception.
However, since the aim in [30] is different from computing non-
redundant bases, we do not discuss it here (in [30], the authors
compute all FDs satisfying some non-triviality conditions).

In what follows, we make use of [3] where the problem of
description and computation of a particular non-redundant basis was
solved for non-ranked data tables with similarities (i.e., all ranks equal
to 1 or 0). We present a couple of results which make it possible
to apply results from [3] to the problem of non-redundant bases of
ranked data tables. This way, we extend the results and methods of
[3] to account for the more general case of ranked data tables.

Let thus D be a ranked data table with similarities.

Definition 11: A set T of FDs is complete in D if, for each A⇒B,
||A ⇒ B||T = ||A ⇒ B||D . Moreover, if T is complete in D and no
proper subset of T is complete in D , we call T a non-redundant basis
of D . T is called a minimal basis of D if T is complete in D and
for each T ′ which is complete in D we have |T | ≤ |T ′|.

We now proceed in two steps: First, we define a special closure
operator CD which assigns to any fuzzy set A of attributes its closure
CD(A), which is again a fuzzy set of attributes, so that T = {A ⇒
CD(A) |A ∈ LY } is complete in D . Second, we describe a “small
subset” of T which is non-redundant (and minimal in size in some
important cases) and computationally tractable. The first part of the
procedure (description of CD ) is treated in more detail because it is
a non-trivial extension of previous results. The second part (selecting
a non-redundant subset) follows the same procedure as in [3], so we
give only a hint.

Definition 12: For a ranked data table D over attributes Y define
an operator CD : LY → LY by

(CD(A))(y) =

=
V

t,t ′((D(t)⊗D(t ′)⊗ (t(A) ≈ t ′(A))∗) → (t[y] ≈y t ′[y])).

Observe that the tuples t for which D(t) = 0 can be disregarded
in the formula for CD .

Theorem 13: For each D , CD is a closure operator, and T = {A⇒
CD(A) |A ∈ LY } is complete in D .

Proof: Sketch of the proof: Using properties of residuated
lattices and hedges, one can show that CD is a closure operator
(the proof is technically involved and omitted due to the lack of
space). For the second part, it suffices to show that models of T entail
exactly the same FDs as D does. This can be proved by showing that
D is a model of T (which follows from the definition of CD ) and
that each model of T entails all FDs which are entailed by D (hint:
suppose some model of T does not entail A ⇒ B, from which one
gets A ⇒ B �∈ T , i.e. B �⊆ CD(A), which further gives ||A ⇒ B||D �= 1
by definition of CD ).

We now focus on finding a non-redundant basis of D which is
a subset of the set T described in Theorem 13. Similarly as in [3],
we take advantage of the technical concept of a system of pseudo-
closed fuzzy sets of attributes. In the present setting of tables with

TABLE III
ILLUSTRATIVE DATA TABLE: POWER CONSUMPTION OF COUNTRIES WITH

VERY LARGE POPULATIONS

D(t)
1.0
1.0
0.6
0.3
0.3
0.2
0.2
0.2
0.1

country coal air water nuclear

China 498.0 246 196 34.6
India 154.3 1032 75 26.8
USA 570.7 2533 330 753.9
Russia 115.8 54 157 122.5
Japan 0.0 120 90 293.8
Germany 56.4 3817 50 161.2
UK 19.5 350 8 81.7
France 0.0 63 62 394.4
Spain 10.9 1180 11 58.9

TABLE IV
ILLUSTRATIVE DATA TABLE: PARTICULAR SIMILARITY RELATIONS ON

DOMAINS

≈c Cn In US Ru Jp Ge Fr UK Sp

Cn 1 .3

In 1 .6

US .3 1

Ru .6 1 .4

Jp 1 .4 1 .8 .9

Ge .4 .4 1 .4 .7 .6

Fr 1 .4 1 .8 .9

UK .8 .7 .8 1 1

Sp .9 .6 .9 1 1

≈a Cn In US Ru Jp Ge Fr UK Sp

Cn 1 .5 .9 .9 .9 .9 .4

In .5 1 .3 .4 .3 .5 .9

US 1 .1 .1

Ru .9 .3 1 1 1 .8 .2

Jp .9 .4 1 1 1 .9 .3

Ge .1 1

Fr .9 .3 1 1 1 .8 .2

UK .9 .5 .8 .9 .8 1 .4

Sp .4 .9 .1 .2 .3 .2 .4 1

≈w Cn In US Ru Jp Ge Fr UK Sp

Cn 1 .6

In 1 1 .9 1 .2 .2

US 1

Ru .6 1 .2

Jp 1 .2 1 .6 .8

Ge .9 .6 1 1 .6 .6

Fr 1 .8 1 1 .4 .4

UK .2 .6 .4 1 1

Sp .2 .6 .4 1 1

≈n Cn In US Ru Jp Ge Fr UK Sp

Cn 1 1 .7 .4 1 1

In 1 1 .6 .4 .9 1

US 1

Ru .7 .6 1 .1 1 1 .9

Jp .1 1 .4 .6

Ge .4 .4 1 .4 1 .8 .6

Fr .6 1

UK 1 .9 1 .8 1 1

Sp 1 1 .9 .6 1 1

truth weighted tuples, we define the notion as follows. Given D , a
collection P ⊆ LY of fuzzy sets of attributes is called a system of
pseudo-closed fuzzy sets w.r.t. D if, for each P ∈ LY , we have:

P ∈ P iff P �= CD(P) and for each Q ∈ P
such that Q �= P : S(Q,P)∗ ≤ S(CD(Q),P),

where “S(· , ·)” denote degrees of subsethood, see Section I-C. Each
P ∈ P is then called a pseudo-closed fuzzy set of attributes. One
can prove the following assertion (the proof is postponed to the full
version of the paper).

Theorem 14: If P is a system of pseudo-closed fuzzy sets w.r.t.
D , then T = {P ⇒ CD(P) |P ∈ P} is a non-redundant basis of D . If
∗ is globalization, then T is a minimal basis of D .

Remark 15: The non-redundant basis T of a ranked table D
of Theorem 14 can be efficiently computed by an algorithm with
polynomial time delay. Namely, the systems of pseudo-closed fuzzy
sets introduced in our paper satisfy the requirements of the algorithms
proposed for non-ranked data tables [3, Theorem 5, Algorithm 1].
We omit the presentation of the resulting algorithm due to space
limitations.

EXAMPLE. We now present an example of a non-redundant
basis of a ranked table. We consider a linear scale of 11 truth
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degrees 0 (falsity) < 0.1 < 0.2 < · · · < 1 (full truth) equipped with
Łukasiewicz connectives [17] and globalization. Table III describes
power consumption of selected countries. The attributes denote name
of the county, mass of coal (megatons) produced for power purposes,
electricity (MW) produced by air power-plants, electricity (103 MW)
produced by water power-plants, electricity (1012 MW) produced
by nuclear power-plants. For simplicity, we use names as tuples’
identifiers of tuples instead of values of attributes.

Introducing similarity relations enables us to gain more information
from the data. Let our similarities be given by Table IV. Our purpose
is neither to study methods of specifying suitable similarities for
particular data nor argue that our choice of similarities is “the best
one”–this is a matter connected with particular problem domain
(geography and economy, in this particular example) and should be
left to experts in the areas.

Suppose first that a rank of each tuple in Table III is 1. Then the
minimal basis of such a data table (with the underlying similarity
relations) consists of 56 FDs.

If ranks of tuples are as given by the D(t)-column of Table III,
then the table can be seen as a result of a query “select power
consumption of countries with very large populations”. Intuitively,
one may expect the the minimal basis of such a table would be
smaller than the basis of the latter one because now several tuples
(like Spain, France, . . . ) have a low rank (the populations are rather
small). Indeed, the minimal basis given by the algorithm described in
previous section is (after reduction of left-hand and right-hand sides
of FDs) the following:

{c,0.8/w}⇒{w}, {0.1/c}⇒{0.4/c,0.4/w},

{0.9/c,0.8/w}⇒{0.9/w}, {0.6/a}⇒{0.7/c,0.8/a,0.7/w},

{0.9/c}⇒{a,n}, {0.9/n}⇒{n},

{0.8/c}⇒{0.8/a,0.7/w,0.8/n}, {0.5/a}⇒{0.7/n},

{0.1/c,0.9/a}⇒{a}, {0.1/w}⇒{0.4/c,0.4/w},

{0.5/c}⇒{0.7/c}, {0.5/n}⇒{0.5/a,0.7/n},

{0.1/c,0.5/a}⇒{0.7/c,0.8/a,0.7/w}, {}⇒{0.4/a,0.4/n},

{0.1/c,0.5/w}⇒{0.7/c,0.8/a,0.7/w,0.7/n}.

The basis can be seen as an additional information supplied along
with the query result. Note that if Table III is considered as a
classical one (no ranks, no similarities), its minimal basis consists
of three (classical) FDs, namely {a}⇒{c,w,n}, {w}⇒{c,a,n}, and
{n}⇒{c,a,w}. Thus, attributes a, w, and n are all keys of the table.
Contrary to the previous case with similarities and ranks, the basis
does not yield any other (nontrivial) information.

III. FUTURE RESEARCH

Future research needs to focus on further development of the
relational algebra and calculi (both classical aspects like query
optimization and the new ones arising due to taking degrees into
account); development of functional dependencies and further types
of data dependencies; data redundancy and related issues (keys, nor-
malization in presence of similarity, preliminary results are available).

ACKNOWLEDGMENT

Supported by grant No. 1ET101370417 of GA AV ČR, by grant
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