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We present a logic, called fuzzy attribute logic, for reasoning about formulas describing particular attribute dependencies. The formulas
are of a form A ⇒ B where A and B are collections of attributes. Our formulas can be interpreted in two ways. First, in data tables
with entries containing degrees to which objects (table rows) have attributes (table columns). Second, in database tables where each
domain is equipped with a similarity relation assigning a degree of similarity to any pair of domain elements. We assume that the scale of
degrees is equipped with fuzzy logical connectives and forms an arbitrary complete residuated lattice. This covers many structures used
in fuzzy logic applications as well as structures used in formal systems of fuzzy logic. If the scale contains only two degrees, 0 (falsity)
and 1 (truth), two well-known calculi become particular cases of our logic. Namely, with the first interpretation, our logic coincides with
attribute logic used in formal concept analysis; with the second interpretation, our logic coincides with Armstrong system for reasoning
about functional dependencies.

We prove completeness of fuzzy attribute logic over arbitrary complete residuated lattices in two versions. First, in the ordinary style,
completeness asserts that a formula A ⇒ B is entailed by a collection T of formulas iff A ⇒ B is provable from T . Second, in the graded
style, completeness asserts that a degree to which A ⇒ B is entailed by a collection T of formulas equals a degree to which A ⇒ B is
provable from T .

1 Introduction

Rules A ⇒ B, e.g. {prime, >2} ⇒ {odd}, {flight No.} ⇒ {departure time, arrival time}, are perhaps
the most important means for description of attribute dependencies in symbolic data. These rules are
used in various areas. In formal concept analysis (Ganter and Wille, 1999), the rules are called attribute
implications and are interpreted in tables describing objects and attributes. Entries in a table say whether
or not a particular object has a particular attribute. Then, A ⇒ B is true in a table if each object
having all attributes from A has also all attributes from B, cf. {prime, >2} ⇒ {odd}. Another area where
these rules are used is data mining. The rules are called association rules and their interpretation is
essentially the same as in formal concept analysis except that two additional parameters, called support
and confidence, are used to tell which rules are interesting, see (Zhang and Zhang, 2002) for details. A
different interpretation of rules A ⇒ B is used in relational databases. The rules are called functional
dependencies and they are used for management of data redundancy and for database design, see (Maier,
1983). Functional dependencies are interpreted in database tables and A⇒ B being true in a table means
that any two tuples (rows) of the table which have the same values in all attributes from A have also the
same values in all attributes from B, cf. {flight No.} ⇒ {departure time, arrival time}.

It has been repeatedly stressed that current methods of data management have only very limited ca-
pability of dealing with uncertainty in data, see e.g (Abiteboul et al., 2005). Several calculi have been
developed for treatment of various forms of uncertainty in recent years. Among them, fuzzy logic plays
an important role. In our previous papers, we studied several aspects of rules A ⇒ B from the point
of view of fuzzy logic, see (Bělohlávek et al., 2004; Bělohlávek and Vychodil, 2005a,b,c, 2006a,b). We
introduced two interpretations of formulas A⇒ B. First, in data tables with entries containing degrees to
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which objects (table rows) have attributes (table columns). This interpretation generalizes the one used
in formal concept analysis which results as a special case when our scale of truth degrees contains just
two degrees 0 (falsity) and 1 (truth). Second, in database tables where each domain is equipped with a
similarity relation assigning a degree of similarity to any pair of domain elements. Again, the ordinary
database interpretation results as a special case when our scale contains just 0 and 1 and when the domain
similarities are identity relations. We studied problems motivated in data analysis (e.g., a feasible descrip-
tion and computation of non-redundant bases from data tables), relationship to the ordinary setting, and
database issues. In addition to that, we introduced fuzzy attribute logic, see (Bělohlávek and Vychodil,
2005a,c), i.e. a logical calculus for reasoning with formulas A ⇒ B. However, up to now, completeness of
fuzzy attribute logic is restricted to finite structures of truth degrees. As a result, important structures
like the unit interval [0, 1] elude completeness.

The current paper presents completeness of fuzzy attribute logic over arbitrary complete residuated
lattices, including thus [0, 1] equipped with an arbitrary left-continuous t-norm. We prove two types of
completeness theorems: ordinary-style completeness (provability is a bivalent notion) and graded-style
completeness (provability is a matter of degree). Ordinary-style completeness asserts that a formula A⇒ B
is entailed by a collection T of formulas iff A⇒ B is provable from T . Graded-style completeness asserts
that a degree to which A⇒ B is entailed by T equals a degree to which A⇒ B is provable from T .

2 Preliminaries

Fuzzy attribute logic is developed over complete residuated lattices with truth-stressing hedges (shortly,
hedges). A complete residuated lattice with a hedge, which is our basic structure of truth degrees, is an
algebra L = 〈L,∧,∨,⊗,→, ∗, 0, 1〉 such that 〈L,∧,∨, 0, 1〉 is a complete lattice with 0 and 1 being the
least and greatest element of L, respectively; 〈L,⊗, 1〉 is a commutative monoid (i.e. ⊗ is commutative,
associative, and a⊗ 1 = 1⊗ a = a for each a ∈ L); ⊗ and → satisfy so-called adjointness property:

a⊗ b ≤ c iff a ≤ b→ c (1)

for each a, b, c ∈ L; hedge ∗ satisfies

1∗ = 1, (2)

a∗ ≤ a, (3)

(a→ b)∗ ≤ a∗ → b∗, (4)

a∗∗ = a∗, (5)

for all a, b ∈ L. Elements a of L are called truth degrees. ⊗ and → are (truth functions of) “fuzzy
conjunction” and “fuzzy implication”. Hedge ∗ is a (truth function of) logical connective “very true”,
see (Hájek, 1998, 2001). Properties (2)–(5) have natural interpretations, e.g. (4) can be read: “if a→ b is
very true and if a is very true, then b is very true”, etc.

A common choice of L is a structure with L = [0, 1] (unit interval), ∧ and ∨ being minimum and
maximum, ⊗ being a left-continuous t-norm with the corresponding →. Three most important pairs of
adjoint operations, i.e. ⊗ and → satisfying (1), on the unit interval are:

 Lukasiewicz:
a⊗ b = max(a+ b− 1, 0),
a→ b = min(1− a+ b, 1),

(6)

Gödel:
a⊗ b = min(a, b),

a→ b =
{

1 if a ≤ b,
b otherwise,

(7)
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Goguen (product):
a⊗ b = a · b,

a→ b =
{

1 if a ≤ b,
b
a otherwise.

(8)

Complete residuated lattices include also finite structures of truth degrees. For instance, we can take a finite
subset L ⊆ [0, 1] that is closed under  Lukasiewicz or Gödel operations. If we take L = {0, 1}, we obtain
this way the two-element Boolean algebra (structure of truth degrees of classical logic). Two boundary
cases of hedges are (i) identity, i.e. a∗ = a (a ∈ L); (ii) globalization (Takeuti and Titani, 1987):

a∗ =
{

1 if a = 1,
0 otherwise. (9)

Given L which serves as a structure of truth degrees, we define usual notions: an L-set (fuzzy set) A in
universe U is a mapping A : U → L, A(u) being interpreted as “the degree to which u belongs to A”. Let
LU denote the collection of all L-sets in U . The operations with L-sets are defined componentwise. For
instance, intersection of L-sets A,B ∈ LU is an L-set A ∩B in U such that (A ∩B)(u) = A(u) ∧B(u) for
each u ∈ U , etc. For a ∈ L and A ∈ LU , we define L-sets a⊗A (a-multiple of A) and a→ A (a-shift of A)
by (a ⊗ A)(u) = a ⊗ A(u), (a → A)(u) = a → A(u) (u ∈ U). Given A,B ∈ LU , we define a subsethood
degree

S(A,B) =
∧

u∈U (A(u) → B(u)),

which generalizes the classical subsethood relation ⊆. Described verbally, S(A,B) represents the degree to
which A is a subset of B. In particular, we write A ⊆ B iff S(A,B) = 1, i.e. if A is fully included in B. We
have A ⊆ B iff, for each u ∈ U , A(u) ≤ B(u). In the following we use well-known properties of residuated
lattices and fuzzy structures which can be found, e.g., in monographs (Bělohlávek, 2002; Hájek, 1998).

3 Fuzzy attribute logic: soundness and completeness

3.1 Validity and semantic entailment

In this section we recall basic notions of fuzzy attribute logic (FAL). More details can be found
in (Bělohlávek et al., 2004; Bělohlávek and Vychodil, 2005b, 2006a).

In what follows, we let Y be a finite set of attributes, each y ∈ Y will be called an attribute. Fuzzy
attribute implication (over attributes Y ) is an expression A ⇒ B, where A,B ∈ LY (A and B are fuzzy
sets of attributes). Fuzzy attribute implications (FAIs) are the formulas of fuzzy attribute logic. In order
to consider validity (truth) of FAIs, we introduce a semantic component in which we evaluate FAIs and
their formal interpretation. The intuitive meaning we wish to give to A ⇒ B is: “if it is (very) true that
an object has all attributes from A, then it has also all attributes from B”. Formally, for an L-set M ∈ LY

of attributes, we define a degree ||A⇒ B||M ∈ L to which A⇒ B is true in M by

||A⇒ B||M = S(A,M)∗ → S(B,M), (10)

where S(· · ·) denote subsethood degrees, and → and ∗ are operations of a “fuzzy conjunction” and a hedge
of a complete residuated lattice L, see Section 2. The degree ||A ⇒ B||M can be understood as follows:
if M (semantic component) represents presence of attributes of some object, i.e. M(y) is truth degree to
which “the object has the attribute y ∈ Y ”, then ||A ⇒ B||M is the truth degree of “if the object has
all attributes from A, then it has all attributes from B”, which corresponds to the desired interpretation
of A ⇒ B. Note also that the hedge ∗ serves as a modifier of interpretation of A ⇒ B, see (Bělohlávek
et al., 2004; Bělohlávek and Vychodil, 2005b, 2006a) for details. For instance, if ∗ is globalization then
||A⇒ B||M = 1 (i.e. A⇒ B is true in M) means that if A ⊆M then B ⊆M , i.e. only full subsethood is
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taken into account. If ∗ is identity then ||A ⇒ B||M = 1 means S(A,M) ≤ S(B,M), i.e. any subsethood
degree is taken into account.

Let now 〈X,Y, I〉 be a data table with fuzzy attributes, i.e. X be a finite set of objects, Y be a finite set
of attributes, and I be an L-relation between X and Y assigning to any object x ∈ X and any attribute
y ∈ Y a degree I(x, y) ∈ L to which x has y. For any x ∈ X, denote by Mx a fuzzy set of attributes of
x, i.e. Mx(y) = I(x, y) for each attribute y ∈ Y . Then, one can define a degree ||A ⇒ B||〈X,Y,I〉 to which
A⇒ B is true in the data table 〈X,Y, I〉 by

||A⇒ B||〈X,Y,I〉 =
∧

x∈X ||A⇒ B||Mx
.

Note that Mx can be seen as a table row corresponding to x and thus ||A⇒ B||〈X,Y,I〉 is a degree to which
“A⇒ B is true in each row of the table 〈X,Y, I〉”.

Let T be a set of fuzzy attribute implications. M ∈ LY is called a model of T if ||A⇒ B||M = 1 for each
A⇒ B ∈ T . The set of all models of T is denoted by Mod(T ). A degree ||A⇒ B||T ∈ L to which A⇒ B
semantically follows from T is defined by

||A⇒ B||T =
∧

M∈Mod(T ) ||A⇒ B||M . (11)

Described verbally, ||A⇒ B||T is defined as a degree to which “A⇒ B is true in each model of T”. Hence,
||· · ·||T defined by (11) represents a degree of semantic entailment from T . In further sections we will be
interested in syntactic characterizations of ||· · ·||T .

Remark 1 The database interpretation of fuzzy attribute implication mentioned in Section 1 will not be
described in this paper. Namely, both of the interpretations have the same concept of semantic entailment.
That is a degree ||A⇒ B||T defined by (11) equals a degree to which A⇒ B semantically follows from T
when using the database interpretation. Therefore, a logical calculus which is complete (either in ordinary
or in graded style) with respect to one of these interpretations is also complete with respect to the other
interpretation. For details we refer to (Bělohlávek and Vychodil, 2006a,b).

3.2 Provability and syntactic entailment

This section introduces a deductive system for fuzzy attribute logic and a particular notion of provability
which generalize the ones presented in (Bělohlávek and Vychodil, 2005c). The generalized notions will
allow us to prove various completeness theorems (in Section 3.3) over each complete residuated lattice
with hedge taken as the structure of truth degrees.

Deductive systems for FAL presented in (Bělohlávek and Vychodil, 2005a,c) are based on deduction rules
of the form “from ϕ1, . . . , ϕn infer ϕ”, where n is a nonnegative integer and ϕ,ϕi (i ∈ I) are (schemas for)
FAIs. Such deduction rules are to be understood as usual: having rule “from ϕ1, . . . , ϕn infer ϕ” and FAIs
which are of the form of FAIs in the input part (the part preceding “infer”) of the rule, the rule allows
us to infer (in one step) the corresponding FAI in the output part (the part following “infer”) of the rule.
Each nullary rule, i.e. rule where n = 0, is considered as an axiom the output part of which can be inferred
in one step.

Deductive system of FAL which has been introduced in (Bělohlávek and Vychodil, 2005c) uses the
following rules.

(Ax) infer A ∪B ⇒ A,
(Cut) from A⇒ B and B ∪ C ⇒ D infer A ∪ C ⇒ D,
(Mul) from A⇒ B infer c∗ ⊗A⇒ c∗ ⊗B

for each A,B,C,D ∈ LY , and c ∈ L. Notice that (Ax) is a nullary rule (axiom) which says that each
A ∪ B ⇒ A (A,B ∈ LY ) is inferred in one step. The rules are inspired by Armstrong-like axioms,
see (Armstrong, 1974) and also (Maier, 1983) for a good overview.

A fuzzy attribute implication A⇒ B is called provable from a set T of FAIs using a set R of deduction
rules if there is a sequence ϕ1, . . . , ϕn of fuzzy attribute implications such that ϕn is A⇒ B and for each
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ϕi we either have ϕi ∈ T or ϕi is inferred (in one step) from some of the preceding formulas using some
deduction rule from R (i.e., R contains a rule “from ψ1, . . . , ψk infer ϕi” where each of ψ1, . . . , ψk is among
ϕ1, . . . , ϕi−1). If R consists of (Ax)–(Mul), we say just “A⇒ B is provable from T” instead of “A⇒ B is
provable from T using . . . ” and denote this fact by T ` A⇒ B.

A deduction rule “from ϕ1, . . . , ϕn infer ϕ” is said to be sound if Mod({ϕ1, . . . , ϕn}) ⊆ Mod({ϕ}). A
deduction rule “from ϕ1, . . . , ϕn infer ϕ” (ϕi, ϕ are FAIs) is said to be derivable (from a set R of deduction
rules) if ϕ is provable from {ϕ1, . . . , ϕn} (using R). A proof of the following observation follows from the
the ordinary case, see (Bělohlávek and Vychodil, 2005c).

Lemma 3.1 The following deduction rules are derivable from (Ax) and (Cut):

(Add) from A⇒ B and A⇒ C infer A⇒ B ∪ C,
(Pro) from A⇒ B ∪ C infer A⇒ B,
(Tra) from A⇒ B and B ⇒ C infer A⇒ C,

for each A,B,C,D ∈ LY . �

In (Bělohlávek and Vychodil, 2005a,c), we showed that given a finite residuated lattice with a hedge, we
have that T ` A⇒ B iff ||A⇒ B||T = 1. Described verbally, FAIs which are semantically entailed from T
to degree 1 (fully entailed) are exactly the FAIs which are provable from T using (Ax), (Cut), and (Mul).
We now extend the deductive system of FAL so that we will be able to prove this claim (and much more)
for any complete residuated lattice with a hedge.

The present deductive system will be extended by the following infinitary deduction rule which can have
infinitely many FAIs in the input part (part preceding “infer”):

(Addω) from A⇒ Bi (i ∈ I) infer A⇒
⋃

i∈I Bi,

where {A⇒ Bi | i ∈ I} is an I-indexed set of FAIs. Thus, (Addω) is of the form “from ϕi (i ∈ I) infer ϕ”.
Rules of this form will be called ω-deduction rules (shortly, ω-rules). Clearly, (Ax), (Cut), and (Mul) can
also be seen as ω-rules, where I is finite. Note that infinitary rules are widely used in logic and computer
science. For instance, they are used in universal algebra (Wechler, 1992) as well as fuzzy logic in narrow
sense (e.g., in TT∀, see (Hájek, 1998)). From now on, assume that we use a deductive system which consists
of (Ax), (Cut), (Mul), and (Addω).

In order to use ω-rules we switch from proofs considered as finite sequences of FAIs to ω-proofs which
will be defined as certain labeled infinitely branching rooted (directed) trees with finite depth (Grimaldi,
2004; Wechler, 1992). Each tree will be denoted by T = 〈l,St〉, where l is a label in the root of T , and St
is a set of subtrees of T : St = {Tv | Tv is a subtree at v, and v is a direct descendant of the root of T },
see (Grimaldi, 2004). Leaf nodes are thus denoted T = 〈l, ∅〉.

Given a set T of fuzzy attribute implications, we define an ω-proof from T (using deductive system R) as
follows: (i) for each A⇒ B ∈ T , tuple T = 〈A⇒ B, ∅〉 is an ω-proof from T (using R); (ii) if Ti = 〈ϕi, . . .〉
(i ∈ I) are ω-proofs from T (using R) and “from ϕi (i ∈ I) infer ϕ” is a rule in R then T = 〈ϕ, {Ti | i ∈ I}〉
is an ω-proof from T (using R). A ⇒ B is called ω-provable from T (using R), written T `ω A ⇒ B
(T `ω,R A⇒ B), if there is an ω-proof T from T (using R) such that T = 〈A⇒ B, . . .〉 (i.e., if A⇒ B is
the label in the root node of T ). One can introduce notions of soundness and ω-derivability of ω-rules as
in the previous setting.

The following assertion shows that, considering only (Ax), (Cut), and (Mul), provability coincides with
ω-provability.

Theorem 3.2 T ` A⇒ B iff A⇒ B is ω-provable from T using (Ax), (Cut), and (Mul).

Proof “⇒”: Let T ` A⇒ B. Thus, there is a sequence of FAIs ϕ1, . . . , ϕn which is a proof of A⇒ B from
T . By induction, we can check that for each ϕi (i = 1, . . . , n) there is an ω-proof of ϕj .

“⇐”: Let A⇒ B be ω-provable from T using (Ax), (Cut), and (Mul). Thus, there is an ω-proof T using
(Ax), (Cut), and (Mul) which is finite. Now, one can construct a sequence of FAIs by depth-first traversing
T and listing all labels in post-order. This sequence is a proof of A⇒ B from T (easy to check). �

The following assertion shows that if we use finite structures of truth degrees, ω-provability yields
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exactly the same as (the usual) provability. In this sense, our extension of the deductive system of FAL is
conservative with respect to the previous results.

Theorem 3.3 Let L be a finite residuated lattice with hedge. Then, for each set T of FAIs and for each
A⇒ B,

T `ω A⇒ B iff T ` A⇒ B iff ||A⇒ B||T = 1.

Proof It suffices to show T `ω A ⇒ B iff T ` A ⇒ B. The rest is a consequence of the completeness of
FAL for finite structures of truth degrees, see (Bělohlávek and Vychodil, 2005a).

“⇒”: The crucial observation here is that since both L and Y are finite, we can equivalently replace
(Addω) by a collection of rules

(Addn) from A⇒ B1, . . . , A⇒ Bn infer A⇒ B1 ∪ · · · ∪Bn,

for each n being a nonnegative integer. Namely, due to finiteness of L and Y , there is only a finite number
of fuzzy sets in Y (i.e. LY is finite) and, therefore, only a finite number of FAIs. It is clear from Lemma 3.1
that each (Addn) is derivable from (Ax), (Cut), and (Mul). Hence, if T `ω A ⇒ B, then there is a finite
ω-proof T of A⇒ B from T which uses only (Ax), (Cut), and (Mul). Now apply Theorem 3.2.

“⇐”: Follows from Theorem 3.2. �

Remark 2 For general L, (Addω) is not ω-derivable from (Ax)–(Mul). Indeed, let L = [0, 1] and Y = {y}.
It suffices to show that FAI {} ⇒ {y} is not ω-provable from a set T = {{} ⇒ {a/y} | a < 1} using
(Ax)–(Mul). By contradiction, let T be an ω-proof of {} ⇒ {y} from T which uses only rules (Ax), (Cut),
and (Mul). By Theorem 3.2, T ` {} ⇒ {y}. By a standard argument, there is a finite subset T ′ of T such
that T ′ ` {} ⇒ {y}. Now, for b =

∨
{a ∈ L | {} ⇒ {a/y} ∈ T ′} we have b < 1. Since L = [0, 1], one can

take a model M ∈ LY of T ′ such that b < M(y) < 1. For M , we have ||{} ⇒ {y}||M = M(y). The latter
observation yields ||{} ⇒ {y}||T ′ < 1. Since (Ax)–(Mul) are sound (Bělohlávek and Vychodil, 2005c), we
obtain T ′ 6` {} ⇒ {y}, a contradiction.

3.3 Soundness and completeness

We now prove completeness of FAL in two versions. First, we show that FAIs which are ω-provable from
T are those which semantically follow from T to degree 1 (full truth). Recall that we assume that L is a
complete residuated lattice with a hedge.

Theorem 3.4 (Addω) is sound. Moreover, for each set T of FAIs and each A⇒ B we have: if T `ω A⇒
B, then ||A⇒ B||T = 1.

Proof Let T = {A ⇒ Bi | i ∈ I} be a set of FAIs, and let M ∈ Mod(T ). Then, for each i ∈ I, ||A ⇒
Bi||M = 1, which is equivalent to S(A,M)∗ ≤ S(Bi,M). Thus, S(A,M)∗ ≤

∧
i∈I S(Bi,M), which further

gives S(A,M)∗ ≤ S(
⋃

i∈I Bi,M), i.e. ||A ⇒
⋃

i∈I Bi||M = 1, showing that (Addω) is sound. The rest can
be proved by induction using the fact that (Ax), (Cut), and (Mul) are sound (Bělohlávek and Vychodil,
2005c). �

Lemma 3.5 Let T be a set of FAIs. If T 6`ω A ⇒ B, then there is a model M ∈ Mod(T ) such that
||A⇒ B||M 6= 1.

Proof Let T 6`ω A⇒ B. Put M =
⋃
{C ∈ LY |T `ω A⇒ C}. We have that T `ω A⇒M . Indeed, for each

T `ω A ⇒ C, there is an ω-proof TC of A ⇒ C from T . Hence, using (Addω), T = 〈A ⇒ M, {TC |T `ω

A⇒ C}〉 is an ω-proof of A⇒M from T , showing T `ω A⇒M .
Now, it suffices to check that (i) M ∈ Mod(T ) and (ii) ||A⇒ B||M 6= 1.
Ad (i): Let C ⇒ D ∈ T . We need to show ||C ⇒ D||M = 1, i.e. S(C,M)∗ ≤ S(D,M) which is equivalent

to S(C,M)∗ ⊗D ⊆M . Hence, it is sufficient to show that T `ω A⇒ S(C,M)∗ ⊗D which is indeed true.
In more detail, we have that

T `ω A⇒M [see above],
T `ω M ⇒ S(C,M)∗ ⊗ C [instance of (Ax)],
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T `ω S(C,M)∗ ⊗ C ⇒ S(C,M)∗ ⊗D [by (Mul) on C ⇒ D],

Thus, T `ω A⇒ S(C,M)∗ ⊗D follows by (Tra).
Ad (ii): By contradiction, suppose ||A⇒ B||M = 1. Since A ⊆ M by definition, we then get 1 = ||A⇒

B||M = S(A,M)∗ → S(B,M) = 1 → S(B,M) = S(B,M), i.e. B ⊆ M . Since T `ω A⇒ M , (Pro) would
give T `ω A⇒ B, a contradiction. �

We now have the ordinary-style completeness for fuzzy attribute logic over arbitrary complete residuated
lattices:

Theorem 3.6 Let T be a set of FAIs. Then

T `ω A⇒ B iff ||A⇒ B||T = 1.

Proof The “⇒”-part follows from Theorem 3.4. For the “⇐”-part, observe that due to Lemma 3.5, if
T 6`ω A ⇒ B, then there is M ∈ Mod(T ) such that ||A ⇒ B||M 6= 1, i.e. ||A ⇒ B||T 6= 1, which finishes
the proof. �

Ordinary-style completeness says that a FAI is provable from T iff it is entailed by T in degree 1.
Therefore, ordinary-style completeness can be seen as a syntactic description of semantic entailment in
degree 1. However, semantic entailment is a graded notion and there is a natural question whether an
arbitrary degree ||A ⇒ B||T (possibly different from 1) can be described syntactically using a suitable
notion of a proof. To this end, we adopt the concept of a degree of provability which was introduced for
the first time in (Pavelka, 1979), see also (Gerla, 2001) for a thorough treatment of this concept. Suppose
now that T is a fuzzy set of FAIs. Note that this is natural when considering degrees of entailment and
degrees of provability. Namely, for a FAI A ⇒ B, a degree T (A ⇒ B) to which A ⇒ B belongs to T can
be seen as a degree to which a validity of A ⇒ B has been established and thus to which we can rely on
A⇒ B when proving from T . For a fuzzy set T of FAIs, define an ordinary set c(T ) of FAIs by

c(T ) = {A⇒ T (A⇒ B)⊗B |A,B ∈ LY and T (A⇒ B)⊗B 6= ∅}.

Therefore, for each FAI A ⇒ B such that T (A ⇒ B) ⊗ B 6= ∅, c(T ) contains a FAI A ⇒ C with
C = T (A ⇒ B) ⊗ B. For a FAI A ⇒ B and a fuzzy set T of FAIs, we define a degree |A ⇒ B|ωT ∈ L to
which A⇒ B is provable from T by

|A⇒ B|ωT =
∨
{c ∈ L | c(T ) `ω A⇒ c⊗B}. (12)

We now have a graded-style completeness for fuzzy attribute logic over arbitrary complete residuated
lattices saying that a degree of provability equals a degree of semantic entailment:

Theorem 3.7 For each fuzzy set T of FAIs and each A⇒ B, we have |A⇒ B|ωT = ||A⇒ B||T .

Proof The claim follows from Theorem 3.6 using the fact that ||A⇒ B||T =
∨
{c ∈ L | ||A⇒ c⊗B||c(T ) =

1}, see (Bělohlávek and Vychodil, 2005c). �
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P. Hájek, Metamathematics of Fuzzy Logic, Dordrecht: Kluwer, 1998.
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