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Abstract. The set of elements of a Heyting algebra (the algebra-

ic counterpart of intuitionistic logic) which are closed under double

negation forms a Boolean algebra. We present similar results for BL-

algebras, the algebraic couterpart of the logic of continuous t-norms.
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1. BL-algebras

Each continuous t-norm ⊗ (i.e. an isotone associative commutative op-

eration on [0, 1] with 1 as the neutral element) is “composed” of three basic

ones (for details see [8]):  Lukasiewicz (a⊗ b = max(0, a + b− 1)), minimum

(also called Gödel t-norm; a ⊗ b = min(a, b)), and product (a ⊗ b = ab).

The interest in many-valued calculi with conjunction defined by a t-

norm (and implication by the corresponding residuum → where a → b =

max{c | a⊗ c ≤ b}) has a long tradition (see [7], [4], and [5] for  Lukasiewicz,

Gödel, and product logics, respectively, and [6] for completeness, further re-

sults, and historical information). Recently, there has been a strong interest

in t-norm based logics in the context of investigations in fuzzy logic, i.e.

“logic of graded truth”. The three above mentioned logics have a common
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generalization—they are axiomatic extensions of so-called basic logic. Ba-

sic logic is a syntactico-semantically complete calculus; semantics is defined

in the usual manner using so-called BL-algebras (“BL” stands for “basic

logic”) that play the role of structures of truth values [6]. A BL-algebra

is a residuated lattice [2, 6] (i.e. an algebra L = 〈L,∧,∨,⊗,→, 0, 1〉 such

that 〈L,∧,∨, 0, 1〉 is a bounded lattice, 〈L,⊗, 1〉 is a commutative monoid,

and x ⊗ y ≤ z iff x ≤ y → z (adjointness condition)) satisfying prelinearity

((x → y) ∨ (y → x) = 1) and divisibility (x∧ y = x⊗ (x → y); equivalently:

for every x ≤ y there is z such that x = y ⊗ z).

The class BL of all BL-algebras is a variety of algebras (i.e. an equa-

tionally defined class). For a continuous t-norm ⊗, the algebra [0, 1]⊗ =

〈[0, 1], min, max,⊗,→, 0, 1〉 (→ is the residuum corresponding to ⊗) is a

BL-algebra, so-called t-norm algebra corresponding to ⊗. BL is the variety

generated by all t-norm algebras corresponding to continuous t-norms (i.e.

BL is the smallest variety containing {[0, 1]⊗ | ⊗ is a continuous t-norm

}), see [1]. Another example of a BL-algebra is the Lindenbaum algebra

of propositional basic logic (i.e. the algebra of provably equivalent formu-

las), see [6]. There are three special BL-algebras corresponding to the basic

t-norms (we abbreviate x → 0 by ¬x; all of the following statements are

reformulation of results from [6]): MV-algebras, i.e. BL-algebras satisfying

¬¬x = x (the variety MV of MV-algebras is generated by the  Lukasiewicz

t-norm algebra; there are other definitions [6]), G-algebras, i.e. BL-algebras

satisfying x ⊗ x = x (the variety G of G-algebras is generated by the t-

norm algebra that corresponds to Gödel t-norm; G-algebras are Heyting

algebras satisfying prelinearity), and Π-algebras, i.e. BL-algebras satisfying

x ∧ ¬x = 0 and ¬¬z ≤ ((x ⊗ z → y ⊗ z) → (x → y)) (the variety P of Π-

algebras is generated by the t-norm algebra that corresponds to the product

t-norm). Along this line, a Boolean algebra is a BL-algebra L which is both

an MV-algebra and a G-algebra. Note that the correspondence to the usual

definition (i.e. a Boolean algebra as a complemented distributive lattice) is
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the following one: if L is a BL-algebra which is both an MV-algebra and a

G-algebra then putting x′ = x → 0, 〈L,∧,∨,′ , 0, 1〉 is a complemented dis-

tributive lattice; conversely, if 〈L,∧,∨,′ , 0, 1〉 is a complemented distributive

lattice then putting x → y = x′ ∨ y, L = 〈L,∧,∨,∧,→, 0, 1〉 is a BL-algebra

which is both an MV-algebra and a G-algebra.

2. Boolean parts

For a BL-algebra L, denote

D(L) = {a ∈ L | a = ¬¬a},

the set of all elements satisfying the law of double negation, and

H(L) = {a ∈ L | a = a ⊗ a},

the set of all elements idempotent w.r.t. conjunction.

A well-known result, essentially due to Glivenko [3], says that if L is a

Heyting algebra then D(L) is a Boolean algebra where the meet is inherited

from L and the supremum of a and b in D(L) is ¬¬(a ∨ b).

Lemma 1 If L is a BL-algebra then H(L) is the largest subalgebra of L

that is a G-algebra.

Proof. First, 0, 1 ∈ H(L). Now, observe that if a ∈ H(L) then a⊗ b = a∧ b

for any b ∈ L. Indeed, a∧b = a⊗(a → b) = a⊗a⊗(a → b) = a⊗(a∧b) ≤ a⊗b;

a ⊗ b ≤ a ∧ b follows from the isotony of ⊗. We prove that H(L) is a

subalgebra. Take any a, b ∈ H(L). Since ⊗ is distributive over ∧ [6, proof

of Lemma 2.3.10], we have (a∧b)⊗ (a∧b) = (a⊗a)∧ (a⊗b)∧ (b⊗b) = a∧b,

i.e. H(L) is closed under ∧. Furthermore, (a ∨ b) ⊗ (a ∨ b) = (a ⊗ a) ∨ (a⊗

b) ∨ (b ⊗ b) = a ∨ (a ∧ b) ∨ b = a ∨ b, i.e. H(L) is closed under ∨. Finally,

(a⊗ b)⊗ (a⊗ b) = (a⊗ a)⊗ (b⊗ b) = a⊗ b, proving closedness under ⊗. We

prove that H(L) is closed under →: Each BL-algebra is a subdirect product
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of linearly ordered BL-algebras [6, Lemma 2.3.16]. We may therefore safely

assume that L is linearly ordered. If a ≤ b then a → b = 1 ∈ H(L). Let

a > b. We show that a → b = b. Since b ≤ a → b is always true, it

suffices to show that b < a → b is impossible. Let then b < a → b. Since

a ∈ H(L), we have a ∧ (a → b) = a ⊗ (a → b) ≤ b. By linearity of L,

a ∧ (a → b) = min(a, a → b) > b, a contradiction.

If H ′ ⊇ H(L) is another subalgebra of L that is a G-algebra then for

any a ∈ H ′, a ⊗ a = a, i.e. a ∈ H(L), thus H ′ = H(L). This proves that

H(L) is the largest subalgebra that is a G-algebra. 2

Lemma 2 If L is a BL-algebra then D(L) is the largest subalgebra of L that

is an MV-algebra.

Proof. First, we show that D(L) is a subalgebra of L. Since ¬x = ¬¬¬x

is valid in L, D(L) = {¬a | a ∈ L}. Clearly, 0, 1 ∈ D(L). Since (a →

0) ∧ (b → 0) = (a ∨ b) → 0 (easy to prove by adjointness), D(L) is closed

w.r.t. ∧. To see that D(L) is closed w.r.t. ∨, we verify (a → 0) ∨ (b →

0) = (a∧ b) → 0: The “≤” part follows by antitony of negation. Conversely,

(a ∧ b) → 0 = ((a ∧ b) → 0) ⊗ ((a → b) ∨ (b → a)) = ((a → b) ⊗ ((a ∧ b) →

0)) ∨ ((b → a) ⊗ ((a ∧ b) → 0)) ≤ (a → 0) ∨ (b → 0). x ⊗ (x → y) ≤ y

yields ¬a → ¬b = ¬(¬a ⊗ b) (indeed, applying adjointness to b ⊗ (¬a ⊗

(¬a → ¬b)) ≤ 0 and to (¬a ⊗ b) ⊗ ((¬a ⊗ b) → 0) ≤ 0 gives the “≤”

and “≥” inequalities). Now, introduce a binary operation ⊙ on D(L) by

a ⊙ b = ¬¬(a ⊗ b). We show that 〈D(L),⊙, 1〉 is a commutative monoid:

Clearly, a ⊙ b ∈ D(L). Furthermore, ⊙ is obviously commutative and since

¬¬(¬a⊗1) = ¬a, 1 is its neutral element. To verify associativity, we reason

as follows: ¬¬(¬¬(a ⊗ b) ⊗ c) ≤ ¬¬(a ⊗ ¬¬(b ⊗ c)) iff ¬(a ⊗ ¬¬(b ⊗ c)) ≤

¬(¬¬(a⊗b)⊗c) iff ¬¬(a⊗b)⊗c⊗¬(a⊗¬¬(b⊗c)) ≤ 0 iff c⊗¬(a⊗¬¬(b⊗c)) ≤

¬¬¬(a ⊗ b) = ¬(a ⊗ b) iff a ⊗ b ⊗ c ⊗ ¬(a ⊗ ¬¬(b ⊗ c)) ≤ 0 which follows

from b ⊗ c ≤ ¬¬(b ⊗ c). We proved (a ⊙ b) ⊙ c ≤ a ⊙ (b ⊙ c), the converse

inequality is symmetric. Therefore, 〈D(L),⊙, 1〉 is a commutative monoid.
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Furthermore, as ¬a → ¬b = ¬(¬a ⊗ b), D(L) is closed under →. We now

verify that ⊙ and → satisfy adjointness: Since a⊗ b ≤ ¬¬(a⊗ b), a⊙ b ≤ c

implies a ≤ b → c by adjointness of ⊗ and →. If a ≤ b → c then a ⊗ b ≤ c,

and so a ⊙ b = ¬¬(a ⊗ b) ≤ ¬¬c = c. Now, we have a ⊗ b ≤ a ⊙ b iff

a ≤ b → (a ⊙ b) iff a ⊙ b ≤ a ⊙ b, i.e. a ⊗ b ≤ a ⊙ b. In a similar way one

obtains a⊙b ≤ a⊗b, thus a⊙b = a⊗b for any a, b ∈ D(L). Therefore, D(L)

is a subalgebra of L. Obviously, D(L) satisfies x = ¬¬x and so D(L) is an

MV-algebra. It is the largest MV-algebra contained in L as a subalgebra

since otherwise there is an a ∈ L−D(L) such that a = ¬¬a, a contradiction

to the definition of D(L). 2

Remark. Note that in a different way, the fact that D(L) is an MV-algebra

is obtained in [9].

Theorem 3 (1) If L is an MV-algebra then D(L) = L and H(L) is the

largest subalgebra of L that is a Boolean algebra.

(2) If L is a G-algebra then H(L) = L and D(L) is the largest subalgebra

of L that is a Boolean algebra.

(3) If L is a Π-algebra then D(L) = H(L) is the largest subalgebra of L

that is a Boolean algebra.

Proof. (1): If L is an MV-algebra then obviously D(L) = L. The second

part follows directly from Lemma 1.

(2): Analogously, L is a G-algebra yields H(L) = L and the assertion

follows from Lemma 2.

(3): As mentioned above, each BL-algebra L is a subdirect product of

linearly ordered BL-algebras [6, Lemma 2.3.16]. Moreover, as it follows from

the proof, the linearly ordered factors satisfy all identities of L. Therefore,

every Π-algebra is a subdirect product of linearly ordered Π-algebras. Let
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Li be the linearly ordered factors of L. We identify each a ∈ L with the

corresponding element (. . . , ai, . . .) of the direct product of Li’s.

Let L be a Π-algebra. First, we show that a = (. . . , ai, . . .) ∈ H(L) iff

ai = 0 or ai = 1 for all i. The right-to-left part is evident. Conversely,

let a ∈ H(L) and 0 < ai. Since Li is linearly ordered, ¬ai = 0 (see [6,

Lemma 4.1.7]), thus ¬¬ai = 1. Therefore, putting x = 1, y = ai, and z = ai,

¬¬z ≤ ((x⊗ z) → (y⊗ z)) → (x → y) yields 1 ≤ (ai → ai) → (1 → ai), thus

ai = 1. Therefore, for each i, either ai = 0 or ai = 1.

Second, we verify that a = (. . . , ai, . . .) ∈ D(L) iff ai = 0 or ai = 1 for

all i. Again, the right-to-left part is evident. Conversely, since Li is linearly

ordered and ai ∧ ¬ai = 0, 0 < ai implies ¬ai = 0. It folows that 0 < ai and

ai ∈ D(Li) imply ai = ¬¬ai = 1. Therefore, H(L) = D(L), and the claim

directly follows by Lemma 1 and Lemma 2. 2

Remark. (1) Note that (1) of Theorem 3 can also be proved by the subdirect

representation method: a = (. . . , ai, . . .) ∈ H(L) implies ai ∈ H(Li), i.e.

ai ⊗ ai = ai. We claim that ai = 0 or ai = 1. By contradiction, let

0 < ai < 1. Since Li is linearly ordered, 0 < ai⊗ai yields ¬ai < ai (ai ≤ ¬ai

gives ai ⊗ ¬ai = 0). As x ∨ y = (x → y) → y and x → ¬y = ¬(x ⊗ y), we

conclude a = a ∨ ¬a = (a → ¬a) → ¬a = ¬(a ⊗ a) → ¬a = ¬a → ¬a = 1,

a contradiction to a < 1. The rest is clear. In a similar way, one can prove

(2) of Theorem 3.

(2) A direct consequence of (2) of Theorem 3 is that if a Heyting algebra

L satisfies (x → y)∨ (y → x) = 1 then the join in the Boolean algebra D(L)

coincides with the join in L.

We therefore have the following theorem.

Corollary 4 If L is a BL-algebra then D(L)∩H(L) is the largest subalgebra

of L which is a Boolean algebra.
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