BOOLEAN PART OF BL-ALGEBRAS

RADIM BĚLOHLÁVEK

Palacký University, Dept. Computer Science, Tomkova 40, CZ-779 00 Olomouc, Czech Republic, radim.belohlavek@upol.cz

ABSTRACT. The set of elements of a Heyting algebra (the algebraic counterpart of intuitionistic logic) which are closed under double negation forms a Boolean algebra. We present similar results for BLalgebras, the algebraic couterpart of the logic of continuous t-norms.

2000 Mathematics Subject Classification. Primary 03B50, 03B52. Secondary 06E05.

Keywords.Boolean algebra, BL-algebra, t-norm, non-classical logics

1. BL-algebras

Each continuous t-norm \otimes (i.e. an isotone associative commutative operation on [0, 1] with 1 as the neutral element) is "composed" of three basic ones (for details see [8]): Lukasiewicz $(a \otimes b = \max(0, a + b - 1))$, minimum (also called Gödel t-norm; $a \otimes b = \min(a, b)$), and product $(a \otimes b = ab)$.

The interest in many-valued calculi with conjunction defined by a tnorm (and implication by the corresponding residuum \rightarrow where $a \rightarrow b = \max\{c \mid a \otimes c \leq b\}$) has a long tradition (see [7], [4], and [5] for Lukasiewicz, Gödel, and product logics, respectively, and [6] for completeness, further results, and historical information). Recently, there has been a strong interest in t-norm based logics in the context of investigations in fuzzy logic, i.e. "logic of graded truth". The three above mentioned logics have a common generalization—they are axiomatic extensions of so-called basic logic. Basic logic is a syntactico-semantically complete calculus; semantics is defined in the usual manner using so-called BL-algebras ("BL" stands for "basic logic") that play the role of structures of truth values [6]. A BL-algebra is a residuated lattice [2, 6] (i.e. an algebra $\mathbf{L} = \langle L, \wedge, \vee, \otimes, \rightarrow, 0, 1 \rangle$ such that $\langle L, \wedge, \vee, 0, 1 \rangle$ is a bounded lattice, $\langle L, \otimes, 1 \rangle$ is a commutative monoid, and $x \otimes y \leq z$ iff $x \leq y \rightarrow z$ (adjointness condition)) satisfying prelinearity $((x \rightarrow y) \lor (y \rightarrow x) = 1)$ and divisibility $(x \land y = x \otimes (x \rightarrow y);$ equivalently: for every $x \leq y$ there is z such that $x = y \otimes z$).

The class \mathcal{BL} of all BL-algebras is a variety of algebras (i.e. an equationally defined class). For a continuous t-norm \otimes , the algebra $[0,1]_{\otimes}$ = $\langle [0,1], \min, \max, \otimes, \rightarrow, 0, 1 \rangle$ (\rightarrow is the residuum corresponding to \otimes) is a BL-algebra, so-called t-norm algebra corresponding to \otimes . \mathcal{BL} is the variety generated by all t-norm algebras corresponding to continuous t-norms (i.e. \mathcal{BL} is the smallest variety containing $\{[0,1]_{\otimes} \mid \otimes \text{ is a continuous t-norm}\}$ }), see [1]. Another example of a BL-algebra is the Lindenbaum algebra of propositional basic logic (i.e. the algebra of provably equivalent formulas), see [6]. There are three special BL-algebras corresponding to the basic t-norms (we abbreviate $x \to 0$ by $\neg x$; all of the following statements are reformulation of results from [6]): MV-algebras, i.e. BL-algebras satisfying $\neg \neg x = x$ (the variety \mathcal{MV} of MV-algebras is generated by the Łukasiewicz t-norm algebra; there are other definitions [6]), G-algebras, i.e. BL-algebras satisfying $x \otimes x = x$ (the variety \mathcal{G} of G-algebras is generated by the tnorm algebra that corresponds to Gödel t-norm; G-algebras are Heyting algebras satisfying prelinearity), and II-algebras, i.e. BL-algebras satisfying $x \wedge \neg x = 0$ and $\neg \neg z \leq ((x \otimes z \to y \otimes z) \to (x \to y))$ (the variety \mathcal{P} of Π algebras is generated by the t-norm algebra that corresponds to the product t-norm). Along this line, a Boolean algebra is a BL-algebra \mathbf{L} which is both an MV-algebra and a G-algebra. Note that the correspondence to the usual definition (i.e. a Boolean algebra as a complemented distributive lattice) is the following one: if **L** is a BL-algebra which is both an MV-algebra and a G-algebra then putting $x' = x \to 0$, $\langle L, \wedge, \vee, ', 0, 1 \rangle$ is a complemented distributive lattice; conversely, if $\langle L, \wedge, \vee, ', 0, 1 \rangle$ is a complemented distributive lattice then putting $x \to y = x' \vee y$, $\mathbf{L} = \langle L, \wedge, \vee, \wedge, \rightarrow, 0, 1 \rangle$ is a BL-algebra which is both an MV-algebra and a G-algebra.

2. Boolean parts

For a BL-algebra **L**, denote

$$D(\mathbf{L}) = \{ a \in L \mid a = \neg \neg a \},\$$

the set of all elements satisfying the law of double negation, and

$$H(\mathbf{L}) = \{ a \in L \mid a = a \otimes a \},\$$

the set of all elements idempotent w.r.t. conjunction.

A well-known result, essentially due to Glivenko [3], says that if **L** is a Heyting algebra then $D(\mathbf{L})$ is a Boolean algebra where the meet is inherited from **L** and the supremum of a and b in $D(\mathbf{L})$ is $\neg \neg (a \lor b)$.

Lemma 1 If \mathbf{L} is a BL-algebra then $H(\mathbf{L})$ is the largest subalgebra of \mathbf{L} that is a G-algebra.

Proof. First, $0, 1 \in H(\mathbf{L})$. Now, observe that if $a \in H(\mathbf{L})$ then $a \otimes b = a \wedge b$ for any $b \in L$. Indeed, $a \wedge b = a \otimes (a \to b) = a \otimes a \otimes (a \to b) = a \otimes (a \wedge b) \leq a \otimes b$; $a \otimes b \leq a \wedge b$ follows from the isotony of \otimes . We prove that $H(\mathbf{L})$ is a subalgebra. Take any $a, b \in H(\mathbf{L})$. Since \otimes is distributive over \wedge [6, proof of Lemma 2.3.10], we have $(a \wedge b) \otimes (a \wedge b) = (a \otimes a) \wedge (a \otimes b) \wedge (b \otimes b) = a \wedge b$, i.e. $H(\mathbf{L})$ is closed under \wedge . Furthermore, $(a \vee b) \otimes (a \vee b) = (a \otimes a) \vee (a \otimes b)$ $(b \otimes b) = a \vee (a \wedge b) \vee b = a \vee b$, i.e. $H(\mathbf{L})$ is closed under \vee . Finally, $(a \otimes b) \otimes (a \otimes b) = (a \otimes a) \otimes (b \otimes b) = a \otimes b$, proving closedness under \otimes . We prove that $H(\mathbf{L})$ is closed under \rightarrow : Each BL-algebra is a subdirect product of linearly ordered BL-algebras [6, Lemma 2.3.16]. We may therefore safely assume that **L** is linearly ordered. If $a \leq b$ then $a \rightarrow b = 1 \in H(\mathbf{L})$. Let a > b. We show that $a \rightarrow b = b$. Since $b \leq a \rightarrow b$ is always true, it suffices to show that $b < a \rightarrow b$ is impossible. Let then $b < a \rightarrow b$. Since $a \in H(\mathbf{L})$, we have $a \wedge (a \rightarrow b) = a \otimes (a \rightarrow b) \leq b$. By linearity of **L**, $a \wedge (a \rightarrow b) = \min(a, a \rightarrow b) > b$, a contradiction.

If $H' \supseteq H(\mathbf{L})$ is another subalgebra of \mathbf{L} that is a G-algebra then for any $a \in H'$, $a \otimes a = a$, i.e. $a \in H(\mathbf{L})$, thus $H' = H(\mathbf{L})$. This proves that $H(\mathbf{L})$ is the largest subalgebra that is a G-algebra. \Box

Lemma 2 If \mathbf{L} is a *BL*-algebra then $D(\mathbf{L})$ is the largest subalgebra of \mathbf{L} that is an *MV*-algebra.

First, we show that $D(\mathbf{L})$ is a subalgebra of \mathbf{L} . Since $\neg x = \neg \neg \neg x$ Proof. is valid in L, $D(L) = \{\neg a \mid a \in L\}$. Clearly, $0, 1 \in D(L)$. Since $(a \rightarrow a)$ $(0) \land (b \to 0) = (a \lor b) \to 0$ (easy to prove by adjointness), $D(\mathbf{L})$ is closed w.r.t. \wedge . To see that $D(\mathbf{L})$ is closed w.r.t. \vee , we verify $(a \to 0) \vee (b \to 0)$ $0) = (a \wedge b) \rightarrow 0$: The " \leq " part follows by antitony of negation. Conversely, $(a \land b) \to 0 = ((a \land b) \to 0) \otimes ((a \to b) \lor (b \to a)) = ((a \to b) \otimes ((a \land b) \to a)) = ((a \to b) \otimes ((a \land b) \to a)) = ((a \to b) \otimes ((a \land b) \to a)) = ((a \to b) \otimes ((a \land b) \to a)) = ((a \to b) \otimes ((a \land b) \to a)) = ((a \to b) \otimes ((a \to b) \to a)) = ((a \to b) \to a)) = ((a \to b) \to a) = ((a \to b) \to a)) = ((a \to b) \to a) = ((a \to b) \to a)) = ((a \to b) \to a) = ((a \to b) \to a)) = ((a \to b) \to a) = ((a \to b) \to a)) = ((a \to b) \to a) = ((a \to b) \to a) = ((a \to b) \to a)) = ((a \to b) \to a) = ((a \to b) \to$ $0)) \lor ((b \to a) \otimes ((a \land b) \to 0)) \le (a \to 0) \lor (b \to 0). \ x \otimes (x \to y) \le y$ yields $\neg a \rightarrow \neg b = \neg(\neg a \otimes b)$ (indeed, applying adjointness to $b \otimes (\neg a \otimes b)$ $(\neg a \rightarrow \neg b) \leq 0$ and to $(\neg a \otimes b) \otimes ((\neg a \otimes b) \rightarrow 0) \leq 0$ gives the " \leq " and " \geq " inequalities). Now, introduce a binary operation \odot on $D(\mathbf{L})$ by $a \odot b = \neg \neg (a \otimes b)$. We show that $\langle D(\mathbf{L}), \odot, 1 \rangle$ is a commutative monoid: Clearly, $a \odot b \in D(\mathbf{L})$. Furthermore, \odot is obviously commutative and since $\neg \neg (\neg a \otimes 1) = \neg a, 1$ is its neutral element. To verify associativity, we reason as follows: $\neg \neg (\neg \neg (a \otimes b) \otimes c) \leq \neg \neg (a \otimes \neg \neg (b \otimes c))$ iff $\neg (a \otimes \neg \neg (b \otimes c)) \leq$ $\neg(\neg\neg(a\otimes b)\otimes c) \text{ iff } \neg\neg(a\otimes b)\otimes c\otimes \neg(a\otimes \neg\neg(b\otimes c)) \leq 0 \text{ iff } c\otimes \neg(a\otimes \neg\neg(b\otimes c)) \leq 0$ $\neg \neg \neg (a \otimes b) = \neg (a \otimes b)$ iff $a \otimes b \otimes c \otimes \neg (a \otimes \neg \neg (b \otimes c)) \leq 0$ which follows from $b \otimes c \leq \neg \neg (b \otimes c)$. We proved $(a \odot b) \odot c \leq a \odot (b \odot c)$, the converse inequality is symmetric. Therefore, $\langle D(\mathbf{L}), \odot, 1 \rangle$ is a commutative monoid. Furthermore, as $\neg a \to \neg b = \neg(\neg a \otimes b)$, $D(\mathbf{L})$ is closed under \rightarrow . We now verify that \odot and \rightarrow satisfy adjointness: Since $a \otimes b \leq \neg \neg (a \otimes b)$, $a \odot b \leq c$ implies $a \leq b \to c$ by adjointness of \otimes and \rightarrow . If $a \leq b \to c$ then $a \otimes b \leq c$, and so $a \odot b = \neg \neg (a \otimes b) \leq \neg \neg c = c$. Now, we have $a \otimes b \leq a \odot b$ iff $a \leq b \to (a \odot b)$ iff $a \odot b \leq a \odot b$, i.e. $a \otimes b \leq a \odot b$. In a similar way one obtains $a \odot b \leq a \otimes b$, thus $a \odot b = a \otimes b$ for any $a, b \in D(\mathbf{L})$. Therefore, $D(\mathbf{L})$ is a subalgebra of \mathbf{L} . Obviously, $D(\mathbf{L})$ satisfies $x = \neg \neg x$ and so $D(\mathbf{L})$ is an MV-algebra. It is the largest MV-algebra contained in \mathbf{L} as a subalgebra since otherwise there is an $a \in L - D(\mathbf{L})$ such that $a = \neg \neg a$, a contradiction to the definition of $D(\mathbf{L})$.

Remark. Note that in a different way, the fact that $D(\mathbf{L})$ is an MV-algebra is obtained in [9].

- **Theorem 3** (1) If \mathbf{L} is an MV-algebra then $D(\mathbf{L}) = L$ and $H(\mathbf{L})$ is the largest subalgebra of \mathbf{L} that is a Boolean algebra.
 - (2) If **L** is a G-algebra then $H(\mathbf{L}) = L$ and $D(\mathbf{L})$ is the largest subalgebra of **L** that is a Boolean algebra.
 - (3) If L is a Π-algebra then D(L) = H(L) is the largest subalgebra of L that is a Boolean algebra.

Proof. (1): If **L** is an MV-algebra then obviously $D(\mathbf{L}) = L$. The second part follows directly from Lemma 1.

(2): Analogously, **L** is a G-algebra yields $H(\mathbf{L}) = L$ and the assertion follows from Lemma 2.

(3): As mentioned above, each BL-algebra **L** is a subdirect product of linearly ordered BL-algebras [6, Lemma 2.3.16]. Moreover, as it follows from the proof, the linearly ordered factors satisfy all identities of **L**. Therefore, every Π-algebra is a subdirect product of linearly ordered Π-algebras. Let

 \mathbf{L}_i be the linearly ordered factors of \mathbf{L} . We identify each $a \in L$ with the corresponding element (\ldots, a_i, \ldots) of the direct product of \mathbf{L}_i 's.

Let **L** be a Π -algebra. First, we show that $a = (\dots, a_i, \dots) \in H(\mathbf{L})$ iff $a_i = 0$ or $a_i = 1$ for all *i*. The right-to-left part is evident. Conversely, let $a \in H(\mathbf{L})$ and $0 < a_i$. Since \mathbf{L}_i is linearly ordered, $\neg a_i = 0$ (see [6, Lemma 4.1.7]), thus $\neg \neg a_i = 1$. Therefore, putting $x = 1, y = a_i$, and $z = a_i$, $\neg \neg z \leq ((x \otimes z) \rightarrow (y \otimes z)) \rightarrow (x \rightarrow y)$ yields $1 \leq (a_i \rightarrow a_i) \rightarrow (1 \rightarrow a_i)$, thus $a_i = 1$. Therefore, for each *i*, either $a_i = 0$ or $a_i = 1$.

Second, we verify that $a = (\ldots, a_i, \ldots) \in D(\mathbf{L})$ iff $a_i = 0$ or $a_i = 1$ for all *i*. Again, the right-to-left part is evident. Conversely, since \mathbf{L}_i is linearly ordered and $a_i \wedge \neg a_i = 0$, $0 < a_i$ implies $\neg a_i = 0$. It follows that $0 < a_i$ and $a_i \in D(\mathbf{L}_i)$ imply $a_i = \neg \neg a_i = 1$. Therefore, $H(\mathbf{L}) = D(\mathbf{L})$, and the claim directly follows by Lemma 1 and Lemma 2.

Remark. (1) Note that (1) of Theorem 3 can also be proved by the subdirect representation method: $a = (\ldots, a_i, \ldots) \in H(\mathbf{L})$ implies $a_i \in H(\mathbf{L}_i)$, i.e. $a_i \otimes a_i = a_i$. We claim that $a_i = 0$ or $a_i = 1$. By contradiction, let $0 < a_i < 1$. Since \mathbf{L}_i is linearly ordered, $0 < a_i \otimes a_i$ yields $\neg a_i < a_i \ (a_i \leq \neg a_i$ gives $a_i \otimes \neg a_i = 0$). As $x \lor y = (x \to y) \to y$ and $x \to \neg y = \neg (x \otimes y)$, we conclude $a = a \lor \neg a = (a \to \neg a) \to \neg a = \neg (a \otimes a) \to \neg a = \neg a \to \neg a = 1$, a contradiction to a < 1. The rest is clear. In a similar way, one can prove (2) of Theorem 3.

(2) A direct consequence of (2) of Theorem 3 is that if a Heyting algebra \mathbf{L} satisfies $(x \to y) \lor (y \to x) = 1$ then the join in the Boolean algebra $D(\mathbf{L})$ coincides with the join in \mathbf{L} .

We therefore have the following theorem.

Corollary 4 If \mathbf{L} is a BL-algebra then $D(\mathbf{L}) \cap H(\mathbf{L})$ is the largest subalgebra of \mathbf{L} which is a Boolean algebra.

Acknowledgement Supported by Project KONTAKT 2003-1, "Algebraic tools and methods for non-classical logics".

References

- Cignoli R., Esteva F., Godo L., Torrens A. Basic fuzzy logic is the logic of continuous t-norms and their residua. *Soft Computing* 4:106–112, 2000.
- [2] Dilworth R.P., Ward M. Residuated lattices. Trans. Amer. Math. Soc., 45:335–354, 1939.
- [3] Glivenko V. Sur quelques points de la logique de M. Brouwer. Bull. Acad. des Sci. de Belgique, 15:183–188, 1929.
- [4] Gödel K. Zum intuitionistischen Aussagenkalkül. Anzeiger Akademie der Wissenschaften Wien, Math.-naturwissensch. Klasse, 69:65–66, 1932.
- [5] Hájek P., Esteva F., Godo L. A complete many-valued logic with product conjunction. Archive for Math. Logic 35:191–208, 1996.
- [6] Hájek P. Metamathematics of Fuzzy Logic (series Trends in Logic, Studia Logica Library vol. 4). Kluwer, Dordrecht, 1998.
- [7] Lukasiewicz J., Tarski A. Untersuchungen über den Aussagenkalkül. Comptes Rendus de la Siciete et des Letters de Varsovie, cl. iii 23:1–21, 1930.
- [8] Mostert P. S., Shields A. L. On the structure of semigroups on a compact manifold with boundary. Ann. of Math. 65:117–143, 1957.
- [9] Turunen E., Sessa S. Local BL-algebras. Preprint.