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Abstract. In fuzzy set theory, similarity phenomenon is approached using so-called fuzzy equiva-
lence relations. An important role in fuzzy modeling is played by similarity-based closure (called
also the extensional hull). Intuitively, the degree to which an elementx belongs to a similarity-based
closure of a fuzzy setA is the degree to which it is true that there is an elementy in A which is
similar tox. In this paper, we show a basic relationship between similarity-based closure and metric
closure, and provide an axiomatic characterization of the operation of a similarity-based closure.
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1. Introduction

The concept of similarity and related concepts of distance,nearness, proximity, closeness etc. are among
the basic concepts when modeling real-world phenomena. Of the most common approaches that allow
us to quantify distance (or nearness) of objects of interestis the concept of a metric space. Fuzzy set
theory offers another concept for modeling of similarity, so-called fuzzy equivalence. Briefly speaking,
a fuzzy equivalence is a binary fuzzy relationE on a set (i.e. assigning to each pairhx; yi the truth
degreeE(x; y) to which x andy are similar) which is reflexive, symmetric, and transitive.A given
fuzzy equivalenceE on a setX can be understood as an indistinguishability underlying the particular�Address for correspondence: Dept. Computer Science, Palacký University, Tomkova 40, CZ-779 00, Olomouc, Czech
Republic
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situation. From this point of view, it is natural to consideronly those fuzzy setsA in X which satisfy a
natural condition saying that ifx belongs toA and ifx andy are indistinguishable theny belongs toA
as well (fuzzy sets satisfying this condition are called compatible withE). Only the compatible fuzzy
sets respect the underlying indistinguishability. For a fuzzy setB in A, the smallest fuzzy setA in X
containingB which is compatible withE is called the extensional hull ofB. Another natural way to
come to the concept of an extensional hull is the following. LetB represent a user-query in thatB(x)
is the degree to which the elementx is considered to satisfy the query.B may contain only a small
number of “examples” specified by the user. Now, the user wants to get the collection (fuzzy set)A of all
elementsx for which there is somey in B which is similar tox, i.e. he or she wants to get all elements
satisfying the query represented by the exampleB. It can be shown (and is well-known) thatA is exactly
the extensional hull ofB.

The concepts of a fuzzy equivalence and that of an extensional hull of a fuzzy set are among the very
important concepts having natural interpretation, interesting properties, and immediate applications, see
e.g. [6, 9, 10, 11, 12, 15]. The aim of this paper is to investigate the concept of an extensional hull and
to give its complete characterization in terms of so-calledfuzzy closure operators [3]. Moreover, we
discuss the relationship between the concept of the extensional hull (i.e. a similarity-based closure) and
that of the metric-based closure.

In Section 2 we recall the necessary notions. The results of the paper and discussion is presented in
Section 3.

2. Preliminaries

We recall necessary notions from fuzzy logic and fuzzy sets.We will use complete residuated lat-
tices as the structures of truth values. Complete residuated lattices play a crucial role in fuzzy logic
(see [9, 10, 11]). Being introduced in 1930s [17] as an abstraction in the study of ideal systems of
rings, they have been proposed as a suitable structure of truth values by Goguen in [7, 8]. Recall that
a complete residuated lattice is an algebraL = hL;^;_;
;!; 0; 1i such thathL;^;_; 0; 1i is a com-
plete lattice with the least element0 and the greatest element1; hL;
; 1i is a commutative monoid,
i.e. 
 is commutative, associative, andx
 1 = x holds for eachx 2 L; and
;! form an ad-
joint pair, i.e. x
 y � z iff x � y ! z holds for all x; y; z 2 L. 
 and! are called multi-
plication and residuum, respectively. All properties of complete residuated lattices used in this paper
can be found in [10, 11]. The most studied and applied set of truth values is the real interval[0; 1℄
with a ^ b = min(a; b), a _ b = max(a; b), and with three important pairs of adjoint operations: the
Łukasiewicz one (a
 b = max(a+b�1; 0), a! b = min(1�a+b; 1)), Gödel one (a
 b = min(a; b),a ! b = 1 if a � b and= b otherwise), and product one (a
 b = a � b, a ! b = 1 if a � b and= b=a
otherwise); see [10] for their role in fuzzy logic. More generally, h[0; 1℄;min;max;
;!; 0; 1i is a com-
plete residuated lattice on[0; 1℄ iff 
 is a left-continuous t-norm [10] anda! b = maxfz j a
 z � bg.
Another important set of truth values is the setfa0 = 0; a1; : : : ; an = 1g (a0 < � � � < an) with 
 given
by ak
 al = amax(k+l�n;0) and the corresponding! given byak ! al = amin(n�k+l;n). A special case
of the latter algebras is the Boolean algebra2 of classical logic with the support2 = f0; 1g. It may be
easily verified that the onlyt-norm onf0; 1g is the classical conjunction operation̂, i.e. a ^ b = 1 iffa = 1 andb = 1, which implies that the only residuum operation is the classical implication operation!, i.e. a! b = 0 iff a = 1 andb = 0. Multiplication
 and residuum! are intended for modeling the



R. Bělohlávek / Fuzzy closure operators induced by similarity 3

conjunction and implication, respectively. Supremum (
W

) and infimum (
V

) are intended for modeling
general and existential quantifier, respectively.

An L-set (fuzzy set with truth degrees inL) [18, 7]A in a universe setX is any mapA : X ! L. ByLX we denote the set of allL-sets inX. The concept ofL-relation is defined obviously. Byf aÆxg we
denote anL-set inX such thatf aÆxg(x) = a andf aÆxg(y) = 0 for y 6= x. Operations onL extend
pointwise toLX , e.g.(A _B)(x) = A(x) _B(x) for A;B 2 LX . Following common usage, we writeA [ B instead ofA _ B, etc. GivenA;B 2 LX , the subsethood degreeS (A;B) of A in B is defined
by S (A;B) = Vx2X A(x) ! B(x). We writeA � B if S (A;B) = 1. Analogously, the equality
degree(A � B) of A andB is defined by(A � B) = Vx2X(A(x) $ B(x)) where$ is the so-called
biresiduum defined bya$ b = (a! b)^ (b! a). It is immediate thatA � B = S (A;B)^ S (B;A).
Fora 2 L andA 2 LX , the ordinary setaA = fx 2 X j A(x) � ag is called thea-cut ofA.

A binaryL-relation� on a setX is called anL-equivalence (fuzzy equivalence) ifx � x = 1 (1)x � y = y � x (2)x � y
 y � z � x � z: (3)

An L-equivalence is called anL-equality ifx � y = 1 implies x = y: (4)

Sometimes, a fuzzy equivalence is called simply a similarity (or fuzzy similarity). We will use the term
similarity (or L-similarity) as well. There has been a lot of debates about what properties a relation
modeling similarity should have. It is mostly agreed that similarity is reflexive and symmetric. However,
transitivity of similarity has been a point of disagreement. One usually argues against transitivity as
follows: If similarity were transitive then any two colors would be similar. For we may suppose that two
colors with sufficiently close wave lengths are similar. Now, for any two colorsA andB we may find a
chainA = A1,A2, . . . ,An = B, of colors such thatAi andAi+1 are similar. Using transitivity,A andB
are similar. On the other hand, the transitivity condition formulated verbally (i.e. “ifx andy are similar,
and ify andz are similar thenx andz are similar”) sounds plausible. The solution to this puzzlelies in
the fact that similarity, by its nature, is a graded (fuzzy) notion. If we look at the meaning of transitivity
in fuzzy setting, we find it quite natural. For example, ifE(x; y) = 0:8 (x andy are similar in degree
0.8) andE(y; z) = 0:8 (y andz are similar in degree 0.8) thenx andz have to be similar at least in
degree0:8
 0:8. Thus, in case of the product structure, transitivity forcesE(x; z) � 0:8
 0:8 = 0:64
which is in accord with our intuitive feeling. Note however,that Gödel t-norm does not help (which is
due to its idempotence).

The next theorem shows a universal way to construct similarity.

Theorem 2.1. ([16, 2])
A binary L-relation� onX is anL-equivalence iff there isS � LX of L-sets inX such that�=�S
where (x �S y)= Â2S(A(x)$ A(y)): (5)

The elementsA of S represent fuzzy attributes (A(x) is the degree to which an elementx has the attributeA). Therefore, Theorem 2.1 says that “x andy are considered similar if and only if for each (relevant,
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i.e. belonging toS) attributeA we have thatx hasA iff y hasA”. This rule is a modification of the
well-known Leibniz criterion [1] of identity. A useful corollary of Theorem 2.1 says that� (cf. equality
degree introduced above) is anL-equivalence relation onLX .

An L-setA in X is said to be compatible with anL-equivalence� onX if A(x)
(x � y) � A(y)
for eachx; y 2 X (that is, “if x belongs toA andx andy are similar theny belongs toA” is true). The
collection of allL-sets inX compatible with� will be denoted byLhX;�i.
3. Fuzzy closure induced by similarity

Coming to similarity-based fuzzy closure Having introduced the necessary formal notions, we can
go back to the motivating examples from Section 1. The setLhX;�i contains exactly those fuzzy sets inX that respect�. For a given fuzzy setA in X it might thus be desirable to know the least fuzzy setC(A) which both containsA and is compatible with�. SinceLhX;�i is closed under intersections, we
have C(A) =\fB j B 2 LhX;�i; A � Bg:
It is easy to see thatC(A) may be described directly using� byC(A)(y) = _x2XA(x)
(x � y): (6)

Without going into details, we note that except the above-mentioned fact that considering only fuzzy sets
compatible with� is sound from the epistemic point of view (once one interprets � as an underlying
indistinguishability), there are more “technical” reasons: when� is employed, fuzzy sets compatible
with� behave intuitively well. For example, given any first-orderformula' with free variablesx; : : : ; y
whose relation symbols are interpreted by fuzzy sets compatible with�, one can naturally estimate the
truth degree to which'[u; : : : ; v℄ (i.e., variablesx; : : : ; y evaluate to elementsu; : : : ; v of the universe)
is equivalent to'[u0; : : : ; v0℄ in terms of similarity degreesu � u0, . . . ,v � v0, see [10].

If X is a set of elements of a database then a user-query may be given by listing some examples
representing appropriate results for the query, each with adegree to which it is appropriate. That is, the
query may be given by a fuzzy setA in X (A(x) is the degree to whichx is appropriate). Naturally, we
expect the answer to the queryA to contain those elements fromX which are similar to some example
from A. In other words, we expect that the degreeAns(A)(y) to which an elementy from X belongs
to the answerAns(A) is the truth degree of the fact “there is an elementx in A such thatx andy are
similar”. Basic rules of semantics of fuzzy logic tell thatAns(A)(y) is just equal toC(A)(y) defined
in (6).

From the above examples it is clear that the operator of a similarity-based closure assigning a fuzzy
setC(A) to a fuzzy setA is an important one. Our aim in the following is twofold. First, we discuss
some relationships between similarity-based closure and metric closure. Second, we investigate abstract
properties of the similarity-based closure operator and provide its complete axiomatization.

Relationship to metric closure The concept of a metric is the one mostly applied when considering
closeness of objects (usually of a geometric nature). Thereis an obvious question of what is the relation-
ship between the notion of a metric and the notion of anL-similarity (i.e. a fuzzy equivalence). After
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we recall known relationships, we turn to the second immediate question of the relationship between the
well-established concept of a metric closure and that of a similarity-based closure.

We start with some relationships between metrics andL-similarities. Recall that a metric on a
nonempty setX is a mappingÆ assigning to anyx; y 2 X a nonnegative realÆ(x; y) such thatÆ(x; y) = 0 iff x = y;Æ(x; y) = Æ(y; x);Æ(x; z) � Æ(x; y) + Æ(y; z):
If instead of the first condition we require onlyÆ(x; x) = 0, we get a more general notion of a pseudomet-
ric. Sometimes, (pseudo)metric is used in a generalized sense allowing to assign also value1 (infinite
distance). In that case we speak of a generalized (pseudo)metric. A (generalized) (pseudo)metric space
is a pairhX; Æi whereX is a nonempty set andÆ a (generalized) (pseudo)metric onX.

Basically, a metric maps to[0;1) while a fuzzy similarity maps in general to a supportL of a
complete residuated lattice. However, if one restricts theconsideration to residuated lattices over[0; 1℄
(i.e. to left-continuous t-norms), interesting relationships come out. Some relationships are illustrated in
the following. To have a suitable analogy in terminology, call an (L)-similarity spacea pairX = hX;�i
where� is anL-equivalence onX. X is calledstrict if � is anL-equality.

Example 3.1. (1) LetL be the standard Łukasiewicz algebra on[0; 1℄ (i.e.
 is the Łukasiewicz t-norm),
letX = hX;�i be a similarity space. PutÆ�(x; y) = :(x � y). ThenÆ�(x; x) = 1 � (x � x) = 0;Æ�(x; y) = Æ�(y; x); Æ�(x; y) = :(x � y) � :((x � z)
(z � y)) = :(x � z) � :(z � y) =min(:(x � z) + :(z � y); 1) � :(x � z) + :(z � y) = Æ�(x; y) + Æ�(y; z). Thus,Æ� is a
pseudometric onX with Æ�(x; y) 2 [0; 1℄. If X is, moreover, strict thenÆ� is a metric.

Conversely, ifÆ is a (pseudo)metric onX with Æ(x; y) 2 [0; 1℄ then putting(x �Æ y) = 1 �Æ(x; y) we get thatXÆ = hX;�Æi is a (strict) similarity space (transitivity:(x �Æ y)
(y �Æ z) =:Æ(x; y)
:Æ(y; z) = :(Æ(x; y) � Æ(y; z)) = :min(Æ(x; y) + Æ(y; z); 1) � :(min(Æ(x; z); 1)) =:(Æ(x; z)) = (x �Æ z)).
(2) LetL be the standard product algebra on[0; 1℄ (i.e. 
 is the product t-norm). For a similarity

spaceX = hX;�i, 0+� = fhx; yi j (x � y) > 0g is an equivalence relation onX with equivalence
classes, say,Xi (i 2 I). On eachXi, put Æ�(x; y) = � log(x � y); for x 2 Xi, y 2 Xj (Xi 6= Xj)
put Æ(x; y) = 1. ThenÆ� is a pseudometric onX (in a generalized sense since it may take also1 as
its values). Indeed:Æ�(x; x) = � log(1) = 0; Æ�(x; y) = � log(x � y) = � log(y � x) = Æ�(y; x);Æ�(x; z) = � log(x � z) � � log((x � y) � (y � z)) = (� log(x � y)) + (� log(y � z)) =Æ�(x; y) + Æ�(y; z). Moreover,Æ� is a metric iffX is strict.

The foregoing two examples are special cases of the following general relationship between pseudo-
metrics onX (in the generalized sense) andL-equivalences onX whereL is a residuated lattice on[0; 1℄
given by a continuous Archimedean t-norm (i.e.
 is continuous as a real function and satisfiesa
 a < a
for eacha 6= 0; 1). We need the following representation theorem for continuous Archimedean t-norms
(for proof see e.g. [13]):

Theorem 3.1. A mapping
 : [0; 1℄2 ! [0; 1℄ is a continuous Archimedean t-norm iff there is a contin-
uous additive generatorf such that x
 y = f (�1)(f(x) + f(y));
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i.e. f is a strictly decreasing continuous mappingf : [0; 1℄ ! [0;1℄ with f(1) = 0 andf (�1) is the
pseudoinverse off defined byf (�1)(x) = f�1(x) if x � f(0) andf (�1)(x) = 0 otherwise.

Łukasiewicz as well as product t-norms are both continuous and Archimedean.f(x) = 1 � x andf (�1)(x) = max(1 � x; 0) are an additive generator and its pseudoinverse of the Łukasiewicz t-norm;f(x) = � log(x) andf (�1)(x) = e�x are an additive generator and its pseudoinverse of the product
t-norm. Now, we have the following result which follows by combination of results from [5].

Theorem 3.2. Let
 be a continuous Archimedean t-norm with an additive generator f , L be a residu-
ated lattice on[0; 1℄ given by
,� be anL-equivalence onX, Æ be a pseudometric onX in a generalized
sense. Then (1)Æ� : [0; 1℄2 ! [0;1℄ defined byÆ�(x; y) = f(x � y)
is a pseudometric in a generalized sense which is a metric iff� is anL-equality; (2)�Æ: [0; 1℄2 ! [0; 1℄
defined by (x �Æ y) = f (�1)(Æ(x; y))
is anL-equivalence onX which is anL-equality iff Æ is a metric; (3)� equals�Æ� and if Æ(X;X) �[0; f(0)℄ thenÆ equalsÆ�Æ .
Proof: The result follows by easy combination of results obtained in [5].

(1): Æ�(x; x) = 0 andÆ�(x; y) = Æ�(y; x) follow from (x � x) = 1, (x � y) = (y � x), andf(1) = 0. Triangle inequality forÆ� can be obtained as follows: Transitivity of� yieldsf (�1)(f(x �y) + f(y � z)) � (x � z). Sincef is decreasing, we havef(x � z) � f(f (�1)(f(x � y) + f(y �z))). Now, there are two possibilities: eitherf(x � y) + f(y � z) > f(0) and thenf(x � z) �f(f (�1)(f(x � y) + f(y � z))) = f(0) < f(x � y) + f(y � z), or f(x � y) + f(y � z) � f(0) and
thenf(x � z) � f(f (�1)(f(x � y) + f(y � z))) = f(x � y) + f(y � z). In both of the cases we
havef(x � z) � f(x � y) + f(y � z) which meansÆ�(x; z) � Æ�(x; y) + Æ�(y; z), i.e. the required
triangle inequality.

ThatÆ� is a metric iff� is anL-equality follows easily from the fact thatf is strictly decreasing.

(2): (x �Æ x) = 1 and (x �Æ y) = (y �Æ x) follow from Æ(x; x) = 0, Æ(x; y) = Æ(y; x),
andf (�1)(0) = 1. Transitivity of�Æ: Note first thatf (�1)(x) = f�1(min(f(0); x)), f(u �Æ v) =min(f(0); Æ(u; v)), and thatf�1 is decreasing. Using triangle inequality forÆ, we have(x �Æ z) = f (�1)(Æ(x; z)) = f�1(min(f(0); Æ(x; z))) �� f�1(min(f(0); Æ(x; y) + Æ(y; z))) == f�1(min(f(0); f(x �Æ y) + f(y �Æ z))) = (x � y)
(y � z);
verifying transitivity of�Æ.

Sincef (�1) is strictly decreasing,�Æ is anL-equality iff Æ is a metric.

(3): (x �Æ� y) = f (�1)(Æ�(x; y)) = f (�1)(f(x � y)) = (x � y).
If Æ(x; y) � f(0) thenÆ�Æ(x; y) = f(x �Æ y) = f(f (�1)(Æ(x; y))) = f(f�1(min(f(0); Æ(x; y)))) =f(f�1(Æ(x; y))) = Æ(x; y). 2
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Next, we discuss some basic relationships between the similarity-based fuzzy closure and metric
closure. Recall that ifX = hX; Æi is a (pseudo)metric space andA � X then the setCÆ(A) defined byCÆ(A) = fy j for each" > 0 there isx 2 A : Æ(x; y) < "g
is called the closure ofA in X. Our aim is to discuss the relationship betweenCÆ andC� where� is
a fuzzy similarity corresponding (somehow) toÆ andC� is the�-based operator defined by (6). It is
important to realize thatCÆ is a mapping from2X to 2X (i.e. operating on ordinary sets) whileC� is
a mapping fromLX to LX (i.e. operating on fuzzy sets). IfÆ is a (generalized) pseudometric, then for
anya 2 (0;1℄, the mappingÆa : hx; yi 7! min(a; Æ(x; y)) is a (generalized) pseudometric as well (easy
to verify). Moreover, it is easy to show thatCÆ = CÆa . Therefore, if we are interested in the metric
closure only, we may restrict our attention to (generalized) (pseudo)metrics withÆ(X;X) � [0; f(0)℄
wheref is the generator of a given continuous Archimedean t-norm
. Namely,CÆ = CÆf(0) and, due
to Theorem 3.2, there is a one-to-one correspondence between (generalized) (pseudo)metrics satisfyingÆ(X;X) � [0; f(0)℄ andL-similarities whereL is given by the corresponding t-norm
. The next
theorem shows a way to describeCÆ usingC�.

Theorem 3.3. Let
 be a continuous Archimedean t-norm with a continuous additive generatorf , let Æ
be a generalized (pseudo)metric and� be anL-similarity corresponding toÆ, i.e. �=�Æ andÆ = Æ�
(cf. Theorem 3.2). Then CÆ(A) = 1(C�(A))
for eachA � X. Furthermore,x 2 CÆ(A) iff for each" < 1 : A \ "C�(f 1Æxg) 6= ;
for eachA � X, x 2 X.

Proof: First, we showCÆ(A) = 1(C�(A)): We havey 2 1(C�(A)) iff 1 = Wx2A(x � y) =Wx2A f (�1)(Æ(x; y)). That is, for each� > 0 there isx 2 A such thatf (�1)(Æ(x; y)) > 1 � � which is
equivalent to saying that for each� with f(0) � � > 0 there isx 2 A such thatf (�1)(Æ(x; y)) > 1� �.
Sincef (�1) : [0; f(0)℄ ! [0; 1℄, is the inverse function tof : [0; 1℄ ! [0; f(0)℄, the latter condition is
equivalent to saying that for each� with f(0) � � > 0 there isx 2 A such thatÆ(x; y) < f(1��). Now,
since for" = f(1 � �) we have that" ! 0 iff f(1 � �) ! 0, we further have that the latter condition
holds iff for each" > 0 there isx 2 A such thatÆ(x; y) < " which is equivalent toy 2 CÆ(A).

Next, A \ "C�(f 1Æxg) 6= ; for each" < 1 holds iff for each" < 1 there isy 2 A such that" � (x � y) which means that" � f (�1)(Æ(x; y)). For " sufficiently close to 1," � f (�1)(Æ(x; y)) is
equivalent toÆ(x; y) � f("). Since we have"! 1 (from left) iff f(")! 0 (from right), saying that for
each" < 1 there isy 2 A such thatÆ(x; y) � f(") is equivalent to saying that for each� = f(") > 0
there isy 2 A such thatÆ(x; y) � � which means thatx 2 CÆ(A). To sum up,x 2 CÆ(A) iff for each" < 1: A \ "C�(f 1Æxg) 6= ;. 2
Axiomatic characterization of similarity-based closure operators The fuzzy setC(A) is often called
the extensional hull (or closure) ofA. In what follows we consider the operatorC from the point of view
of closure operators of fuzzy sets as studied in [3, 4], see also [6]. The following is a useful definition.
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Definition 3.1. LetX = hX;�i be anL-similarity space. ForL-setsA;B 2 LX , we put�X(A;B) = _x;y2X(A(x)
(x � y)
B(y)):
Remark 3.1. (1) �X(A;B) is naturally interpreted as the truth degree of the fact thatthere are somex
in A andy in B which are similar.

(2) One can easily see that�X extends� in that(x � y) = �X(f 1Æxg; f 1Æyg).
(3) �X is a symmetric relation onLX which is not transitive in general. It is easy to see that ifA 2 LhX;�i or B 2 LhX;�i then�X(A;B) = Wx2X(A(x)
B(x)), i.e. �X(A;B) is the height ofA
B.

An immediate verification shows that introducingCX : LX ! LX byCX(A)(x) = �X(f 1Æxg; A): (7)

we haveCX(A)(x) = Wy2X A(y)
(x � y) which is the definition (6) of the similarity-based closure
of A. We will freely use any ofCX, C�, andC to denote the operator we are dealing with.

Recall the following definition and basic results from [3].

Definition 3.2. Let K � L be a�-filter (i.e. K 6= ;, anda 2 K, a � b imply b 2 K). An LK-closure
operatoron a setX is a mappingC : LX ! LX satisfyingA � C(A) (8)S (A1; A2) � S (C(A1);C(A2)) wheneverS (A1; A2) 2 K (9)C(A) = C(C(A)) (10)

for everyA;A1; A2 2 LX .

Remark 3.2. (1) Definition 3.2 generalizes some earlier approaches to fuzzy closure operators [6],
mainly in that it takes into account partial subsethood (sensitivity to partial subsethood is parametrized
by K). Particularly, forL = [0; 1℄, Lf1g-closure operators are precisely fuzzy closure operators [6]. IfK = L, we omit the subscriptK and use the termL-closure operator.

(2) It is easily seen that forL = 2 (classical logic), the notion of anLK-closure operator coincides
with the notion of a closure operator.

The next theorem gives a characterization of a system of closed fuzzy sets ofL-closure operators
(see [3]). ForC : LX ! LX denoteSC = fA j A = C(A)g.
Theorem 3.4. S is a system of all closed fuzzy sets of someL-closure operatorC, i.e. S = SC, iff S
is closed under arbitrary intersections anda-shifts, i.e. forAi; A 2 S, a 2 L, we have\iAi 2 S anda! A 2 S.
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Remark 3.3. A systemS of L-sets inX is called anL-closure system inX if it is closed under arbitrary
intersections anda-shifts. In [3] it is shown thatC 7! SC andS 7! CS , whereCS(A) = TfB 2S j A � Bg, establish a bijective correspondence betweenL-closure operators andL-closure systems inX. Moreover, for anL-closure systemS we have\fB 2 S j A � Bg = \B2S S (A;B)! B;
see [3].

We now proceed to show that similarity-based closures are exactly L-closure operators satisfying
three additional properties.

Lemma 3.1. Let X = hX;�i be anL-similarity space. Then the mappingCX defined by (7) is anL-closure operator satisfying, moreover,CX([i2I Ai) = [i2I CX(Ai); (11)CX(f aÆxg) = a
CX(f 1Æxg); (12)CX(f 1Æxg)(y) = CX(f 1Æyg)(x) (13)

for anyAi 2 LX (i 2 I), x; y 2 X, a 2 L.

Proof:
We haveA(x) = A(x)
(x � x) � Wy2X A(x)
(x � y) = �X(f 1Æxg; A), thusA � CX(A),
proving (8).

(9) is true iff for eachx 2 X and everyA;B 2 LX we haveS (A;B) � CX(A)(x) ! CX(B)(x)
which is equivalent toCX(A)(x)
 S (A;B) � CX(B)(x). The last inequality is true. Indeed,CX(A)(x)
 S (A;B) = (_y2X A(y)
(x � y))
(ŷ2X A(y)! B(y)) �� _y2X(A(y)
(A(y) ! B(y))
(x � y)) �� _y2X(B(y)
(x � y)) = CX(B)(x)
proving (9).

In order to show (10), we proceed as follows:(CX(CX(A)))(x) = _z2X CX(A)(z)
(x � z) = _z2X(_y2X A(y)
(z � y))
(x � z) == _z2X _y2X(A(y)
(x � z)
(z � y)) �� _z2X _y2X(A(y)
(x � y)) = _y2X(A(y)
(x � y)) = CX(A)(x)
proving (10).
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Furthermore, we haveCX([i2IAi) = _y2Y ((_i2I Ai(y))
(x � y)) =_i2I(_y2Y Ai(y)
(x � y)) = ([i2I CX(Ai))(x)
verifying (11).

(12) is true sinceCX(f aÆxg)(y) = _z2X(f aÆxg(z)
(z � y)) = a
(x � y) = a
CX(f 1Æxg)(y):
Finally, (13) follows directly from symmetry of�. 2
Remark 3.4. Note that for any operatorC : LX ! LX , (12) impliesC(;) = ;. Indeed,C(;)(x) =C(f 0Æyg) = 0
C(f 1Æyg) = 0 for anyx; y 2 X.

Remark 3.5. In the following, we repeatedly use a simple fact thatA = Sx2Xf A(x)Æxg for eachA 2 LX .

Lemma 3.2. LetC be anL-closure operator onX that satisfies (11)–(13). Forx; y 2 X put(x �C y) = C(f 1Æxg)(y):
ThenXC = hX;�Ci is anL-similarity space.

Proof: We verify (1): (x �C x) = C(f 1Æxg)(x) � f 1Æxg(x) = 1, by (8).
By (13), (x �C y) = C(f 1Æxg)(y) = C(f 1Æyg)(x) = (y �C x) proving (2).
Takex; z 2 X and putA = f 1Æxg. We haveC(A)(z) = (x �C z) and by (11) and (12),C(C(A))(z) = C([y2Xf C(f 1Æxg)(y)Æyg)(z) = _y2X C(f C(f 1Æxg)(y)Æyg)(z) == _y2X C(f 1Æxg)(y)
C(f 1Æyg)(z) = _y2X(x �C y)
(y �C z):

On account of (10) we haveC(C(A))(z) � C(A)(z), i.e._y2X(x �C y)
(y �C z) � (x �C z):
From this it follows that(x �C y)
(y �C z) � (x �C z) for anyy 2 X, establishing (3). 2
Theorem 3.5. The mappings sendingX to CX, andC to XC, as defined in Lemmas 3.1 and 3.2, are
mutually inverse mappings between the set of allL-similarity spaces with supportX and the set of allL-closure operators onX satisfying (11)–(13).
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Proof: By Lemmas 3.1 and 3.2, we have to check thatX = XCX andC = CXC . We have(x �CX y) = CX(f 1Æxg)(y) = �X(f 1Æyg; f 1Æxg) = (x � y):
Furthermore,C(A)(x) = C([y2Xf A(y)Æyg)(x) = _y2X C(fA(y)Æyg)(x) == _y2X A(y)
C(f 1Æyg)(x) = _y2X A(y)
(x �C y) = CXC(A)(x)
completing the proof. 2

As mentioned in Remark 3.3, there is a bijective correspondence between fuzzy closure operators
and fuzzy closure systems. Fuzzy closure systems inX are easily axiomatized, see Remark 3.3. In the
following we find a suitable axiomatization of systems of closed elements of fuzzy closure operators
which are induced by similarity spaces.

Lemma 3.3. A = C�(A) iff A is compatible with�. Thus,SC� = LhX;�i.
Proof: The statement is a consequence of (6).

Let A = C�(A). ThenA(x)
(x � y) = C�(A)(x)
(x � y) = Wx0(A(x0)
(x0 � x))
(x �y) = Wx0(A(x0)
(x0 � x)
(x � y)) � Wx0(A(x0)
(x0 � y)) = C�(A)(y) = A(y).
Conversely, letA be compatible with�. ThenC�(A)(x) = Wx0(A(x0)
(x0 � x)) � Wx0 A(x) =A(x). 2

Theorem 3.6. A systemS of L-sets inX is the system of closed sets of some similarity space (i.e.S = LhX;�i for somehX;�i) iff it is an L-closure system satisfying
Si2I Ai 2 S, a
A 2 S, andA! a 2 S for eachAi; A 2 S, a 2 L.

Proof: Due to Theorem 3.4 and Remark 3.3, we have to show that for anL-closure systemS, CS
satisfies (11)–(13) iff (a)

Si2I Ai 2 S, (b) a
A 2 S, and (c)A ! a 2 S for eachAi; A 2 S, a 2 L.
For simplicity, we write onlyC instead ofCS . We show the following claims.

(i) (11) is equivalent to (a): Assume (11); then forAi 2 S we have
SiAi = Si C(Ai) = C(SiAi) 2S. Conversely, if

Si2I Ai 2 S for Ai 2 S, then fromC(Ai) 2 S we get
Si C(Ai) 2 S and thusSi C(Ai) = C(Si C(Ai)) � C(SiAi). Since we always have

Si C(Ai) � C(SiAi), (11) follows.

(ii) (11) and (12) imply (b): Assume (11) and (12). Then fora 2 L andA 2 S we havea
A = a
C(A) = a
C([x2XfA(x)Æxg) = a
 [x2X C(fA(x)Æxg) == a
 [x2XA(x)
C(f 1Æxg) = [x2X a
A(x)
C(f 1Æxg) == � � � = [x2X C(f a
A(x)Æxg) = C([x2Xf a
A(x)Æxg) = C(a
A):
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(iii) (b) implies (12): Assume that fora 2 L andA 2 S we havea
A 2 S. For eachL-closure
system we havea = S (f 1Æxg; f aÆxg) � S (C(f 1Æxg);C(f aÆxg)) and thusa
C(f 1Æxg) �C(f aÆxg). On the other hand,f aÆxg � a
C(f 1Æxg) and thusC(f aÆxg) � C(a
C(f 1Æxg)) =a
C(f 1Æxg) (asa
C(f 1Æxg) isC-closed) establishing (12).

(iv) (11)–(13) imply (c): IfC satisfies (11)–(13) then by Theorem 3.5,C is induced by some simi-
larity � on X and thus, by Lemma 3.3,A 2 S means thatA is compatible with�. In order to showA! a 2 S we thus need to show thatA! a is compatible with�. We have(A! a)(x)
(x � y) �(A! a)(y) iff A(y)
(y � x)
(A(x)! a) � a which is true.

(v) (c) implies (13): LetA! a 2 S for A 2 S, a 2 L. We haveC(f 1Æxg)(y) = Â2S S (f 1Æxg; A) ! A(y) = Â2SA(x)! A(y) �� ^A2S;a2L(A(x) ! a)! (A(y)! a) � (C(f 1Æyg)(x)! C(f 1Æyg)(x)) !! (C(f 1Æyg)(y)! C(f 1Æyg)(x)) = 1! (1! C(f 1Æyg)(x)) = C(f 1Æyg)(x)
(we putA = C(f 1Æyg) and a = C(f 1Æyg)(x)). Symmetrically,C(f 1Æyg)(x) � C(f 1Æxg)(y)
establishing (13).

Now, from (11)–(13) we get (a) (by (i)), (b) (by (ii)), and (c)(by (iv)). Conversely, from (a)–(c) we
get (11) (by (i)), (12) (by (iii)), and (13) (by (v)). The proof is complete. 2

Note that Theorem 3.6 is an analogy of theorems on metrizability of topological spaces (i.e. criteria
saying when a topological space is induced by a metric).

Corollary 3.1. A systemS of L-sets inX is the system of allL-sets inX compatible with someL-
equivalence� onX (i.e. S = LhX;�i) iff S satisfiesTi2I Ai 2 S,

Si2I Ai 2 Sa
A 2 S, a! A 2 S, A! a 2 S
for eachAi; A 2 S anda 2 L.

Proof: Directly by Theorem 3.4 and Theorem 3.6. 2
Note that using other methods, the result from Corollary 3.1is obtained in [12]. Our arguments

place this result into the appropriate context of closure operators. IfS satisfies the five conditions of
Corollary 3.1, i.e.S = LhX;�i, then� may be obtained fromS by Leibniz rule (5):

Corollary 3.2. If S satisfies the five conditions of Corollary 3.1 thenS = LhX;�Si.
Proof:
By Corollary 3.1,S = LhX;�i for someL-equivalence�. Since for[x℄� 2 LX defined by[x℄�(y) =x � y we have[x℄� 2 S, it follows that (x �S y) � [x℄�(x) $ [x℄�(y) = (x � y). On the other
hand, for eachA 2 S we clearly have(x � y) � A(x) $ A(y) (by compatibility ofA) whence(x � y) � (x �S y). 2
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Corollary 3.3. hLhX;�i;�i is a complete sublattice ofhLX ;�i.
Acknowledgement Supported by grant no. 201/02/P076 of the GAČR and partially by grant no.
B1137301 of the GA AVČR.
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