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1.

The concept of similarity and related concepts of distanearness, proximity, closeness etc. are among
the basic concepts when modeling real-world phenomenahéiiiost common approaches that allow
us to quantify distance (or nearness) of objects of intaseite concept of a metric space. Fuzzy set
theory offers another concept for modeling of similarity;lled fuzzy equivalence. Briefly speaking,
a fuzzy equivalence is a binary fuzzy relati@hon a set (i.e. assigning to each péir, y) the truth
degreeE(z,y) to which z andy are similar) which is reflexive, symmetric, and transitiv&.given
fuzzy equivalence?r on a setX can be understood as an indistinguishability underlyiregghrticular

Abstract. In fuzzy set theory, similarity phenomenon is approachedguso-called fuzzy equiva-
lence relations. An important role in fuzzy modeling is @dyby similarity-based closure (called
also the extensional hull). Intuitively, the degree to wham element belongs to a similarity-based
closure of a fuzzy setl is the degree to which it is true that there is an elemeim A which is
similar toz. In this paper, we show a basic relationship between siityithased closure and metric
closure, and provide an axiomatic characterization of fieration of a similarity-based closure.
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situation. From this point of view, it is natural to considerly those fuzzy setd in X which satisfy a
natural condition saying that if belongs toA and if z andy are indistinguishable thepbelongs toA
as well (fuzzy sets satisfying this condition are called patible with E). Only the compatible fuzzy
sets respect the underlying indistinguishability. For zzfusetB in A, the smallest fuzzy sed in X
containing B which is compatible withZ is called the extensional hull d8. Another natural way to
come to the concept of an extensional hull is the followingt B represent a user-query in th&{z)
is the degree to which the elementis considered to satisfy the querys may contain only a small
number of “examples” specified by the user. Now, the usersvanget the collection (fuzzy se of all
elementse for which there is somg in B which is similar toz, i.e. he or she wants to get all elements
satisfying the query represented by the exanipldt can be shown (and is well-known) thatis exactly
the extensional hull oB.

The concepts of a fuzzy equivalence and that of an exteridioifiaf a fuzzy set are among the very
important concepts having natural interpretation, irgting properties, and immediate applications, see
e.g. [6,9, 10, 11, 12, 15]. The aim of this paper is to invedghe concept of an extensional hull and
to give its complete characterization in terms of so-caflerky closure operators [3]. Moreover, we
discuss the relationship between the concept of the exteashull (i.e. a similarity-based closure) and
that of the metric-based closure.

In Section 2 we recall the necessary notions. The resultsegpaper and discussion is presented in
Section 3.

2. Preliminaries

We recall necessary notions from fuzzy logic and fuzzy séte will use complete residuated lat-
tices as the structures of truth values. Complete residuatéces play a crucial role in fuzzy logic
(see [9, 10, 11]). Being introduced in 1930s [17] as an abstra in the study of ideal systems of
rings, they have been proposed as a suitable structuretbfwalues by Goguen in [7, 8]. Recall that
a complete residuated lattice is an algebra= (L, A, V,®, —,0,1) such that{Z, A, V,0, 1) is a com-
plete lattice with the least elemeftand the greatest element (L, ®, 1) is a commutative monoid,
i.e. ® is commutative, associative, and® 1 = x holds for eachw: € L; and ®,— form an ad-
joint pair, i.e. 2@y < ziff x < y — 2z holds for allz,y,z € L. ® and— are called multi-
plication and residuum, respectively. All properties ofriete residuated lattices used in this paper
can be found in [10, 11]. The most studied and applied setuth tvalues is the real intervaf, 1]
with @ A b = min(a,b), a V b = max(a,b), and with three important pairs of adjoint operations: the
tukasiewicz oned ® b = max(a+b—1,0),a — b = min(1—a+b, 1)), Godel oneq ® b = min(a, b),

a — b= 1if a < band= b otherwise), and productone®b =a-b,a - b=11if a < band=b/a
otherwise); see [10] for their role in fuzzy logic. More geaidy, ([0, 1], min, max, ®, —,0, 1) is a com-
plete residuated lattice df, 1] iff ® is a left-continuous t-norm [10] and — b = max{z | a ® z < b}.
Another important set of truth values is the $e§ = 0,a1,...,a, =1} (ap < --- < a,) With ® given
by a ® a; = ayax(k+1—n,0) @nd the corresponding: given byay — a; = amin(n—k+1,n)- A SPecial case
of the latter algebras is the Boolean algeRraf classical logic with the suppot = {0,1}. It may be
easily verified that the only-norm on{0, 1} is the classical conjunction operationi.e. a A b = 1 iff

a = 1 andb = 1, which implies that the only residuum operation is the ¢tadsmplication operation
—,l.e.a - b=0Iiff a = 1 andb = 0. Multiplication ® and residuum- are intended for modeling the
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conjunction and implication, respectively. SupremWf) &nd infimum (\) are intended for modeling
general and existential quantifier, respectively.

An L-set (fuzzy set with truth degreeskiy) [18, 7] A in a universe seX isany mapA : X — L. By
LX we denote the set of all-sets inX. The concept oL-relation is defined obviously. Bya/z} we
denote arl-set inX such that{ ¢/z}(z) = a and{ @/z}(y) = 0 for y # z. Operations orl, extend
pointwise toL*X, e.g.(A V B)(z) = A(z) V B(z) for A, B € L. Following common usage, we write
AU B instead ofA Vv B, etc. GivenA, B € L¥, the subsethood degréd A, B) of A in B is defined
by S(A,B) = N\,ex Alz) — B(z). We write A C B if S(A,B) = 1. Analogously, the equality
degree(A ~ B) of A andB is defined by(A ~ B) = A\, x(A(z) < B(zx)) where« is the so-called
biresiduum defined by <+ b = (@ — b) A (b — a). Itisimmediate thatl ~ B = S(A, B) A S(B, A).
Fora € L andA € L, the ordinary setA = {z € X | A(z) > a} is called thes-cut of A.

A binary L-relation= on a setX is called arL-equivalence (fuzzy equivalence) if

r~z=1 (1)
Ry=y~x 2
RYQy~z <12 3

An L-equivalence is called ah-equality if
z~y=1 Iimplies z=y. 4

Sometimes, a fuzzy equivalence is called simply a simyldat fuzzy similarity). We will use the term
similarity (or L-similarity) as well. There has been a lot of debates aboudtwhoperties a relation
modeling similarity should have. It is mostly agreed thatikirity is reflexive and symmetric. However,
transitivity of similarity has been a point of disagreemefne usually argues against transitivity as
follows: If similarity were transitive then any two colorsowld be similar. For we may suppose that two
colors with sufficiently close wave lengths are similar. Nfov any two colorsA and B we may find a
chainA = Ay, Ay, ..., A, = B, of colors such tha#l; and 4, ; are similar. Using transitivityd and B
are similar. On the other hand, the transitivity conditiomfiulated verbally (i.e. “ift andy are similar,
and ify andz are similar ther; andz are similar”) sounds plausible. The solution to this puzidg in
the fact that similarity, by its nature, is a graded (fuzzgjion. If we look at the meaning of transitivity
in fuzzy setting, we find it quite natural. For exampleFifz,y) = 0.8 (z andy are similar in degree
0.8) andE(y,z) = 0.8 (y andz are similar in degree 0.8) thenand z have to be similar at least in
degreed.8 ® 0.8. Thus, in case of the product structure, transitivity feré&z, z) > 0.8® 0.8 = 0.64
which is in accord with our intuitive feeling. Note howevérat Godel t-norm does not help (which is
due to its idempotence).

The next theorem shows a universal way to construct siryilari

Theorem 2.1. ([16, 2])
A binary L-relation~ on X is anL-equivalence iff there i§ C L* of L-sets inX such thatc=~g
where
(2 =sy) =\ (Alz) & A(y)). (5)
AcS
The elements! of S represent fuzzy attributesi(z) is the degree to which an elementbas the attribute
A). Therefore, Theorem 2.1 says thatdndy are considered similar if and only if for each (relevant,
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i.e. belonging taS) attribute A we have that: has A iff y hasA”. This rule is a modification of the
well-known Leibniz criterion [1] of identity. A useful colary of Theorem 2.1 says that (cf. equality
degree introduced above) is Brequivalence relation oh~.

An L-setA in X is said to be compatible with da-equivalencex on X if A(z) ®(z = y) < A(y)
for eachz,y € X (that is, “if z belongs toA andx andy are similar theny belongs toA” is true). The
collection of allL-sets inX compatible with~ will be denoted byZ (X~

3. Fuzzy closure induced by similarity

Coming to similarity-based fuzzy closure Having introduced the necessary formal notions, we can
go back to the motivating examples from Section 1. Thel$&t™ contains exactly those fuzzy sets in
X that respects. For a given fuzzy setl in X it might thus be desirable to know the least fuzzy set
C(A) which both containsi and is compatible withe. SinceL{** is closed under intersections, we
have

C(4) =({B|Be L™, AC B}

It is easy to see tha&t(A) may be described directly using by

CA)(y) =\ Alz)®(z ~y). (6)

reX

Without going into details, we note that except the abovetinaed fact that considering only fuzzy sets
compatible with~ is sound from the epistemic point of view (once one integpretas an underlying
indistinguishability), there are more “technical” reasonvhen=: is employed, fuzzy sets compatible
with = behave intuitively well. For example, given any first-orflenmula with free variableg, .. .,y
whose relation symbols are interpreted by fuzzy sets cabipatith =, one can naturally estimate the
truth degree to whickp[w, ..., v] (i.e., variablese, . . . , y evaluate to elements, . .., v of the universe)
is equivalent tap[u/, . . ., v'] in terms of similarity degreeg ~ v/, ...,v =~ v/, see [10].

If X is a set of elements of a database then a user-query may belgiésting some examples
representing appropriate results for the query, each witbgaee to which it is appropriate. That is, the
query may be given by a fuzzy sdtin X (A(z) is the degree to whicla is appropriate). Naturally, we
expect the answer to the quesyto contain those elements frof which are similar to some example
from A. In other words, we expect that the degress(A4)(y) to which an elemeny from X belongs
to the answer\ns(A) is the truth degree of the fact “there is an elememm A such thatz andy are
similar”. Basic rules of semantics of fuzzy logic tell thahs(A)(y) is just equal toC(A)(y) defined
in (6).

From the above examples it is clear that the operator of dasityibased closure assigning a fuzzy
setC(A) to a fuzzy setd is an important one. Our aim in the following is twofold. Ejreve discuss
some relationships between similarity-based closure agtderclosure. Second, we investigate abstract
properties of the similarity-based closure operator awndige its complete axiomatization.

Relationship to metric closure The concept of a metric is the one mostly applied when corisigle
closeness of objects (usually of a geometric nature). Tisere obvious question of what is the relation-
ship between the notion of a metric and the notion oLasimilarity (i.e. a fuzzy equivalence). After
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we recall known relationships, we turn to the second imntedjaestion of the relationship between the
well-established concept of a metric closure and that ofrélaiity-based closure.

We start with some relationships between metrics hrsimilarities. Recall that a metric on a
nonempty sefX is a mapping assigning to any;, y € X a nonnegative real(x, y) such that

6(z,y) =0 iff 2=y,

§(z,y) = d(y, z),
0z, 2) <d(z,y) + 0(y, 2).

If instead of the first condition we require oniyz, x) = 0, we get a more general notion of a pseudomet-
ric. Sometimes, (pseudo)metric is used in a generalizesesalfowing to assign also value (infinite
distance). In that case we speak of a generalized (pseutd@me (generalized) (pseudo)metric space
is a pair(X, 0) whereX is a nonempty set antla (generalized) (pseudo)metric an

Basically, a metric maps tf§), co) while a fuzzy similarity maps in general to a suppdértof a
complete residuated lattice. However, if one restrictscibvesideration to residuated lattices of@rl1]
(i.e. to left-continuous t-norms), interesting relatibips come out. Some relationships are illustrated in
the following. To have a suitable analogy in terminologyl aa (L)-similarity spacea pairX = (X, ~)
where=: is anL-equivalence orX. X is calledstrict if = is anL-equality.

Example 3.1. (1) LetL be the standard tukasiewicz algebra/@n] (i.e. ® is the Lukasiewicz t-norm),
let X = (X, ~) be a similarity space. Puk,(z,y) = ~(z =~ y). Thendy(z,z) =1 — (z = z) = 0;
On(,y) = 0x(y,2); On(t,y) = ~(z = y) < (2 & 2)B(z ~ y)) = (z % 2) ® (2 ~ y) =
min(—(z = 2) + =(z = y),1) < =(z = 2) + (2 = y) = ox(z,y) + 0x(y,2). Thus, iy is a
pseudometric oX with d(x,y) € [0, 1]. If X is, moreover, strict thebl, is a metric.

Conversely, ifd is a (pseudo)metric oX with é(x,y) € [0, 1] then putting(z ~s y) =
d(z,y) we get thatX; = (X, ;) is a (strict) similarity space (transitivity{z ~; y) ®@(y ~s5 2
_'5(x7y) ®_'5(y7z) = _‘(5(%9) D (S(y,Z)) = _'min((s(xuy) + 6(y7z)7 1) < _'(min(a(x7z 71)
—(0(z,2)) = (z =5 2)).

(2) Let L be the standard product algebra[0nl] (i.e. ® is the product t-norm). For a similarity
spaceX = (X,~), "~ = {(z,y) | (v ~ y) > 0} is an equivalence relation ok with equivalence
classes, sayX; (: € I). On eachX;, putix(z,y) = —log(z = y); forz € X;, y € X; (X; # Xj)
putd(z,y) = oo. Thendy is a pseudometric oX (in a generalized sense since it may take alsas
its values). Indeedd (z,z) = —log(l) = 0; du(z,y) = —log(z = y) = —log(y = z) = dx(y, z);
On(7,2) = —log(z = z) < —log((z = y) - (y = 2)) = (—log(z =~ y)) + (—log(y = 2)) =
dn(z,y) + dx(y, z). Moreover, iy, is a metric iff X is strict.

The foregoing two examples are special cases of the follpganeral relationship between pseudo-
metrics onX (in the generalized sense) ahekquivalences oiX whereL is a residuated lattice df, 1]
given by a continuous Archimedean t-norm (igis continuous as a real function and satisfigsa < a
for eacha # 0,1). We need the following representation theorem for cowmtirsuArchimedean t-norms
(for proof see e.g. [13]):

Theorem 3.1. A mapping® : [0,1]?> — [0, 1] is a continuous Archimedean t-norm iff there is a contin-
uous additive generatgr such that

z@y=fCU(f(z)+ fy)),
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i.e. f is a strictly decreasing continuous mappifig [0,1] — [0, c0] with f(1) = 0 and f(-1) is the
pseudoinverse of defined byf(~Y(z) = f~!(z) if z < £(0) and f(~1(x) = 0 otherwise.

tukasiewicz as well as product t-norms are both continuswsArchimedean.f(z) = 1 — z and
fEY(z) = max(1 — z,0) are an additive generator and its pseudoinverse of the fawas t-norm;
f(z) = —log(x) and f(-Y(z) = e* are an additive generator and its pseudoinverse of the produ
t-norm. Now, we have the following result which follows byrsbination of results from [5].

Theorem 3.2. Let ® be a continuous Archimedean t-norm with an additive geoeratL be a residu-
ated lattice orf0, 1] given by®, ~ be anL-equivalence oiX, 6 be a pseudometric oK in a generalized
sense. Then (1) : [0,1]? — [0, o] defined by

0x(z,y) = flz = y)

is a pseudometric in a generalized sense which is a metrigigfanL-equality; (2)~;: [0, 1] — [0, 1]
defined by

(x ~5y) = OV (0(x,y))
is anL-equivalence orX' which is anL-equality iff § is a metric; (3)x equals~;,_ and if 6(X, X) C
[0, £(0)] thend equalsi, .

Proof: The result follows by easy combination of results obtainmefb].

(1): dn(z,z) = 0 anddn(z,y) = 0x(y,z) follow from (z = z) = 1, (z = y) = (y = =), and

f(1) = 0. Triangle inequality fol,, can be obtained as follows: Transitivity sfyields f(~1(f(z

y) + fly = 2)) < (z ~ z). Sincef is decreasing, we ha\gé(x ~2) < f(fCY(flemy) + fly =
z))). Now, there are two possibilities: eith¢fz ~ y) + f(y = z) > f(0) and thenf(z ~ z) <

D e~ y) + 7y~ 2))) = (0) < F(z ~ ) + F(y = 2), of f(z ~ ) + fly ~ 2) < £(0) and

thenf(z ~ z) < f(fCV(f(z = y) + fly = 2))) = f(z = y) + f(y = 2). In both of the cases we

havef(z =~ z) < f(z = y) + f(y = z) which meang(x, z) < d~(x,y) + 0x(y, 2), i.e. the required

triangle inequality.

Thatd,, is a metric iff~ is anL-equality follows easily from the fact thdtis strictly decreasing.

(2): (z ~5 v) = 1 and(z =5 y) = (y ~s x) follow from 6(z,z) = 0, é(z,y) = (v, z),
and f(-1(0) = 1. Transitivity of ~5: Note first thatf(~D(z) = f~Y(min(f(0),z)), f(u ~5 v) =
min(f(0),(u,v)), and thatf ~! is decreasing. Using triangle inequality fjrwe have

FEV(6(, 2)) = fH(min(f(0),0(z, 2))) >

H(min(f(0), d(z,y) +0(y, 2))) =
FHmin(f(0), f(z =5 y) + [y =5 2))) = (¢ 2 y) @y = 2),

T ®

42

53/
I

> [

verifying transitivity of~
Sincef (=Y is strictly decreasmgyg is anL-equality iff 6 is a metric.

3): (&~ y) = fC D Ox(z,y) = FOV(fle = y) = (2 = y).
If 6(z,y) < f(0) thendx, (z,y) = f(a =5 y) = f(fTV(6(z,9))) = F(f (min(f(0),6(z,9))))
£ 100 w) = d(a,y).

Ol
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Next, we discuss some basic relationships between theasitpibased fuzzy closure and metric
closure. Recall that K = (X, d) is a (pseudo)metric space addC X then the se€s(A) defined by

Cs(A) = {y| foreache > Othereise € A: §(x,y) < e}

is called the closure aft in X. Our aim is to discuss the relationship betwé&nand C,, where= is

a fuzzy similarity corresponding (somehow)da@and C, is the ~-based operator defined by (6). It is
important to realize tha€; is a mapping fron2* to 2% (i.e. operating on ordinary sets) whi@, is

a mapping fromL* to LX (i.e. operating on fuzzy sets). dfis a (generalized) pseudometric, then for
anya € (0, oo], the mapping, : (z,y) — min(a, d(z,y)) is a (generalized) pseudometric as well (easy
to verify). Moreover, it is easy to show th@l; = C;,. Therefore, if we are interested in the metric
closure only, we may restrict our attention to (generalizgdeudo)metrics withd (X, X') C [0, f(0)]
wheref is the generator of a given continuous Archimedean t-n@tniNamely,C; = Cs0) and, due
to Theorem 3.2, there is a one-to-one correspondence hbefigereralized) (pseudo)metrics satisfying
(X, X) C [0, f(0)] and L-similarities whereL is given by the corresponding t-nor®. The next
theorem shows a way to descrif@g usingCy,.

Theorem 3.3. Let ® be a continuous Archimedean t-norm with a continuous addg@eneratof, let §
be a generalized (pseudo)metric aade anL-similarity corresponding t@, i.e. ~==; andd = d
(cf. Theorem 3.2). Then

for eachA C X. Furthermore,
z € Cy(A) iff foreache < 1: ANCy({1/z}) £0

foreachA C X,z € X.

Proof: First, we showCs(4) = '(Cx(A4)): We havey € (Cx(A)) iff 1 = \,culz = y) =
Ve fTV(0(2,y)). Thatis, for eachy > 0 there isz € A such thatf(=Y(6(z,y)) > 1 — n which is
equivalent to saying that for eaghwith f(0) > 7 > 0 there isz € A such thatf (=) (§(z,y)) > 1 — 1.
Sincef(-Y : [0, £(0)] — [0, 1], is the inverse function tg : [0,1] — [0, f(0)], the latter condition is
equivalent to saying that for eagtwith f(0) > n > O there ist € A suchthat(z,y) < f(1—n). Now,
since fore = f(1 — n) we have that — 0 iff f(1 —n) — 0, we further have that the latter condition
holds iff for eache > 0 there isz € A such that(z,y) < e which is equivalent tgy € Cy(A).

Next, AN ¢Cx({1/z}) # 0 for eache < 1 holds iff for eache < 1 there isy € A such that
¢ < (z ~ y) which means that < f(=2(5(z, y)). Fore sufficiently close to 1¢ < f(=D(5(z,y)) is
equivalent toj(z,y) < f(e). Since we have — 1 (from left) iff f(e) — 0 (from right), saying that for
eache < 1 there isy € A such that(z,y) < f(e) is equivalent to saying that for eagh= f(¢) > 0
there isy € A such that(z,y) < n which means that € C5(A). To sum upx € Cs(A) iff for each

e <1 AN<Cx({1/z}) #0. O

Axiomatic characterization of similarity-based closure gerators The fuzzy seC(A) is often called
the extensional hull (or closure) df. In what follows we consider the operai@rfrom the point of view
of closure operators of fuzzy sets as studied in [3, 4], se®[8l. The following is a useful definition.
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Definition 3.1. Let X = (X, =) be anL-similarity space. FoL-setsA, B € L*, we put

px(A,B) = \/ (Alz)®(z =~ y)® B(y)).
z,yeX

Remark 3.1. (1) px (A, B) is naturally interpreted as the truth degree of the factttiete are some
in A andy in B which are similar.
(2) One can easily see tha extendsx in that (z =~ y) = px ({ 1 /z},{ 1/y}).

(3) px is a symmetric relation o, X which is not transitive in general. It is easy to see that if
A e L&™ or B € LA™ thenpx (A4, B) = V,cx(A(z) ® B(z)), i.e. px(A, B) is the height of
A®B.

An immediate verification shows that introducif : L*X — LX by
Cx(4)(x) = px({ 1/x}, 4). (7

we haveCx (4)(z) = V,cx A(y) ®(z ~ y) which is the definition (6) of the similarity-based closure
of A. We will freely use any ofCx, C.,, andC to denote the operator we are dealing with.
Recall the following definition and basic results from [3].

Definition 3.2. Let K C L be a<-filter (i.,e. K # 0, anda € K, a < bimply b € K). An Lg-closure
operatoron a setX is a mappingC : LX — LX satisfying

A C C(4) 8)
S(A1,42) < S(C(A1),C(Az)) wheneverS(A;, As) € K 9)
C(4) = C(C(4)) (10)

foreveryA, Ay, A, € LX.

Remark 3.2. (1) Definition 3.2 generalizes some earlier approaches zayficlosure operators [6],
mainly in that it takes into account partial subsethood g&mity to partial subsethood is parametrized
by K). Particularly, for, = [0, 1], Ly, ,-closure operators are precisely fuzzy closure opera€jrsff

K = L, we omit the subscripK and use the ter-closure operator.

(2) Itis easily seen that fdL = 2 (classical logic), the notion of ahx-closure operator coincides
with the notion of a closure operator.

The next theorem gives a characterization of a system oédl@szzy sets ol.-closure operators
(see [3]). ForC : LX — L* denoteSc = {A | A= C(A)}.

Theorem 3.4. S is a system of all closed fuzzy sets of solaelosure operato€, i.e. § = Sg, iff S
is closed under arbitrary intersections andhifts, i.e. for4;,A € S, a € L, we haven;A4; € S and
a— AeS.
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Remark 3.3. A systemsS of L-sets inX is called arLL-closure system iX if it is closed under arbitrary
intersections an@-shifts. In [3] it is shown thatC — Sc¢ andS — Cgs, whereCs(A) = ({B €
S| A C B}, establish a bijective correspondence betwleariosure operators arig-closure systems in
X. Moreover, for arlL-closure systen$ we have

({{BeS|ACB}= () S(4,B) - B,
BeS
see [3].

We now proceed to show that similarity-based closures aaetgXL-closure operators satisfying
three additional properties.

Lemma 3.1. Let X = (X, ~) be anL-similarity space. Then the mappir@x defined by (7) is an
L-closure operator satisfying, moreover,

cx(J4) = [Jox(4), (11)
el i€l
Cx({4/2}) = a®COx({1/s}), (12)
Cx({1/2})(y) = Cx({1/y})(x) (13)

foranyA; € LX (i€ I),z,y € X,a € L.
Proof:
We haveA(z) = A(z)®(z = z) < V, ex Al@)®(z = y) = px({ 1/2}, 4), thusA C Cx(A),
proving (8).

(9) is true iff for eachz € X and everyA, B € LX we haveS(4, B) < Cx(A)(z) — Cx(B)(z)
which is equivalent t€Cx (4)(z) ® S(A, B) < Cx(B)(x). The last inequality is true. Indeed,

Cx(A)(@)@8(A,B) = (\/ Aly) e ~y) o\ Aly) = B(y) <

yeX yeX

<V (Aly) ©(Aly) = B(y) (= ~ y)) <
yeX

<\ (B e ~y) = Cx(B)(x)
yeX

proving (9).
In order to show (10), we proceed as follows:

(Cx(Cx()(z) = \ xR @2 =\(\ Ay ek~y) o~z =

zeX zeX yeX

=V VUAmex)eE~y) <
zeX yeX

< V VAW eE=y) =\ (Al o ~y) = Cx(4)()
zeX yeX yeX

proving (10).
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Furthermore, we have

x(J4) =V (Vaw)e=y)=\(\ 4y e ~y) = (JCx(A) ()

iel yey iel i€l yey i€l

verifying (11).
(12) is true since

x({ /) y) =\ {¢/1}(2)8(2 = y)) =a®(z = y) =a®@Cx({ 1 /a})(y)

zeX

Finally, (13) follows directly from symmetry of. O

Remark 3.4. Note that for any operatdt : LX — L%, (12) impliesC(}) = 0. Indeed,C(0)(z) =
C({0/y}) =00 C({1/y}) =0foranyz,y € X.

Remark 3.5. In the following, we repeatedly use a simple fact that= |J,. { 4(%) /z} for each
AeLX,

Lemma 3.2. Let C be anL-closure operator oX that satisfies (11)—(13). Faty € X put

(z~cy) = C({ 1/2})(y)

ThenX¢ = (X, =~¢) is anL-similarity space.

Proof: We verify (1) (z ~cz)=C({ 1/a;} ) >{ 1/a; =1, by (8).
By (13), (z ~c y) = C({ 1/2})(y) {1/y} y z) proving (2).
Takez, z € X and putd = { 1/:15} We haveC(A)( ) (z =¢ z) and by (11) and (12),
C(CA))(z) = U CHL/ =N )y} (=) \/ c({ CAH=NW) /yh)(z) =

eX

eX
= \/ C{ /D) @ C{ 1/yh)(2) = \/ (@ ~c 1) ®(y ~c 2).

yeX yeX

On account of (10) we hawg(C(A4))(z) < C(A)(z), i.e.

yeX

From this it follows thatz ~¢ y) ®(y ~c¢ z) < (z =¢ z) for anyy € X, establishing (3). O

Theorem 3.5. The mappings sendini to Cx, andC to X, as defined in Lemmas 3.1 and 3.2, are
mutually inverse mappings between the set oflallimilarity spaces with suppoX and the set of all
L-closure operators o satisfying (11)—(13).
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Proof: By Lemmas 3.1 and 3.2, we have to check tat= X, andC = Cx . We have
(z =cx y) = Cx({ 1/a})(y) = px({ 1)y} {1/2}) = (e = y).

Furthermore,
CA) @) = C(J{AW/yh)(=) =\ C{ AW /y}) (@) =
yeX yeX
= V A eCc{1/yh@) = V Aly) o= ~c y) = Cx.(4)(z)
yeX yeX
completing the proof. O

As mentioned in Remark 3.3, there is a bijective correspooeldetween fuzzy closure operators
and fuzzy closure systems. Fuzzy closure systerds are easily axiomatized, see Remark 3.3. In the
following we find a suitable axiomatization of systems ofseld elements of fuzzy closure operators
which are induced by similarity spaces.

Lemma 3.3. A = C(A) iff Ais compatible withr. Thus,Sc, = L%,

Proof: The statement is a consequence of (6)
Let A = Cy(A). ThenA(z) ®(z = y) = Cx(A)(z) ®(x )
y) = V(A @ = z) 0@ ~y)) <V, (Al) @@ =y )ZCm
Conversely, letA be compatible withe. ThenCy(A4)(z) =V, (A(2") @ (2’ <
A(z). O

Qﬁ
I
<
a\
=
H\
=2
=

2
&
=2
8
2

Theorem 3.6. A systemS of L-sets inX is the system of closed sets of some similarity space (i.e.
S = L) for some(X, =) iff it is an L-closure system satisfying),.; A; € S, a®A € S, and
A—a€eSforeachd;, A e S,a € L.

Proof: Due to Theorem 3.4 and Remark 3.3, we have to show that fdi-alosure systens, Cg
satisfies (11)—(13) iff (a) J;c; A; € S, (D) a® A € S, and (c)A — a € S foreachA;;A € S,a € L.
For simplicity, we write onlyC instead ofCs. We show the following claims.

(i) (11) is equivalent to (a): Assume (11); then #y € Swe haved J, A; = |J, C(4;) = C(U, 4i) €
S. Conversely, iflJ;.; A; € S for A; € S, then fromC(4;) € S we get|J; C(4;) € S and thus
U; C(4;) = C(lJ; C(4;)) D C(lJ; Ai). Since we always havg), C(A4;) C C(UU; 4:), (11) follows.

(ii) (11) and (12) imply (b): Assume (11) and (12). Then foe L andA € S we have

a®A = a®C(4) =axC(| J{AW)/z}) =ae | ] C{A@)/2}) =

rzeX zeX

= a® | J A@)eC({1/z}) = |J a®A@@) 0 C({1/z}) =

rzeX zeX

— Uc{a®A )/z}) = U{G®A )/z}) = Cla® A).

zeX reX
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(iii) (b) implies (12): Assume that for € L andA € S we havea ® A € S. For eachL-closure
system we haves = S({1/z},{a/z}) < S(C({1/z}),C({a/z})) and thusa® C({ 1/z}) C
C({@/z}). On the other hand, ¢/z} C a® C({ 1 /z}) and thusC({ ¢/z}) C Cla® C({ 1 /z})) =
a®C({1/z}) (asa® C({ 1 /z}) is C-closed) establishing (12).

(iv) (11)—(13) imply (c): If C satisfies (11)—(13) then by Theorem 3(5js induced by some simi-
larity ~ on X and thus, by Lemma 3.34 € S means thatd is compatible with~. In order to show
A — a € S we thus need to show that — a is compatible with=. We have(A — a)(z) ®(z ~ y) <
(A= a)(y) iff A(y)®(y =~ z)®(A(z) = a) < a which is true.

(v) (c) implies (13): Letd - a € Sfor A € S, a € L. We have
C{ahy) = N SU1/z}4) = Aly) = N\ Al

AEeS AEeS

< A A —ae = (Al - C{1/yh(@) = C({1/y})(=

A€S,a€eL
= (C{/yHy) = CU{ /(=) =1 = 1 = C{ I/y}) (=) = C{ 1/y}) (=)
(we putA = C({1/y})anda = C({1/y})(z)). Symmetrically,C({1/y})(z) < C({1/z})(y)
establishing (13).

Now, from (11)—(13) we get (a) (by (i)), (b) (by (ii)), and (@y (iv)). Conversely, from (a)—(c) we
get (11) (by (i), (12) (by (iii)), and (13) (by (v)). The prbsz complete. O

Note that Theorem 3.6 is an analogy of theorems on metrizabfl topological spaces (i.e. criteria
saying when a topological space is induced by a metric).

Corollary 3.1. A systemS of L-sets inX is the system of alL.-sets inX compatible with somé.-
equivalencex on X (i.e. S = LX) iff S satisfies

ﬂiEIAi €S, UieIAi eS
a@Ae€eS,a—A€S,A—>acS
for eachA;, A € S anda € L.

Proof: Directly by Theorem 3.4 and Theorem 3.6. O

Note that using other methods, the result from Corollaryi8.tbtained in [12]. Our arguments
place this result into the appropriate context of closurerafprs. IfS satisfies the five conditions of
Corollary 3.1, i.eS = L{*X*)  thena may be obtained fron§ by Leibniz rule (5):

Corollary 3.2. If S satisfies the five conditions of Corollary 3.1 then= L(X:~s),

Proof:

By Corollary 3.1,§ = L{X”) for someL-equivalencex. Since for[z]., € L™ defined by[z](y) =

z ~ y we have[z]y, € S, it follows that (z ~s vy) < [z]x(z) < [2]x(y ) = (z = y). On the other
hand, for eachd € S we clearly have(z ~ y) < A(z) < A(y) (by compatibility of A) whence

(x~y) < (z=svy). O
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Corollary 3.3. (L{*®) C) is a complete sublattice ¢f.~, C).

Acknowledgement Supported by grant no. 201/02/P076 of the @GR and partially by grant no.
B1137301 of the GA AVCR.
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