
FEEDFORWARD NETWORKS WITH FUZZY SIGNALS 1

R. Bělohlávek

Institute for Research and Applications of Fuzzy Modeling, University of Ostrava

Bráfova 7, 701 03 Ostrava, Czech Republic, e-mail: belohlav@osu.cz

and

Department of Computer Science, Technical University of Ostrava

tř. 17. listopadu, 708 33 Ostrava-Poruba, Czech Republic

Abstract. The paper discusses feedforward neural networks with fuzzy signals. We ana-

lyze the feedforward phase and show some properties of the output function. Then we present a

backpropagation like adaptation algorithm for crisp weights, thresholds and neuron slopes of the

multilayer network with sigmoidal transfer functions. We provide theoretical justification for the

adaptation formulas. The results are of general nature and together with the presented approach

can be used for other types of feedforward networks. Proposed and discussed are also applications

of the presented feedforward networks.

Key words: feedforward neural networks, fuzzy sets, extension principle, adaptation, back-

propagation.

1 Introduction

Fuzzy methods and neural networks constitute the essential part of soft-computing, a discipline aim-

ing at methods capable of dealing with complex humanistic systems. Among the most important

features of neural networks we recognize first of all the massively parallel architecture and dynamics

which is inspired by the structure of human brain, the adaptation capabilities, and the fault toler-

ance. On the other hand, fuzzy sets represent an useful model of vagueness, a phenomenon playing

crucial role in the way humans regard the world. The significant properties of fuzzy methods are

the efficient processing of the modeled indeterminacy, especially the capability of modeling and fur-

ther processing of natural language semantics. This results in human-friendly models—the models,

inputs and outputs can be expressed or interpreted on the level of natural language or have other

clearly understandable meaning. Both neural networks and fuzzy methods are closely related with

human cognition, however, on different levels. Neural networks concern the microlevel—the level of

brain. Fuzzy methods concern the macrolevel—the level of mental phenomena. The levels (micro

and macro) are strongly connected. The macrolevel seems to be “implemented” in the microlevel.

The analysis of this combination of the levels is fundamental for our understanding of human cog-

nition. The study of the analogous combination of the soft-computing-methodics counterparts of

the levels, i.e. neural networks and fuzzy methods, is therefore worth pursuing.

Not surprisingly, neural and fuzzy models can be combined in many ways. The resulting models

can be built up of separate neural and fuzzy modules performing relatively independent tasks, they

can be based on neural models supplied by some features of fuzzy models (esp. processing of

indeterminate information), or conversely, based on fuzzy models supplied by features of neural

1Supported by grant No. 201/96/0985 of the GAČR and partially by IGS of University of Ostrava, No. 031/97,

029/98.

1



networks (esp. adaptability). An overview of various kinds of these models, called neuro-fuzzy or

fuzzy-neuro models, can be found e.g. in [4, 7, 11, 16].

The combinations of neuro and fuzzy models presented in literature are often ad hoc approaches

without correct mathematical treatment. To bring some order into the development it is necessary

to delineate and to pursue some paradigms of the combination. A useful paradigm is represented

by Zadeh’s extension principle (EP) [9, 12, 14]. The combination based on EP has been firstly

presented probably in [4]. Our paper deals with this approach and is organized as follows.

In Section 2, we propose the architecture and deal with the feedforward phase of our model.

In Section 3, we propose an adaptation procedure and derive the adaptation formulas. Possible

applications are discussed in Section 4. An example demonstrating the learning and interpolation

capabilities is presented in Section 5. Section 6 briefly summarizes the results.

2 Architecture and feedforward phase

By a feedforward (neural) network [1] it is usually understood a networked computational scheme

composed of several simple computational units which are connected in such a way that the graph

of information flow contains no loops (the information is fed forward). The simple units process

information in a way analogous to that of biological neurons. The adjective “neural” is due to

the analogy with biological neural networks. The feedforward networks take their inputs, process

them in the feedforward phase and return the outputs. The inputs to the network are usually

real numbers. In what follows we discuss the case where the inputs and the outputs are not real

numbers but fuzzy sets in the real line. The reason and advantages of having fuzzy sets instead of

crisp real numbers are discussed in Section 4.

There are several particular types of feedforward networks, see e.g. [1]. Probably the most

popular one is the multilayer feedforward network with sigmoidal transfer functions called also

backpropagation net because of its adaptation procedure [17]. This network will be a subject of

our investigation. However, our results which concern the general case of feedforward networks will

be formulated as general as necessary for application to other types of feedforward networks.

We now briefly describe the multilayer feedforward neural net. We suppose the j–th neuron of

the l–th layer to have the sigmoidal transfer function y
(l)
j = 1

1+e
−λ

(l)
j

z
(l)
j

, where λ
(l)
j is the slope of

y
(l)
j . The input z

(l)
j to the neuron is the thresholded weighted sum of the outputs of the preceding

layer, i.e. z
(l)
j =

∑ml−1

i=1 w
(l)
ij y

(l−1)
i −θ

(l)
j . Here w

(l)
ij denotes the weight of the connection leading from

the i–th neuron of the (l−1)–th layer to the j–th neuron of the l–th layer, and θ
(l)
j is the threshold.

A part of the network is depicted in Fig. 1. Let ml and r denote the number of neurons in the l–th

layer and the number of layers in the network, respectively. The inputs to the network are formally

the outputs of the 0–th layer. Such a network performs a mapping F : Rm0 7→ (0, 1)mr . A suitable

transformation can guarantee that the outputs are from Rmr .

From now on we suppose the inputs to the neural network to be fuzzy sets in R instead of real

numbers. One can then use the EP to extend the operations performed by the neural network to

fuzzy sets. We apply the EP to each operation performed by the net. To be able to cope effectively

with EP we restrict ourselves to the class FCI(R) of normal convex fuzzy sets in R with compact

α–cuts for α ∈ (0, 1]. Recall that a fuzzy set A is normal if there is an x with A(x) = 1; the α–cut

of A is the set αA = {x;A(x) ≥ α}; A is convex if each of its α–cuts is convex, i.e. an interval in

our case; each fuzzy set x may be represented by a collection {αx;α ∈ (0, 1]} of its α-cuts. Under

2



��
��

j

��
��

i

y
(l)
j

z
(l)
j

y
(l−1)
i

w
(l)
ij

θ
(l)
j , λ

(l)
j

s s s

g g

g g6 6

6 6 6

)

6

Figure 1: Part of the underlying neural network.

our conditions, for a continuous f : Rn → R, we have for f obtained by EP

αf(x1, . . . , xn) = f(αx1, . . . ,
αxn)

for xi ∈ FCI(R), i.e. the operations on fuzzy sets can be performed by interval operations, see

e.g. [12]. Furthermore, if f is monotone the interval operations are easy to compute.

We now describe the feedforward phase. The network dynamics is the classical one of the

feedforward neural network. After a tupple of signals is presented the network transfers signals

layer by layer. For xi ∈ FCI(R) we denote αxi = [αxLi,
αxRi]. Suppose we have the output interval

signals y
(l−1)
i ∈ FCI(R) of all the neurons of the (l − 1)–th layer at disposal. As mentioned above

we may represent y
(l−1)
i by a collection of intervals [αy

(l−1)
Li , αy

(l−1)
Ri ]. The total input to the j–th

neuron in the l-th layer is then given by

[αz
(l)
Lj ,

αz
(l)
Rj ] =

ml−1∑

i=1

w
(l)
ij [αy

(l−1)
Li , αy

(l−1)
Ri ] − θ

(l)
j [1, 1]

which leads by the interval arithmetic to

αz
(l)
Lj =

ml−1∑

i=1,w
(l)
ij

≥0

w
(l)
ij

αy
(l−1)
Li +

ml−1∑

i=1,w
(l)
ij

<0

w
(l)
ij

αy
(l−1)
Ri − θ

(l)
j (1)

and

αz
(l)
Rj =

ml−1∑

i=1,w
(l)
ij

≥0

w
(l)
ij

αy
(l−1)
Ri +

ml−1∑

i=1,w
(l)
ij

<0

w
(l)
ij

αy
(l−1)
Li − θ

(l)
j . (2)

As the transfer function y(z) = 1

1+e
−λ

(l)
j

z
is increasing for λ

(l)
j > 0 and decreasing for λ

(l)
j < 0 (note

that for λ
(l)
j = 0, y(z) = 1

2 ), we have

[αy
(l)
Lj,

αy
(l)
Rj] =

[
1

1 + e
−λ

(l)
j

αz
(l)
Lj

,
1

1 + e
−λ

(l)
j

αz
(l)
Rj

]

for λ
(l)
j ≥ 0

and

[αy
(l)
Lj,

αy
(l)
Rj ] =

[
1

1 + e
−λ

(l)
j

αz
(l)
Rj

,
1

1 + e
−λ

(l)
j

αz
(l)
Lj

]

for λ
(l)
j < 0 .

3



The described signal transfer is performed successively for the layers l = 1, . . . , r.

Return now to our problem from the functional point of view. For a given (regular) neural

network which represents a mapping F : Rm0 7→ (0, 1)mr we have obtained a network with fuzzy

signals which represents a mapping F̂ : FCI(R)m0 7→ FCI((0, 1))
mr . A natural question at this

point is what is the relationship of F̂ to the function F obtained from F by the EP. We will answer

this question in general. We face the task of extending the function F which is in a certain way

composed of several simple functions. Extension by EP can be done in two ways—extend the whole

composite function (in our case to F ) or extend the simple constituent functions and compose them

(in our case to F̂ ). In the two following statements we suppose that the structure of truth values

forms a complete lattice of which the usual interval [0, 1] is a special case [14]. We need the following

lemma.

Lemma 1 Let L = 〈L,∨,∧〉 be a complete lattice, Ki ⊆ L, i ∈ I, K ⊆ L, such that
⋃
{Ki; i ∈

I} = K. Then it holds ∨
{
∨

Ki; i ∈ I} =
∨

K .

P r o o f Denote a =
∨

K, ai =
∨

Ki. We have to prove
∨
{ai; i ∈ I} = a. Ki ⊆ K implies

ai ≤ a for all i ∈ I. Hence
∨
{ai; i ∈ I} ≤ a. Conversely, for each b ∈ K there is a j such that

b ∈ Kj, and thus b ≤ aj ≤
∨
{ai; i ∈ I}. Hence a =

∨
K =

∨
{b ∈ K} ≤

∨
{ai; i ∈ I}. We have∨

{ai; i ∈ I} = a. 2

The following theorem shows the relationship of the two ways of extending a composite function.

Theorem 2 Let g : Y m → Z, fi : Xk → Y , i = 1, . . . ,m, be functions, A1, . . . , Ak fuzzy sets in

X. Then for the corresponding extensions it holds

g(f1, . . . , fm)(A1, . . . , Ak) ⊆ g(f1, . . . , fm)(A1, . . . , Ak) .

If, moreover, m = 1, then even

g(f1)(A1, . . . , Ak) = g(f1)(A1, . . . , Ak)

holds.

P r o o f By the extension principle we have

g(f1, . . . , fm)(A1, . . . , Ak)(z) = g(f1(A1, . . . , Ak), . . . , fm(A1, . . . , Ak))(z) =

= g(f1(A1, . . . , Ak) × · · · × fm(A1, . . . , Ak))(z) =

= g(f1(A1 × · · · × Ak) × · · · × fm(A1 × · · · × Ak))(z) =

=
∨

{(f1(A1 × · · · × Ak) × · · · × fm(A1 × · · · × Ak))(y1, . . . , ym); g(y1, . . . , ym) = z} =

=
∨

{
m∧

i=1

{
∨

{A1(x1) ∧ · · · ∧ Ak(xk); fi(x1, . . . , xk) = yi}}; g(y1, . . . , ym) = z} = a

and

g(f1, . . . , fm)(A1, . . . , Ak)(z) = g(f1, . . . , fm)(A1 × · · · × Ak)(z) =

=
∨

{A1(x1) ∧ · · · ∧ Ak(xk); g(f1, . . . , fm)(x1, . . . , xk) = z} = b

4



Denote

K = {A1(x1) ∧ · · · ∧ Ak(xk); g(f1, . . . , fm)(x1, . . . , xk) = z} ,

Kyi = {A1(x1) ∧ · · · ∧ Ak(xk); ∃~y = 〈y1, . . . , yi, . . . , ym〉 ∈ g−1(z), fi(x1, . . . , xk) = yi = y} .

We have a =
∨

z∈g−1(y)

∧n
i=1

∨
yi Kyi and b =

∨
K. Clearly, K ⊆ Kyi for each y and i. By well-

known lattice properties it follows
∨

K ≤
∨

yi Kyi, hence
∨

K ≤
∧n

i=1

∨
yi Kyi, hence b =

∨
K ≤∨

~y∈g1(z)

∧n
i=1

∨
yi Kyi = a which proves the first part.

For m = 1 the assertion follows immediately from Lemma 1 putting Ki = Ky1. 2

From Theorem 2 we get by induction over the number of layers the following statement.

Corollary 3 Let x1, . . . , xm0 be fuzzy sets in R and F (x1, . . . , xm0) = 〈y1, . . . , ymr
〉,

F̂ (x1, . . . , xm0) = 〈ŷ1, . . . , ŷmr〉, where F and F̂ are the functions described above. Then for

i = 1, . . . ,mr it holds

yi ⊆ ŷi .

It can be easily demonstrated [3] that the equality of the output fuzzy sets does not hold in general

even in the case of our networks. In other words, the output fuzzy sets of F̂ are “wider” that the

output fuzzy sets of F . However, for crisp numbers taken as singletons the functions F̂ , F , and F

coincide which has a positive consequence: If the inputs have one-element kernels (which is often

the case) then the kernels of the outputs of F̂ and F coincide and are also one-element.

We further progress with the adaptation of our network. Given a training set T = {〈Xp, Op〉 =

〈x1, . . . , xn, o1, . . . , om〉 ∈ FCI(R)n×FCI((0, 1))
m, p ∈ P} we want to design a network with m0 = n,

mr = m, and adapt it to T . Adaptation in the case of feedforward networks means the design of a

network which approximately represents the mapping partially prescribed by T . Hence we want F̂

to satisfy F̂ (Xp) ≈ Op for all p ∈ P where ≈ is some further unspecified relation “approximately

equals”. We omit the phase of determining the number of layers and neurons in layers and suppose

this has been done. Our task is to find appropriate parameters. We search not only for weights,

but also for thresholds and slopes, see [13]. Adaptation leads to the minimization process of an

appropriate error function for which we choose the function

E =
∑

p∈P

C∑

k=1

β(αk)
αkEp

where

αEp = αE
p
L + αE

p
R = 1

2

∑mr

i=1(
αy

(r)
Li − αo

p
Li)

2

+1
2

∑mr

i=1(
αy

(r)
Ri − αo

p
Ri)

2 ,

and α1 ≤ · · · ≤ αC , β(α1) ≤ · · · ≤ β(αC). The β(αk) is the weight of importance of the αk-cut, C

represents the discretization. In order to minimize the error function one usually uses the method

of the steepest descent approach. Recall that by the direction of the steepest descent it is meant

the direction in which the function falls most rapidly by infinitesimal changes in this direction. We

search in RW+2N , W is the number of weights, N is the number of neurons in the net, for the point

p = 〈. . . , w
(l)
ij , . . . , θ

(l)
j , . . . , λ

(l)
j , . . .〉 in which E takes the minimum. By the standard method of the

5



steepest descent, one chooses an initial p(0), e.g. at random, and then at any time t determines

the change ∆p(t)

∆p(t) = ηd(p(t)) + µ∆p(t − 1)

where d(p(t)) is the direction of the steepest descent of E in the point p(t), η > 0 is the length of

the step (learning rate) and µ is a momentum constant.

We have naturally arrived at the point where interval networks, i.e. networks that work with

real intervals instead of real numbers, see [2, 3, 18, 19], can be exploited. From (1) and (2) it is

clear that the functions αEp (and hence E) are not differentiable in general. The author in [18] uses

a little trick to get differentiable error function. Formulas (1) and (2) can be rewritten as follows,

αz
(l)
Lj =

ml−1∑

i=1

(sgn+(w
(l)
ij )w

(l)
ij

αy
(l−1)
Li + sgn−(w

(l)
ij )w

(l)
ij

αy
(l−1)
Ri ) − θ

(l)
j

and

αz
(l)
Lj =

ml−1∑

i=1

(sgn−(w
(l)
ij )w

(l)
ij

αy
(l−1)
Li + sgn+(w

(l)
ij )w

(l)
ij

αy
(l−1)
Ri ) − θ

(l)
j

where sgn+(x) is the signum function and sgn− = 1 − sgn+. The undifferentiable functions sgn+

and sgn− are in [18] substituted by their differentiable analogies s+ and s−, respectively, where

s+(x) =
1

1 + e−x
and s−(x) =

1

1 + ex
.

The function E is then differentiable, however, this approximation leads to an inaccurate interval

arithmetic. The main disadvantage of this modified architecture which invalidates it for use for our

purposes in networks with fuzzy signals is the subsethood nonmonotonicity, see [2]. We say that

function mapping n-tupples of intervals (or fuzzy sets) to m-tupples of intervals (or fuzzy sets) is

subsethood monotonic if for every interval inputs xi, x
′
i, i = 1, . . . , n with xi ⊆ x′

i we have yj ⊆ y′j,

j = 1, . . . ,m, for the corresponding outputs. The following proposition can be easily proved.

Proposition 4 Let f be a function obtained from f : Rn → R by the Extension Principle. Then

for every fuzzy sets xi, x
′
i in R, i = 1, . . . n, such that xi ⊆ x′

i we have f(x1, . . . xn) ⊆ f(x′
1, . . . x

′
n).

By induction it follows that the mapping F̂ is subsethood monotonic. As a special case we obtain

the subsethood monotonicity for intervals. It follows that the feedforward network with fuzzy

signals has to be subsethood monotonic, i.e. the network with approximate sgn+, sgn− is not

satisfactory. The practical result of using a nonmonotonic network could be that from an α–cut

representation of input fuzzy sets one gets a system of α–cuts which do not represent any output

fuzzy sets at all (it could happen αF̂ (x) 6⊆ βF̂ (x) for β < α and m0 = mr = 1).

3 Adaptation

We now show that a backpropagation like steepest descent algorithm is possible and well jus-

tified. We need the following concepts. By a signature we mean a tupple Σ = 〈Σ1, . . . ,Σn〉

where Σi ∈ {+,−,±} for i = 1, . . . , n. If Σ is a signature, then by RΣ we denote the set

RΣ = {〈x1, . . . , x
n〉 ∈ Rn; xi ≥ 0 for Σi = +, xi ≤ 0 for Σi = −, xi ∈ R for Σi = ±, i = 1, . . . , n} .

Call a function f : Rn 7→ R Σ-differentiable in a ∈ Rn if there are c1, . . . , cn ∈ R such that

6



limu→0,u∈RΣ
f(x+a)−f(a)−(c1u1+···+cnun)

|u| = 0 . Let Σ be a signature, a ∈ Rn. A Σ-neighborhood of a is

a subset UΣ(a) ⊆ Rn such that there is a (regular) neighborhood U(a) with UΣ(a) = U(a)∩(a+RΣ)

where a + RΣ = {a + u; u ∈ RΣ}. We say that f : Rn 7→ R has partial derivatives in UΣ(a) if for

each b ∈ UΣ(a) it holds: if bi 6= ai for some i then ∂f(b)
∂xi

exists, and if bi = ai for some i then ∂Σif(b)
∂Σixi

exists. Let f(x1, . . . , xn) : Rn 7→ R have the derivatives f ′+
u (a) in a ∈ Rn for every u ∈ U ⊆ Rn.

The vector d ∈ U such that

f ′+
d
|d|

(a) = min{f ′+
u
|u|

; u ∈ U}

is (if exists) called the direction of the steepest descent in a with respect to U . Here f ′+
u (a) =

limt→0+
f(a+tu)−f(a)

t
. It holds that if f is Σ-differentiable in a then f has partial derivatives in

UΣ(a).

The properties necessary for the backpropagation like adaptation algorithm to be well justified

are the following ones. The proofs follow from [2], our form of the error function and the fact that a

sum of Σ-differentiable function is again a Σ-differentiable function. Complete proofs can be found

in [3].

Theorem 5 ([3]) E(. . . , w
(l)
ij , . . . , θ

(l)
j , . . . , λ

(l)
j , . . .) is continuous.

Theorem 6 ([3]) For a given p = 〈. . . , w
(l)
ij , . . . , θ

(l)
j , . . . , λ

(l)
j , . . .〉 let Σ be a signature determined as

follows: Σ
w(l)
ij = ± for w

(l)
ij 6= 0, Σ

w(l)
ij ∈ {+,−} for w

(l)
ij = 0, Σ

λ(l)
j = ± for λ

(l)
j 6= 0, Σ

λ(l)
j ∈ {+,−}

for λ
(l)
j = 0, Σ

θ(l)
j = ±. Then E(. . . , w

(l)
ij , . . . , θ

(l)
j , . . . , λ

(l)
j , . . .) is Σ-differentiable in p.

Theorem 7 ([2]) Let I ⊆ {1, . . . , n}, f(x1, . . . , xn) : Rn 7→ R be Σ-differentiable in a ∈ Rn for

each Σ with Σi = ± for i ∈ I, Σi ∈ {+,−} for i 6∈ I. Let d = 〈d1, . . . , dn〉 be a vector determined

as follows:

For i ∈ I, di = −∂f(a)
∂xi

.

For i 6∈ I, let

di = 0 for ∂−f(a)
∂−xi

≤ 0 and ∂+f(a)
∂+xi

≥ 0,

di = −∂−f(a)
∂−xi

for ∂−f(a)
∂−xi

> 0 and ∂+f(a)
∂+xi

≥ 0,

di = −∂+f(a)
∂+xi

for ∂−f(a)
∂−xi

≤ 0 and ∂+f(a)
∂+xi

> 0,

di = −∂−f(a)
∂−xi

for ∂−f(a)
∂−xi

> 0 and ∂+f(a)
∂+xi

< 0 and |∂
−f(a)
∂−xi

| > |∂
+f(a)
∂+xi

|,

di = −∂+f(a)
∂+xi

for ∂−f(a)
∂−xi

> 0 and ∂+f(a)
∂+xi

< 0 and |∂
−f(a)
∂−xi

| < |∂
+f(a)
∂+xi

|.

Then d is the direction of the steepest descent in a with respect to Rn.

By previous statements, a deepest descent adaptation algorithm in our case is as meaningful as the

classical backpropagation. It follows from the previous considerations and theorems that the only

thing remaining to be able to use the steepest descent approach is to get the partial derivatives

of E. Since E is a sum of the functions αEp it is enough to derive the formulas for derivatives of
αEp: The derivative of E equals then the sum of the derivatives of αEp. In what follows we omit

for simplicity the indicies denoting the appropriate α–cuts and patterns, i.e. we write E instead of
αEp, similarly for EL, ER, y

(l)
Lj, y

(l)
Rj , z

(l)
Lj , z

(l)
j etc.

First, we derive formulas for computing ∂E

∂w
(l)
ij

. Suppose w
(l)
ij 6= 0. Then we have

7



∂E

∂w
(l)
ij

=
∂EL

∂w
(l)
ij

+
∂ER

∂w
(l)
ij

,

∂EL

∂w
(l)
ij

=
∂EL

∂y
(l)
Lj

∂y
(l)
Lj

∂z
(l)
△j

∂z
(l)
△j

∂w
(l)
ij

+
∂EL

∂y
(l)
Rj

∂y
(l)
Rj

∂z
(l)
∇j

∂z
(l)
∇j

∂w
(l)
ij

,

△ =

{
L for λ

(l)
j ≥ 0

R for λ
(l)
j < 0

, ∇ =

{
R for λ

(l)
j ≥ 0

L for λ
(l)
j < 0

, (3)

∂y
(l)
⊕j

∂z
(l)
⊗j

= λ
(l)
j y

(l)
⊕j(1 − y

(l)
⊕j) for ⊕,⊗ ∈ {L,R},

∂z
(l)
Lj

∂w
(l)
ij

=
y

(l−1)
Li for w

(l)
ij > 0

y
(l−1)
Ri for w

(l)
ij < 0

,
∂z

(l)
Rj

∂w
(l)
ij

=
y

(l−1)
Ri for w

(l)
ij > 0

y
(l−1)
Li for w

(l)
ij < 0

.

Now, for the output layer (l = r) we have

∂EL

∂y
(l)
Lj

= y
(l)
Lj − oLj,

∂EL

∂y
(l)
Rj

= 0,

whereas for the inner layer (l < r)

∂EL

∂y
(l)
Lj

=

m(l+1)∑

k=1

(
∂EL

∂y
(l+1)
Lk

∂y
(l+1)
Lk

∂z
(l+1)
△k

∂z
(l+1)
△k

∂y
(l)
Lj

+
∂EL

∂y
(l+1)
Rk

∂y
(l+1)
Rk

∂z
(l+1)
∇k

∂z
(l+1)
∇k

∂y
(l)
Lj

)

holds. Furthermore,

∂z
(l+1)
Lk

∂y
(l)
Lj

=

{
w

(l+1)
jk for w

(l+1)
jk > 0

0 else
,

∂z
(l+1)
Rk

∂y
(l)
Lj

=

{
w

(l+1)
jk for w

(l+1)
jk < 0

0 else
.

Similarly,

∂EL

∂y
(l)
Rj

=

m(l+1)∑

k=1

(
∂EL

∂y
(l+1)
Lk

∂y
(l+1)
Lk

∂z
(l+1)
△k

∂z
(l+1)
△k

∂y
(l)
Rj

+
∂EL

∂y
(l+1)
Rk

∂y
(l+1)
Rk

∂z
(l+1)
∇k

∂z
(l+1)
∇k

∂y
(l)
Rj

)

∂z
(l+1)
Lk

∂y
(l)
Rj

=

{
w

(l+1)
jk for w

(l+1)
jk < 0

0 else
,

∂z
(l+1)
Rk

∂y
(l)
Rj

=

{
w

(l+1)
jk for w

(l+1)
jk > 0

0 else
.

To sum up, denote

8



δ
L,(l)
Lj =

∂EL

∂y
(l)
Lj

λ
(l)
j y

(l)
Lj(1 − y

(l)
Lj), δ

L,(l)
Rj =

∂EL

∂y
(l)
Rj

λ
(l)
j y

(l)
Rj(1 − y

(l)
Rj).

Then we have

∂EL

∂w
(l)
ij

= δ
L,(l)
Lj y

(l−1)
2i + δ

L,(l)
Rj y

(l−1)
3i , (4)

2 =
L for w

(l)
ij > 0, λ

(l)
j ≥ 0 or w

(l)
ij < 0, λ

(l)
j ≤ 0

R for w
(l)
ij > 0, λ

(l)
j < 0 or w

(l)
ij < 0, λ

(l)
j > 0

(5)

3 =
R if 2 = L

L if 2 = R
(6)

where for the output layer (l = r)

δ
L,(l)
Lj = (y

(l)
Lj − oLj)λ

(l)
j y

(l)
Lj(1 − y

(l)
Lj) , δ

L,(l)
Rj = 0

and for the inner layer (l < r)

δ
L,(l)
Lj =

ml+1∑

k=1

(δ
L,(l+1)
Lk ζ

(l+1)
jk + δ

L,(l+1)
Rk ι

(l+1)
jk )λ

(l)
j y

(l)
Lj(1 − y

(l)
Lj)

δ
L,(l)
Rj =

ml+1∑

k=1

(δ
L,(l+1)
Lk ι

(l+1)
jk + δ

L,(l+1)
Rk ζ

(l+1)
jk )λ

(l)
j y

(l)
Rk(1 − y

(l)
Rk)

where

ζ
(l+1)
jk =

{
w

(l+1)
jk for w

(l+1)
jk λ

(l+1)
k > 0

0 else
,

ι
(l+1)
jk =

{
w

(l+1)
jk for w

(l+1)
jk λ

(l+1)
k < 0

0 else .

Similar formulas can also be derived for ∂ER

∂w
(l)
ij

.

∂ER

∂w
(l)
ij

= δ
R,(l)
Lj y

(l−1)
2i + δ

R,(l)
Rj y

(l−1)
3i (7)

For the output layer (l = r) we have

δ
R,(l)
Lj = 0 , δ

R,(l)
Rj = (y

(l)
Rj − oRj)λ

(l)
j y

(l)
Rj(1 − y

(l)
Rj)

9



and for the inner layer (l < r),

δ
R,(l)
Lj =

ml+1∑

k=1

(δ
R,(l+1)
Lk ζ

(l+1)
jk + δ

R,(l+1)
Rk ι

(l+1)
jk )λ

(l)
j y

(l)
Lj(1 − y

(l)
Lj)

δ
R,(l)
Rj =

ml+1∑

k=1

(δ
R,(l+1)
Lk ι

(l+1)
jk + δ

R,(l+1)
Rk ζ

(l+1)
jk )λ

(l)
j y

(l)
Rk(1 − y

(l)
Rk)

If w
(l)
ij = 0 then for ∂+EL

∂w
(l)
ij

(∂−EL

∂w
(l)
ij

, ∂+ER

∂w
(l)
ij

∂−ER

∂w
(l)
ij

), the same formulas can be used except for (4),

(7), where we set 2,3 as in (5) for w
(l)
ij > 0 (w

(l)
ij < 0, w

(l)
ij > 0, w

(l)
ij < 0).

By an analogous way we derive formulas for ∂E

∂θ
(l)
j

, ∂E

∂λ
(l)
j

.

∂E

∂θ
(l)
j

=
∂EL

∂θ
(l)
j

+
∂ER

∂θ
(l)
j

.

∂EL

∂θ
(l)
j

= −δ
L,(l)
Lj − δ

L,(l)
Rj ,

∂ER

∂θ
(l)
j

= −δ
R,(l)
Lj − δ

R,(l)
Rj

For λ
(l)
j 6= 0 we have

∂E

∂λ
(l)
j

=
∂EL

∂λ
(l)
j

+
∂ER

∂λ
(l)
j

.

For the output layer (l = r) we have

∂EL

∂λ
(l)
j

= (y
(l)
Lj − oLj)z

(l)
△jy

(l)
Lj(1 − y

(l)
Lj)

∂ER

∂λ
(l)
j

= (y
(l)
Rj − oRj)z

(l)
∇jy

(l)
Lj(1 − y

(l)
Lj)

For the inner layer (l < r),

∂EL

∂λ
(l)
j

=
∑ml+1

k=1 (δ
L,(l+1)
Lk ζ

(l+1)
jk + δ

L,(l+1)
Rk ι

(l+1)
jk )z

(l)
△jy

(l)
Lj(1 − y

(l)
Lj) +

∑ml+1

k=1 (δ
L,(l+1)
Lk ι

(l+1)
jk + δ

L,(l+1)
Rk ζ

(l+1)
jk )z

(l)
∇jy

(l)
Lj(1 − y

(l)
Lj)

∂ER

∂λ
(l)
j

=
∑ml+1

k=1 (δ
R,(l+1)
Lk ζ

(l+1)
jk + δ

R,(l+1)
Rk ι

(l+1)
jk )z

(l)
△jy

(l)
Lj(1 − y

(l)
Lj) +

∑ml+1

k=1 (δ
R,(l+1)
Lk ι

(l+1)
jk + δ

R,(l+1)
Rk ζ

(l+1)
jk )z

(l)
∇jy

(l)
Lj(1 − y

(l)
Lj)

10



Similarly as in the case of weights, if λ
(l)
j = 0 then for ∂+EL

∂λ
(l)
j

, ∂−EL

∂λ
(l)
j

, ∂+ER

∂λ
(l)
j

, ∂−ER

∂λ
(l)
j

, the same

formulas as above can be used with the exception that for ∂+EL

∂λ
(l)
j

and ∂+ER

∂λ
(l)
j

we set △,∇ as in (3)

for λ
(l)
j > 0 whereas for ∂−EL

∂λ
(l)
j

, ∂−ER

∂λ
(l)
j

we set △,∇ as in (3) for λ
(l)
j < 0.

Note that the derived formulas can be a little bit simplified which is omitted in our paper

because of its limited scope.

4 Possibilities of applications

The presented fuzzy neural network is an adaptive model mapping tupples of fuzzy sets to tupples

of fuzzy sets. It can be applied in every situation where an input–output behaviour of a system

which is partially described by input–output pairs of fuzzy sets is to be approximated. In the

following we concentrate on the systems described by the so called linguistic IF–THEN rules.

Complex systems which are hardly to describe by traditional techniques can often be effectively

described by means of fuzzy mathematics. Especially if there is only a linguistic description of

the concerned problem expressed in the form of IF–THEN rules, methods of fuzzy logic have been

proved to be very powerful. The expert knowledge of a system behaviour can often be represented

by a set of IF–THEN rules of the form

IF X is A THEN Y is B .

Both the antecedent as well as the succedent can be of a more complex form. The linguistic

expressions A and B (so called evaluating expressions) can be modeled by appropriate fuzzy sets

A, B from FCI(R). The whole knowledge about such a rule base is then to be aggregated into a

suitable model R. For an input represented by the fuzzy set A′ an output B′ = A′ ◦R is then to be

obtained by some method ◦. Nowadays, there are several methods developed in the frame of the so

called approximated reasoning [9]. Usually, R is a fuzzy relation and ◦ is some projection operation.

For a detailed discussion and formal analysis see e.g. [15]. Our model offers an alternative method:

Design a network and adapt it to the training set T consisting of the associations 〈A,B〉. Then for

a given input represented by A′ we get an output B′ from the network.

The great advantage of fuzzy logic systems is their interpretability, just the point where neural

networks fail. On the other hand, the advantageous property of neural networks is their learning

capability and generalization capability. It is very often the case that the linguistic description

does not describe the problem completely. Rather, there are both the partial linguistic description

and the measured data set describing the system behavior at disposal. In such a case we can

transform the knowledge (linguistically expressed and crisp) to the training set T , design a network

and adapt it to T . Our model is able to be adapted to both fuzzy and crisp data simultaneously.

The net can be then used to perform the approximate reasoning task or, due to the evidenced good

generalization property, it should be able to generate a new rule base or to complete the old one.

Concerning further the approximation reasoning task, of considerable importance is the com-

putational complexity of the procedure performing the operation ◦, see [10, 6] for the analysis of

some cases. In general, the complexity of ◦ increases with the number of rules in the rule base in

the todays methods of approximate reasoning. On the other hand, the computational complexity

of ◦ in the case of our network does not depend on the number of rules. It depends only on the

architecture of the network, i.e. on the number of layers and neurons in the respective layers. We

afford to omit the particular formulas for the computational complexity which are easy to derive.

11



1

0.7

0.4

0 5 10 15 20

5 10 o

Figure 2: Inputs and corresponding output generated by the adapted network.

As a further advantageous property of our model can be considered the fact that due to the

cut–by–cut processing of fuzzy sets it makes possible to get only a certain horizontal part of the

output fuzzy set, e.g. the top part which is of considerable information value. This is not possible

by the above discussed traditional methods.

5 Example

In this section we present an example demonstrating interpolation capabilities of our model.

We trained a 2–layer network with two inputs, three neurons in the first layer, and one

neuron in the second layer. The training set contained the following patterns: T =

{〈0, 0, 0〉〈0, 20, 20〉〈10, 0, 10〉〈10, 20, 30〉}, where r denotes a fuzzy number “about r”. After the

network was adapted, inputs 5 and 10 have been presented to the network. The output o of the

network is depicted in Fig. 2. (A linear transform has been used not to be restricted to the output

interval (0, 1).)

6 Conclusions

We have presented an adaptive feedforward neural network model which maps tupples of fuzzy sets

to tupples of fuzzy sets. Our network is fuzzified by the extension principle in a way proposed in [4].

However, weights, thresholds and parameters of neuron transfer function are crisp. As shown,

this leads to computational simple model with theoretically well justified and relatively simple

adaptation formulas based on the steepest descent approach. The steepest descent adaptation

eliminates the need for heuristic adaptation which was proposed e.g. in [8].

We have proposed applications in the approximate reasoning tasks and discussed the advantages

and disadvantages of our model. From a point of view of further theoretical investigation a very

interesting property establishing both neural networks and fuzzy systems as universal tools for var-

ious kinds of engineering applications is the universal approximation property. The authors in [5]

negatively answered the question whether neural networks with both fuzzy signals and weights can

be universal approximators. The question of approximation capabilities of the presented networks

with fuzzy signals is still not definitely answered and is worth of further research. Both theoretical

and application oriented investigations should show further possibilities in the systematic combi-

nation of fuzzy systems and neural networks. The aim of this paper was to contribute to this

endeavour.

12



References

[1] Arbib M (Ed.) (1995) The Handbook of Brain Theory and Neural Networks. Cambridge, Mas-

sachusetts, London, MIT Press

[2] Bělohlávek R (1997) Backpropagation for interval patterns. Neural Network World. Int. J. on

Neural and Mass–Parallel Computing and Information Systems. 7-3: 335–346

[3] Bělohlávek R (1998) Networks Processing Indeterminacy. PhD dissertation, Ostrava (available

at request)

[4] Buckley J J, Hayashi Y (1992) Fuzzy Neural Nets and Applications. Fuzzy Sets and Artificial

Intelligence. 1: 11–41

[5] Buckley J J, Hayashi Y (1994) Can fuzzy neural nets approximate continuous fuzzy functions?

Fuzzy Sets & Systems. 61: 43–51

[6] Dvořák A (1997) Computational Properties of Fuzzy Logic Deduction. In: Reusch, B. (Ed.):

Computational Intelligence. Theory and Applications. Proceedings of the 5th Fuzzy Days Dort-

mund, pp. 189–195, Berlin, Springer

[7] Gupta M M, Rao D H (1994) On the principles of fuzzy neural networks. Fuzzy Sets & Systems.

61: 1–18

[8] Hayashi Y, Buckley J J, Czogala E (1992) Direct Fuzzification of Neural Network and Fuzzified

Delta Rule. Proc. of the 2nd Int. Conf. on Fuzzy Logic & Neural Networks, pp. 73–76, Iizuka,

Japan

[9] Klir G J, Yuan B (1995) Fuzzy Sets and Fuzzy Logic. Theory and Applications. Upper Saddle

River, NJ, Prentice Hall

[10] Kóczy L T (1995) Algorithmic aspects of fuzzy control. Int. J. of Approximate Reasoning.

12: 159–219

[11] Kosko B (1991) Neural Networks and Fuzzy Systems. Upper Saddle River, NJ, Prentice Hall

[12] Kruse R, Gebhardt J, Klawonn F (1995) Fuzzy–Systeme. Stuttgart, B. G. Teubner

[13] Kufudaki O, Hořeǰs J (1991) PAB: Parameters adapting back propagation. Neural Network

World. Int. J. on Neural and Mass–Parallel Computing and Information Systems. 1: 267–274

[14] Novák V (1989) Fuzzy Sets and Their Applications. Bristol, Adam–Hilger

[15] Novák V (1996) Paradigm, formal properties and limits of fuzzy logic. Int. J. of General

Systems. 24: 377–405

[16] Pedrycz W (1993) Fuzzy neural networks and neurocomputations. Fuzzy Sets & Systems.

56: 1–28

[17] Rumelhart D E, Hinton G E, Williams R J (1986) Learning representations by back-

propagating errors. Nature. 323: 533–536

[18] Š́ıma J (1992) Generalized back propagation for interval training patterns. Neural Network

World. Int. J. on Neural and Mass–Parallel Computing and Information Systems. 2: 167–173

13



[19] Š́ıma J (1995) Neural expert systems. Neural Networks. 8: 261–271

14


