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Abstract9

A 1-cut of a fuzzy relation (sometimes called a core) does not contain all the information that is represented
by the fuzzy relation. Particularly, a fuzzy order 4 on a universe X equipped with an fuzzy equality ≈ is11
not uniquely determined by its 1-cut 1 4 ={〈x; y〉 | (x 4 y) = 1}. That is, there are in general several fuzzy
orders with a common 1-cut. We show that, if the fuzzy order obeys in addition the lattice structure (which13
many natural examples of fuzzy orders do), it is uniquely determined by its 1-cut. Moreover, we discuss
consequences of this result for the so-called fuzzy concept lattices and formal concept analysis.15
c© 2003 Published by Elsevier Science B.V.
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1. Introduction19

Hierarchical structures are ubiquitous in everyday human a=airs. That is why the partial orders are
among the most important relations. From the point of view of fuzzy approach, the notion of a partial21
order gets it natural generalization to fuzzy setting. The so-called fuzzy orders were investigated in a
number of papers (Zadeh’s [16] being the Crst one; since then let me recall [6,7,10,13,5] where one23
can Cnd further information). Although this has not been always clearly addressed, there are natural
examples of fuzzy orders. The very reason for this is that partial order models the relationship of25
being subsumed (in a certain sense) and that the relationship of being subsumed is in general a
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fuzzy one. Thus the degree (x4y) to which a fuzzy order 4 applies to x and y gets its natural1
meaning as the degree to which y subsumes x.

It is well-known that given a fuzzy relation R, the a-cut does not in general uniquely determine3
R. This is particularly true of 1-cuts: For a fuzzy relation R there may exist another fuzzy relation
R′ such that 1R = 1R′ (their 1-cuts are equal). A natural question arises of whether there are some5
natural conditions under which an a-cut or some collection of a-cuts of a given fuzzy relation
does uniquely determine the fuzzy relation. For example, a well-known representation theorem says7
that each fuzzy relation R is uniquely given by the collection {aR | a∈ [0; 1]} of all of its a-cuts.
Moreover, if the fuzzy relation is crisp then, obviously, it is uniquely given by its 1-cut (its “fully9
true”-part). But these examples are in a sense rather trivial.

The aim of this paper is to show that in case of special types of fuzzy orders, 1-cuts contain11
all the information contained in the fuzzy order. First, we show that general fuzzy orders are not
uniquely determined by their 1-cuts. Second, we show that if a fuzzy order 4 is of a lattice type (in13
the usual sense that inCma and suprema exist) then it is uniquely given by its 1-cut 14. Also, using
the so-called fuzzy concept lattices, we show that lattice-type fuzzy orders form a natural class of15
fuzzy orders with important examples including the set of all fuzzy sets in a given universe.

2. The result17

First, we recall the necessary notions. We will use complete residuated lattices as structure of
truth values. Doing so, we attain a suNcient level of generality whereas the most commonly used19
structures of truth values resulting from a given (left-continuous) t-norm on [0; 1] become the most
important examples.21

Complete residuated lattices, being introduced in the 1930s in ring theory, were introduced into
the context of fuzzy logic by Goguen [8,9]. Fundamental contribution to formal fuzzy logic using23
residuated lattices as the structures of truth values is due to Pavelka [15]. Later on, various logical
calculi were investigated using residuated lattices or particular types of residuated lattices. A thorough25
information about the role of residuated lattices in fuzzy logic and fuzzy set theory can be obtained
from [5,10,11,14]. In the following, L denotes an arbitrary complete residuated lattice. Recall that27
a (complete) residuated lattice is an algebra L = 〈L; ∧; ∨; ⊗; →; 0; 1〉 such that 〈L; ∧; ∨; 0; 1〉 is a
(complete) lattice with the least element 0 and the greatest element 1, 〈L; ⊗; 1〉 is a commutative29
monoid, and ⊗; → form an adjoint pair, i.e. a⊗ b6c i= a6b→ c is valid for any a; b; c∈L.

Remark 1. (1) Given any left-continuous t-norm ⊗ on [0; 1] and putting a→ b= sup{z | a⊗ z6b},31
〈[0; 1];min;max; ⊗; →; 0; 1〉 is a complete residuated lattice. Conversely, for each complete residuated
lattice 〈[0; 1];min;max; ⊗; →; 0; 1〉, ⊗ is a left-continuous t-norm (see e.g. [5]).33

(2) Particularly, the three basic continuous t-norms and their corresponding residua are the
 Lukasiewicz one (a⊗ b= max(a + b − 1; 0), a→ b= min(1 − a + b; 1)), the GRodel one (a⊗ b=35
min(a; b), a→ b= 1 if a6b and = b else), and the product one (a⊗ b= a · b, a→ b= 1 if a6b and
= b=a else).37

All properties of complete residuated lattices used in the sequel are well known and can be
found in any of the above-mentioned monographs. Note that particular types of residuated lattices39
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(distinguishable by identities) include Boolean algebras, Heyting algebras, algebras of Girard’s lin-1
ear logic, MV-algebras, GRodel algebras, product algebras, and more generally, BL-algebras (see
[11,12]). An L-set (or fuzzy set with truth degrees in L) in a universe set U is any mapping3
A :U→L, A(u)∈L being interpreted as the truth value of “u belongs to A”. For A1; A2 :U→L
we put A1 ⊆A2 i= A1(u)6A2(u) for each u∈U . If U =V ×V , A is called a binary L-relation on5
V . Recall that L-equivalence (L-similarity) on a set U is a binary L-relation E on U satisfying
E(u; u) = 1 (reSexivity), E(u; v) =E(v; u) (symmetry), and E(u; v)⊗E(v; w)6E(u; w) (transitivity).7
An L-equivalence on U for which E(u; v) = 1 implies u= v will be called an L-equality. A binary
L-relation R on U is compatible with a binary L-relation E on U if for any u1; v1; u2; v2 ∈U we9
have R(u1; v1)⊗E(u1; v1)⊗E(u2; v2)6R(u2; v2). If E is an L-equivalence then compatibility means
that if u1 and v1 are R-related and u1 is equivalent to u2 and v1 is equivalent to v2 then u2 and v211
are R-related as well.

Recall that a crisp order (sometimes called a partial order) is a binary relation of a set which is13
reSexive, antisymmetric, and transitive. We now present a deCnition of fuzzy order.

De�nition 1 (B%elohl'avek). An L-order (or a fuzzy order) on a set X with an L-equality relation ≈15
is a binary L-relation 4 which is compatible w.r.t. ≈ and satisCes

x 4 x = 1; (reSexivity);

(x 4 y) ∧ (y 4 x) 6 x ≈ y; (antisymmetry);

(x 4 y) ⊗ (y 4 z) 6 x 4 z; (transitivity):

If 4 is an L-order on a set X with an L-equality ≈, we call the pair X= 〈〈X;≈〉;4〉 an L-ordered17
set.

Remark 2. (1) Since we want to have an appropriate generalization of the axioms of partial order,19
and particularly of the antisymmetry axiom, an L-equality on the universe X is needed.

(2) Zadeh deCned a fuzzy order as a binary relation R which is reSexive and transitive (in the21
standard way) and satisCes that x=y whenever R(x; y)¿0 and R(y; x)¿0 (Zadeh calls this property
antisymmetry). It is easy to see that Zadeh’s antisymmetry is equivalent to our antisymmetry when23
the L-equality ≈ is a crisp identity; thus, Zadeh’s fuzzy order is a special case of our general concept
of an L-order.25

(3) Clearly, if L is the two-element Boolean algebra of bivalent logic, the notion of L-order
coincides with the usual notion of (partial) order.27

(4) Note that antisymmetry is deCned by requiring R(x; y)⊗R(y; x)6(x≈y) in [10] (with ≈
being the crisp equality), and [13,7] (≈ being a fuzzy equivalence). This is a di=erent concept to29
which the results presented below do not apply. Note also that in both [10,7], the authors use [0; 1]
equipped with a (left-continuous) t-norm as the structure of truth values, while in [13], the authors31
use complete residuated lattices.

For an L-order 4 on 〈X;≈〉 denote by 14} its 1-cut, i.e.33
1 4= {〈x; y〉 | (x 4 y) = 1}:

14 can be seen as the “fully true”-part of 4 in that it contains those pairs 〈x; y〉 for which the fact35
“x is under y” has the truth value 1. It is well-known that in general, a fuzzy set (fuzzy relation)
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Table 1
Fuzzy equality ≈ and fuzzy order 4 deCned on X = {x1; x2; x3; x4}
≈ x1 x2 x3 x4 4 x1 x2 x3 x4

x1 1 0.2 0.2 0.1 x1 1 1 1 1
x2 0.2 1 0.5 0.1 x2 0.2 1 0.5 1
x3 0.2 0.5 1 0.1 x3 0.2 0.6 1 1
x4 0.1 0.1 0.1 1 x4 0.1 0.1 0.1 1

is not uniquely represented by its 1-cut. The following example illustrates that this is true in case1
of a fuzzy order as well.

Example 1. Let L= [0; 1] be equipped with the GRodel structure (i.e. the t-norm ⊗ being min).3
Consider a universe X = {x1; x2; x3; x4}, an L-equality ≈ given in Table 1 (left), and an L-relation
4 on X given in Table 1 (right). One can easily verify that 4 is an L-order on 〈X;≈〉. If one deCnes5
an L-relation 4′ on X the same way as 4 except for 4′(x3; x2) = 0:5 then 4′ is an L-order on 〈X;≈〉
again. Now, 14= 14′ = idX ∪{〈x1; x2〉; 〈x1; x3〉; 〈x1; x4〉; 〈x2; x4〉; 〈x3; x4〉}, i.e. the two di=erent L-orders7
agree on their 1-cut.

Example 1 shows that in case of a general fuzzy order, taking 1-cut means a loss of information.9
In the rest of this section we show that in case of lattice-type fuzzy order, the 1-cut represents the
fuzzy order to a full extent.11

We are going to introduce the notion of a lattice-type fuzzy order by requiring the existence of
suprema and inCma. Let thus 4 be an L-order on a set X that is equipped with an L-equality ≈.13
For an L-set A in X we deCne L-sets U(A)∈LX and L(A)∈LX by

U(A)(x) =
∧
y∈X

A(y) → (y 4 x)
15

and

L(A)(x) =
∧
y∈X

A(y) → (x 4 y):
17

Basic rules of the semantics of fuzzy logic yield that U(A)(x) is the truth value of “for each y∈X :
if y belongs to A then y is smaller than x” and, similarly, L(A)(x) is the truth value of “for each19
y∈X : if y belongs to A then y is greater than x”. Therefore, U(A) and L(A) may be called the
upper cone of A and the lower cone of A, respectively. For more information about the operators U21
and L we refer to [5]. Before presenting the next deCnition recall that a singleton in 〈X;≈〉 is an
L-set A in X which is compatible with ≈ (i.e., A(x)⊗ (x ≈ y)6A(y)) and satisCes, moreover, the23
following conditions:
(1) there exists x∈X with A(x) = 1;25
(2) A(x)⊗A(y)6(x≈y) for each x; y∈X .
If L is the two-element Boolean algebra then singletons coincide with usual singletons, i.e. one-27
element sets.
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De�nition 2 (B%elohl'avek). For an L-ordered set 〈〈X;≈〉;4〉 and A∈LX we deCne the L-sets inf (A)1
and sup(A) in X by

(inf (A))(x) = (L(A))(x) ∧ (UL(A))(x);3

(sup(A))(x) = (U(A))(x) ∧ (LU(A))(x):

inf (A) and sup(A) are called the inCmum and supremum of A, respectively. An L-ordered set5
〈〈X;≈〉;4〉 is said to be completely lattice L-ordered if for any A∈LX both sup(A) and inf (A) are
≈-singletons.7

Remark 3. The notions of inCmum and supremum, as well as the notion of a completely lattice
ordered set (complete lattice) are proper generalizations of the ordinary bivalent notions. Indeed, if9
L is the two-element Boolean algebra, (inf (A))(x) is the truth value of the fact that x belongs to
both the lower cone of A and the upper cone of the lower cone of A, i.e. x is the greatest lower11
bound of A; similarly for sup(A).

In order to make sure that we do not deal with empty or artiCcial notions, we note that in the13
next section we will introduce the so-called fuzzy concept lattices (structures that are met in data
analysis) which are natural examples of completely lattice fuzzy ordered sets. Moreover, we show15
that each completely lattice fuzzy ordered set is isomorphic to some fuzzy concept lattice. From
this point of view, completely lattice fuzzy ordered sets form an important class of fuzzy ordered17
sets and their role is analogous to the role of complete lattices in ordinary relational systems. For
example, each fuzzy ordered set can be embedded to a completely lattice fuzzy ordered set; the19
description of a minimal completion can be found in [6].

Having appropriate notion of a Cnite fuzzy set, one can obviously deCne the notion of a lattice type21
fuzzy order. We follow the common approach and consider a fuzzy set A in X Cnite if {x |A(x)¿0}
is a Cnite set. Then, a fuzzy ordered set 〈〈X;≈〉;4〉 is called a lattice fuzzy order if inCma and23
suprema of any fuzzy set A in X are ≈-singletons. Clearly, each completely lattice fuzzy ordered
set is also lattice fuzzy ordered.25

The main result of our paper is contained in the following theorem.

Theorem 3. Each lattice fuzzy ordered set is uniquely determined by its 1-cut. That is, if 41 and27
42 are lattice L-orders on 〈X;≈〉 such that 141 = 142 then 41 =42.

Proof. Let 4 be a lattice fuzzy order on 〈X;≈〉. Consider arbitrary x; y∈X . We need to show that29
there is only one way to extend 14 to a complete lattice fuzzy order on 〈X;≈〉. We distinguish two
cases.31

(1) Let x and y be comparable with respect to 14, i.e. either 〈x; y〉 ∈ 14 or 〈y; x〉 ∈ 14. Without
loss of generality let us assume 〈x; y〉 ∈ 14. By deCnition, (x4y) = 1. We show that the degree (y4x)33
is uniquely given. Using antisymmetry, we get

(y 4 x) = 1 ∧ (y 4 x) = (x 4 y) ∧ (y 4 x) 6 (x ≈ y):35
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On the other hand, compatibility of 4 and ≈, and reSexivity of 4 and ≈ yield1

(x ≈ y) = 1 ⊗ (x ≈ y) ⊗ 1 = (x 4 x) ⊗ (x ≈ y) ⊗ (x ≈ x) 6 (y 4 x):

To sum up, (y4x) = (x ≈ y) showing the only one possibility for (y4x). Therefore, if x and y are3
comparable w.r.t. 14 then both (x4y) and (y4x) are uniquely determined.

(2) Let x and y be noncomparable with respect to 14. Consider an L-set A deCned by A(x) = 15
and A(y) = 1. Since 4 is a lattice fuzzy order, there exists sup(A) which is a ≈-singleton. There-
fore, there is some z ∈X with sup(A)(z) = 1. Now, we have both (x4z) = 1 and (y4z) = 1. Indeed,7
sup(A)(z) = 1 ensures that U(A)(z) = 1. Since

U(A)(z) =
∧
u∈X

(A)(u) → (u 4 z)

6A(x) → (x 4 z) = 1 → (x 4 z) = (x 4 z);

we get 16(x4z), thus (x4z) = 1. Due to symmetry of both of the cases we have (y4z) = 1 as well.9
Since x and z are comparable w.r.t. 14, and also y and z are comparable w.r.t. 14, case (1) implies
that (x4z), (z4x), (y4z), and (z4y) are all determined uniquely. Therefore, it is suNcient to show11
that both (x4y) and (y4x) are uniquely determined by (z4x) and (z4y). Due to symmetry we show
this fact only for (x4y). Particularly, we shall show (x4y) = (z4y) by proving both13

(x 4 y) 6 (z 4 y)

and15

(x 4 y) ¿ (z 4 y):

“¿”: Using (x4z) = 1 and transitivity of 4 we get17

(z 4 y) = 1 ⊗ (z 4 y) = (x 4 z) ⊗ (z 4 y) 6 (x 4 y);

proving the Crst inequality.19
“6”: Take the L-set B in X such that B(x) = 1, B(y) = 1, and B(z) = (z4y). We need the

following Claim.21

Claim. For L-sets C;D in X with D=C ∪{a=z} (i.e. D agrees with C with the possible exception
D(z) = a∨C(z)), we have that if U(C)(z) = 1 and LU(C)(z) = 1 then LU(D)(z) = 1.23

Proof of Claim. Clearly, it is suNcient to show U(D) =U(C) (for then LU(D)(z) =LU(C)(z)
= 1). Take an arbitrary u∈X . The inequality U(D)(u)6U(C)(u) follows from the fact that C ⊆D25
since the operator U is subsethood-reversing. On the other hand, we have

U(D)(u) =


∧
w �=z

D(w) → (w 4 u)


 ∧ ((C(z) ∨ a) → (z 4 u))

=


∧
w �=z

C(w) → (w 4 u)


 ∧ (C(z) → (z 4 u)) ∧ (a→ (z 4 u))
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=

(∧
w∈X

C(w) → (w 4 u)

)
∧ (a→ (z 4 u))

=U(C)(u) ∧ (a→ (z 4 u)):

Therefore, to show U(C)(u)6U(D)(u) it is enough to show1

U(C)(u) 6 (a→ (z 4 u)):

From LU(C)(z) = 1 we get3

U(C)(u) 6 (z 4 u):

Indeed,5

1 = LU(C)(z) 6 U(C)(u) → (z 4 u):

Taking into account7

(z 4 u) 6 (a→ (z 4 u));

U(C)(u)6(a→ (z4u)) follows.9
Applying Claim (letting C :=A, D :=B, a := (z4y)), we get LU(B)(z) = 1. Now, since

LU(B)(z) =
∧
u∈X

U(A)(u) → (z 4 u)

6U(A)(y) → (z 4 y);

we get11

1 = U(A)(y) → (z 4 y);

whence13

U(A)(y) 6 (z 4 y):

Furthermore,15

U(A)(y) = (A(x) → (x 4 y)) ∧ (A(y) → (y 4 y)) ∧ (A(z) → (z 4 y))

= (1 → (x 4 y)) ∧ (1 → 1) ∧ ((z 4 y) → (z 4 y))

= (x 4 y):

Therefore,

(x 4 y) = U(A)(y) 6 (z 4 y);17

proving the required inequality. The proof is Cnished.

With appropriate modiCcation of a result from [6] we get the following theorem.



UNCORRECTED P
ROOF

8 R. B1elohl�avek / Fuzzy Sets and Systems ( ) –

FSS4199

ARTICLE IN PRESS

Theorem 4. For an L-ordered set X= 〈〈X; ≈〉;4〉, the relation 14 is an order on X . Moreover, if1
X is (completely) lattice L-ordered then 14 is a (complete) lattice order on X .

Proof. Denote 14 by ⊆. ReSexivity of ⊆ follows from reSexivity of 4. Antisymmetry of ⊆: x⊆y3
and y⊆ x implies (x4y) = 1 and (y4x) = 1. Antisymmetry of 4 thus yields (x≈y) = 1. Since ≈ is
an L-equality, we conclude x=y. If x⊆y and y⊆ z, then (x4y) = 1 and (y4z) = 1, therefore5

1 = (x 4 y) ⊗ (y 4 z) 6 (x 4 z);

whence (x4z) = 1, i.e. x⊆ z, by transitivity of 4.7
Let X be completely lattice L-ordered and let a (Cnite) subset A⊆X be given. Denote by A′

the L-set in X corresponding to A, i.e. A′(x) = 1 for x∈A and A′(x) = 0 for x =∈A. We show that9
there exists a supremum

∨
A of A in 〈X;⊆〉 (the case of inCmum is dual). Since X is completely

lattice L-ordered, sup(A′) is a ≈-singleton in 〈X;≈〉. Denote by x∗ the element of X such that11
(sup(A′))(x∗) = 1. Since

(sup(A′))(x∗) = (U(A′))(x∗) ∧ (LU(A′))(x∗);13

we have both (U(A′))(x∗) = 1 and (LU(A′))(x∗) = 1. From the former we have∧
x∈X

(A′)(x) → (x 4 x∗) = 1;
15

i.e. A′(x)6(x4x∗) by adjointness. Therefore, (x4x∗) = 1 for any x∈X such that A′(x) = 1 (i.e.
x∈A). Therefore, x∗ belongs to the upper cone (w.r.t. ⊆) of A. In a similar way we can show that17
(LU(A′))(x∗) = 1 implies that x∗ belongs to the lower cone of the upper cone (cones w.r.t. ⊆)
of A. Thus, x∗ is the supremum of A w.r.t. ⊆.19

Remark 4. The 1-cut of the fuzzy order from Example 1 is a lattice order. This shows that the
condition on 4 from Theorem 3 cannot be weakened by requiring only that the 1-cut of 4 be a21
lattice.

3. Representative example and discussion: fuzzy concept lattices23

The role of lattices and complete lattices in mathematics and its applications is well known. In
this section, we show that completely lattice fuzzy ordered sets appear in a natural way in the25
context of analysis of fuzzy data. Particularly, the set of all formal fuzzy concepts which is the set
of all natural concepts (clusters) hidden in the input data as deCned in formal concept analysis is a27
completely lattice fuzzy ordered set. Moreover, this example is representative for completely lattice
fuzzy ordered sets.29

Let X and Y denote sets interpreted as a set of objects and a set of attributes, respectively. Let
I be an L-relation between X and Y , the degree I(x; y) being interpreted as the truth degree to31
which the object x∈X has the attribute y∈Y . We deCne operators (induced by I)↑ :LX →LY and
↓ :LY →LX assigning to any L-set A∈LX the L-set A↑ ∈LY deCned by33
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A↑(y) =
∧
x∈X

A(x) → I(x; y)
1

and to any L-set B∈LY the L-set B↓ ∈LX deCned by

B↓(x) =
∧
y∈Y

B(y)→ I(x; y):
3

Described verbally, A↑ is the fuzzy set of all attributes common to all objects from A and B↓ is the
fuzzy set of all objects sharing all attributes from B. A pair 〈A; B〉 of a fuzzy set A∈LX of objects5
and a fuzzy set B∈LY of attributes is called a formal concept in 〈X; Y; I〉 if A↑ =B and B↓ =A.
The verbal description of the condition A↑ =B and B↓ =A, i.e. saying that B is the collection of all7
attributes common to all objects from A and that A is the collection of all objects sharing all attributes
from B, is exactly the way the notion of a concept was deCned in the so-called traditional logic (this9
conception was elaborated in Port-Royal, see [1]). The set B(X; Y; I) = 〈〈A; B〉 |A↑ =B; B↓ =A〉 of all
formal fuzzy concepts in 〈X; Y; I〉 may be therefore regarded as the set of all natural concepts hidden11
in the input data described by 〈X; Y; I〉. One may introduce the following L-relations on B(X; Y; I):

(〈A1; B1〉 ≈ 〈A2; B2〉) =
∧
x∈X

A1(x) ↔ A2(x)
13

and

(〈A1; B1〉 4 〈A2; B2〉) =
∧
x∈X

A1(x) → A2(x):
15

It can be shown that

(〈A1; B1〉 ≈ 〈A2; B2〉) =
∧
y∈Y

B1(y) ↔ B2(y)
17

and

(〈A1; B1〉 4 〈A2; B2〉) =
∧
y∈Y

B2(y) → B1(y):
19

It is clear that (〈A1; B1〉 ≈ 〈A2; B2〉) may be interpreted as the degree of equality of fuzzy concepts
〈A1; B1〉 and 〈A2; B2〉. Likewise, (〈A1; B1〉4〈A2; B2〉) may be interpreted as the degree to which 〈A1; B1〉21
is a subconcept of 〈A2; B2〉 in that each object covered by 〈A1; B1〉 is also covered by 〈A2; B2〉. Fuzzy
concept lattices were investigated in a series of papers (see [5] for a survey). Particularly, the23
following characterization was shown in [6]:

Theorem 5. Let 〈X; Y; I〉 be an L-context. (1) 〈〈B(X; Y; I);≈〉;4〉 is completely lattice L-ordered25
set in which in9ma and suprema can be described as follows: for an L-set M in B(X; Y; I) we have

1 inf (M) =



〈⋂

X

M;

(⋂
X

M

)↑〉
 =



〈(⋃

Y

M

)↓
;

(⋃
Y

M

)↓↑〉
 ; (1)

27
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1 sup(M) =



〈(⋂

Y

M

)↓
;
⋂
Y

M

〉
 =



〈(⋃

X

M

)↑↓
;

(⋃
X

M

)↑〉
 : (2)

1

(2) Moreover, a completely lattice L-ordered set V= 〈〈V;≈〉;4〉 is isomorphic to 〈〈B(X; Y; I);
≈〉;4〉 i: there are mappings � :X ×L→V , � :Y ×L→V , such that �(X ×L) is {0; 1}-supremally3
dense in V, �(Y ×L) is {0; 1}-in9mally dense in V, and ((a⊗ b)→ I(x; y)) = (�(x; a)4�(y; b)) for
all x∈X , y∈Y , a; b∈L. In particular, V is isomorphic to B(V; V4).5

Note that for X being a completely lattice L-ordered set, L′⊆L, we say that a subset K ⊆X is
L′-inCmally dense in X (L′-supremally dense in X) if for each x∈X there is some A∈L′X such that7
A(x) = 0 for all x =∈K and (inf (A))(x) = 1 ((sup(A))(x) = 1). For the bivalent case and {0; 1}-inCmal
density (usually termed simply inCmal density) of K means that each element of X is an inCmum9
of some subset of K (similarly for supremal density). Furthermore, two L-ordered sets 〈〈V1;≈1〉;41〉
and 〈〈V2;≈2〉;42〉 are considered isomorphic if there is a bijective mapping h :V1 →V2 such that11
(u ≈1 v) = (h(u) ≈2 h(v)) and (u41v) = (h(u)42h(v)) for each u; v∈V1. Note also that for a fuzzy set
A in a completely lattice fuzzy ordered set, both the inCmum inf (A) and the supremum sup(A) are13
singletons and are thus uniquely determined by their 1-cuts 1inf (A) and 1sup(A). This fact justiCes
the description of inCma and suprema in Theorem 5.15

Due to Theorem 4, B(X; Y; I) equipped with 14 is a complete lattice. It turned out that ≈ is quite
a useful L-relation on B(X; Y; I). In fact, it models the intuitively very natural notion of a similarity17
of formal fuzzy concepts. Moreover, it was shown in [2] that each a-cut a≈ of ≈ is a tolerance
relation (i.e. reSexive and symmetric) which is compatible with the complete lattice structure of19
〈B(X; Y; I); 14〉. This makes it possible to factorize the original fuzzy concept lattice B(X; Y; I) and
to consider a simpliCed structure B(X; Y; I)=a≈ (the factor lattice modulo a≈). This is important21
from the point of view of applications since the fuzzy concept lattice of a given fuzzy context is
usually quite large and so techniques for its simpliCcation are needed.23

While the crisp hierarchy 14 on B(X; Y; I) is of crucial importance for applications (it models
the crisp subconcept-superconcept relationship which is used for visualization of the fuzzy concept25
lattice), we were not sure if there is any substantial gain in using 4 on B(X; Y; I). Experience
shows that: First, 4 contains too much an information which is hardly graspable by human mind.27
Second, the 1-cut 14 of 4 is much more easier to interpret than 4. This is probably due to the fact
that contrary to similarity which people expect to be fuzzy in essence (subconcept–superconcept)29
hierarchy is more expected to be crisp. However, without no additional insight, disregarding 4 (and
considering only 14) may mean a loss of information. Now, Theorem 3 presents a mathematical31
solution to this dilemma: 〈B(X; Y; I);≈;4〉 is uniquely determined by 〈B(X; Y; I);≈; 14〉, i.e. by what
is intuitively considered a useful information derived from the input data 〈X; Y; I〉.33

Remark 5. As mentioned above, fuzzy concept lattices are representative examples of completely
lattice fuzzy ordered sets. Another representative examples are sets of Cxed points of fuzzy closure35
operators [4]: A mapping C :LX →LX is called an L-closure operator if
(1) S(A1; A2)6S(C(A1); C(A2)),37
(2) A⊆C(A),
(3) C(A) =C(C(A)).39
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For an L-closure operator C, the set1

SC = {A∈LX |A=C(A)};
equipped with ≈ and S, deCned by3

(A ≈ B) =
∧
x∈X

(A(x) ↔ B(x))

and5

S(A; B) =
∧
x∈X

(A(x) → B(x));

the structure 〈〈SC;≈〉; S〉 is a completely lattice L-ordered set and conversely, each completely lattice7
L-ordered set is isomorphic to some SC (see also [5]). A trivial example of an L-closure operator
is the identity mapping (C(A) =A) showing that the set LX of all L-sets in a given set X equipped9
with ≈ and S is a completely lattice fuzzy ordered set.

Remark 6. With respect to the above discussion, Theorem 3 may be considered a positive result: If11
one ends up with a lattice-type fuzzy ordered set (like if one obtains a fuzzy concept lattice from
object-attribute data), one may restrict attention to its 1-cut. Due to Theorem 3, it contains all the13
information about the hierarchy modeled by the fuzzy ordered set. Except for its above-discussed
practical impact, Theorem 3 shows an interesting mathematical result. On the other hand, since15
all other degrees are determined by the 1-cut, it may be argued that the modeling capability of
lattice-type fuzzy order is restricted. Going through the proofs, it is clear that a lot of information17
contained in 4 is already present in ≈. This somewhat weakens the restricted modeling capability
viewpoint since changing ≈ can be considered as changing a parameter which leads to a whole class19
of lattice-type fuzzy orders (with a common 1-cut).
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