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Abstract

We describe optimal decompositions of matrices whose entries are elements of a residuated
lattice L, such as L = [0, 1]. Such matrices represent relationships between objects and
attributes with the entries representing degrees to which attributes represented by columns
apply to objects represented by rows. Given such an n×m object-attribute matrix I, we
look for a decomposition of I into a product A◦B of an n×k object-factor matrix A and a
k×m factor-attribute matrix B with entries from L with the number k of factors as small
as possible. We show that formal concepts of I, which play a central role in the Port-Royal
approach to logic and which are the fixpoints of particular Galois connections associated to
I, are optimal factors for decomposition of I in that they provide us with decompositions
with the smallest number of factors. Moreover, we describe transformations between the
space of original attributes and the space of factors induced by a decomposition I = A◦B.
The paper contains illustrative examples demonstrating the significance of the presented
results for factor analysis of relational data. In addition, we present a general framework
for a calculus of matrices with entries from residuated lattices in which both the matrix
products and decompositions discussed in this paper as well as triangular products and
decompositions discussed elsewhere can be regarded as two particular cases of a general
type of product and decomposition. We present the results for matrices, i.e. for relations
between finite sets in terms of relations, but the arguments behind are valid for relations
between infinite sets as well.

Key words: matrix decomposition, residuated lattice, fixpoint, Galois connection, fuzzy
logic
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1. Introduction

1.1. Problem Setting and Paper’s Content

Let I be an n×m object-attribute matrix whose entries are elements from a complete
residuated lattice L = 〈L,⊗,→,∧,∨, 0, 1〉 (see Section 1.3). That is, every matrix entry
Iij is an element from L. We look for a decomposition

I = A ◦B (1)
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of I into a product A ◦B of an n× k object-factor matrix A and a k ×m factor-attribute
matrix B, with Ail, Blj ∈ L, such that the number k of factors is the smallest possible.
Note that in Boolean matrix theory, the number k is called the Schein rank [23]. The
composition operator ◦ is the sup-⊗ composition defined by

Iij =
∨k

l=1Ail ⊗Blj (2)

with
∨

denoting the supremum in L. Note that if L = {0, 1} then a⊗ b = min(a, b),
∨

is
maximum, and A ◦ B is the max-min product of Boolean matrices. If L = [0, 1] and ⊗ is
a t-norm then A ◦ B is the max-t-norm product of matrices (fuzzy relations) known from
fuzzy set theory [19].

A related type of decomposition, namely

I = A/B (3)

with Ail, Blj ∈ L the same as above and / defined by

Iij =
∧k

l=1Ail → Blj (4)

was studied in [8]. In (4),
∧

denotes the infimum in L and the composition operator is
called a triangular composition or an inf-→ composition.

In this paper, we are primarily interested in decompositions based on operator ◦ because
this operator is well known and, as explained in Section 1.2 and demonstrated in Section
4, the decompositions have a natural, easy-to-understand interpretation in terms of factor
analysis. In Section 2 and 3, we present selected results on optimal decompositions based
on ◦ and the corresponding transformations between the spaces of attributes and factors.
In Section 5, we present a general framework for a calculus of matrices with entries from
residuated lattices in which both the matrix product based on ◦ and the one based on / are
particular cases of a more general product. We show that the results presented in Section 2
and 3 of this paper as well as the results from [8] are particular cases of the results that we
work out in the general framework. Hence, proofs are omitted in Section 2 and 3. Instead,
we provide references in these sections to the general results and explanatory remarks of
Section 5. In Section 6, we conclude the paper and provide an outline of topics for future
research.

1.2. Motivation

Residuated lattices can be thought of as partially ordered scales of degrees. An entry
Iij ∈ L of I can be interpreted as a degree to which attribute j (such as “good performance”
or “dizziness”) applies to object i (such as “product” or “patient”). For L = {0, 1}, in
which case I is a Boolean matrix, decompositions I = A ◦ B are sought in Boolean factor
analysis, see e.g. [13, 15, 25, 29], and data mining, see e.g. [26]. In general, a decomposition
I = A ◦B represents a factor model according to which the relationship between n objects
(rows of I) and m attributes (columns of I), which is represented by I, is explained by a
relationship between the n objects and k new factors, which is represented by A, and a
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relationship between the k factors and the m original attributes, which is represented by
B. Namely, Ail can be interpreted as a degree to which factor l applies to object i, and
Blj can be interpreted as a degree to which attribute j is a manifestation of factor l. In
fuzzy logic,

∨
and ⊗ correspond to the existential quantifier and conjunction, respectively

[19, 21]. As a result, (2) implies that according to the factor model given by I = A ◦ B,
the degree to which object i has attribute j can be interpreted as the degree to which
there exists a factor l such that l applies to i and such that attribute j is a particular
manifestation of factor l. Therefore, a decomposition I = A ◦ B provides us with a factor
model for data with graded (gradual, fuzzy) attributes. We include an illustrative example
in Section 4.

1.3. Preliminaries from residuated lattices

A residuated lattice [19, 22, 28] is an algebra L = 〈L,∧,∨,⊗,→, 0, 1〉 such that
〈L,∧,∨, 0, 1〉 is a lattice with 0 and 1 being the least and greatest element of L, re-
spectively; 〈L,⊗, 1〉 is a commutative monoid (i.e. ⊗ is commutative, associative, and
a⊗ 1 = 1⊗ a = a for each a ∈ L); ⊗ and → satisfy adjointness:

a⊗ b ≤ c iff a ≤ b→ c (5)

for each a, b, c ∈ L. L is called complete if 〈L,∧,∨, 0, 1〉 is a complete lattice.
Residuated lattices appear in various areas of mathematics and play a fundamental

role in many-valued logics, particularly in fuzzy logic and fuzzy set theory [18, 19, 20, 21].
In fuzzy logic, elements a of L are called truth degrees (or grades). ⊗ and → are (truth
functions of) many-valued conjunction and implication. Examples of residuated lattices
include those with the support set L = [0, 1] (real unit interval), ∧ and ∨ being minimum
and maximum, ⊗ being a left-continuous t-norm with the corresponding residuum→ [19].
Three most important pairs of adjoint operations on [0, 1] are:

 Lukasiewicz:
a⊗ b= max(a + b− 1, 0),

a→ b= min(1− a + b, 1),
(6)

Gödel:

a⊗ b= min(a, b),

a→ b=

{
1 if a ≤ b,
b otherwise,

(7)

Goguen:

a⊗ b= a · b,

a→ b=

{
1 if a ≤ b,
b
a

otherwise.

(8)

Another commonly used example is a finite linearly ordered L. For instance, one can put
L = {a0 = 0, a1, . . . , an = 1} ⊆ [0, 1] (a0 < · · · < an) with ⊗ given by ak⊗al = amax(k+l−n,0)
and the corresponding → given by ak → al = amin(n−k+l,n). Such an L is called a finite
 Lukasiewicz chain. Another possibility is a finite Gödel chain which consists of L and
restrictions of Gödel operations on [0, 1] to L. A special case of a residuated lattice is the
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two-element Boolean algebra 〈{0, 1},∧,∨,⊗,→, 0, 1〉, denoted by 2, which is the structure
of truth degrees of classical logic. That is, the operations ∧,∨,⊗,→ of 2 are the truth
functions of the corresponding connectives of classical logic.

Given a residuated lattice L, we define the usual notions [18, 19]: an L-set (fuzzy set,
graded set) A in a universe U is a mapping A : U → L, A(u) being interpreted as “the
degree to which u belongs to A”. LU (or LU if it is desirabe to make the structure of L
explicit) denotes the collection of all L-sets in U . The operations with L-sets are defined
componentwise. For instance, the intersection of L-sets A,B ∈ LU is an L-set A ∩ B in
U such that (A ∩ B)(u) = A(u) ∧ B(u) for each u ∈ U , etc. 2-sets and operations with
2-sets can be identified with ordinary sets and operations with ordinary sets, respectively.
Binary L-relations (binary fuzzy relations) between X and Y can be thought of as L-sets
in the universe X × Y . For L-sets A and B in universe U , we put

A ⊆ B if and only if A(u) ≤ B(u) for each u ∈ U. (9)

In this case, we say that A is included in B.
We use well-known properties of residuated lattices and fuzzy sets over residuated

lattices which can be found, e.g., in [19, 21, 22].

2. Optimal Decompositions

2.1. Matrix composition as a
∨

-superposition of rectangular matrices

Observe first that I = A ◦ B for n × k and k ×m matrices A and B, in fact, means
that I is a

∨
-superposition of particular matrices we call rectangular.

Definition 1. An n×m matrix J is called rectangular iff there exist L-sets C in {1, . . . , n}
and D in {1, . . . ,m} such that J = C ⊗D, i.e.

Jij = C(i)⊗D(j) (10)

for 1 ≤ i ≤ n, 1 ≤ j ≤ m.

For brevity, we say just “rectangle” instead of “rectangular matrix”. The term comes
from a geometric interpretation. For illustration, consider L = {0, 1}. The fact that J is a
rectangular binary matrix means that the entries of J which contain 1s form a rectangular
area such as

J =


0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0111 0 0
0 0111 0 0
0 0111 0 0
0 0111 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

,
or can be brought into a rectangular area by permuting rows and columns. In the above
example, J = C⊗D where C and D are characteristic functions of {3, 4, 5, 6} and {3, 4, 5},
respectively. The next lemma is a paritular case of Lemma 2 (see Remark 2).
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Lemma 1. I = A ◦ B for n × k and k ×m matrices A and B iff I is a
∨

-superposition
of k rectangular matrices J1, . . . , Jk, i.e. iff

I = J1 ∨ J2 ∨ · · · ∨ Jk.

Example 1. Consider L = {0, 0.1, . . . , 0.9, 1}, a⊗ b = min(a, b), and the following decom-
position I = A ◦B:(

1.0 1.0 0.0 0.0 0.0 0.0
1.0 1.0 0.0 0.0 1.0 0.2
1.0 1.0 1.0 1.0 0.0 0.8
1.0 0.2 0.0 0.0 1.0 0.2

)
=

(
1.0 0.0 0.0 1.0
1.0 0.0 1.0 0.7
0.8 1.0 0.0 0.9
0.2 0.0 1.0 0.0

)
◦

(
1.0 1.0 0.0 0.0 0.0 0.0
1.0 1.0 1.0 1.0 0.0 0.8
1.0 0.0 0.0 0.0 1.0 0.2
0.8 1.0 0.0 0.0 0.0 0.0

)
.

According to Lemma 1, I is a
∨

-superposition of four matrices, J1, J2, J3, J4 where Jl is a
◦-product of the l-th column of A and the l-th row of B, i.e.(

1.0 1.0 0.0 0.0 0.0 0.0
1.0 1.0 0.0 0.0 1.0 0.2
1.0 1.0 1.0 1.0 0.0 0.8
1.0 0.2 0.0 0.0 1.0 0.2

)
=

(
1.0 1.0 0.0 0.0 0.0 0.0
1.0 1.0 0.0 0.0 0.0 0.0
0.8 0.8 0.0 0.0 0.0 0.0
0.2 0.2 0.0 0.0 0.0 0.0

)
∨(

0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
1.0 1.0 1.0 1.0 0.0 0.8
0.0 0.0 0.0 0.0 0.0 0.0

)
∨

(
0.0 0.0 0.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0 1.0 0.2
0.0 0.0 0.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0 1.0 0.2

)
∨

(
0.8 1.0 0.0 0.0 0.0 0.0
0.7 0.7 0.0 0.0 0.0 0.0
0.8 0.9 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0

)
.

2

2.2. Formal concepts of I as optimal factors for decomposition of I

In this section, we describe decompositions of I which are optimal among all possible
decompositions of I in the sense that the number k of factors is the smallest possible.
The decompositions use so-called formal concepts of I as factors, which are fixpoints of
particular Galois connections associated to I. Moreover, it follows from the proof (see
the proof of Theorem 5), any decomposition of I can be extended to at least as good a
decomposition which uses formal concepts as factors.

Formal concepts of I. Formal concepts of data tables describing a relationship between
objects and attributes are studied in formal concept analysis (FCA) [16]. In the basic
setting, FCA deals with data with binary attributes, i.e. with binary matrices I. An
extension of FCA which deals with matrices I with entries from residuated lattices has
been developed in a series of papers, see e.g. [2, 4, 6, 7]. The basic notions we need are
presented below.

Let X = {1, . . . , n} and Y = {1, . . . ,m} be sets (of objects and attributes, respectively),
I be an n × m matrix with entries from a residuated lattice L = 〈L,⊗,→,∧,∨, 0, 1〉.
Consider the operators ↑ : LX → LY and ↓ : LY → LX defined by

C↑(y) =
∧

x∈X(C(x)→ Ixy) and D↓(x) =
∧

y∈Y (D(y)→ Ixy). (11)

That is, ↑ assigns an L-set C↑ in Y to a given L-set C in X, and ↓ assigns an L-set D↑ in
Y to a given L-set D in Y . According to the basic principles of first-order fuzzy logic [21],
C↑(y) is just the truth degree of the following proposition: “for each object x ∈ X: if x is
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from C then x has attribute y”. Likewise, D↓(x) is the truth degree of “for each attribute
y ∈ Y : if y is from D then x has attribute y”. The operators ↑ and ↓ form a fuzzy Galois
connection [2], and the compound operators ↑↓ and ↓↑ form particular closure operators in
X and Y , respectively [4]. A pair 〈C,D〉 consisting of an L-set C in X and an L-set D
in Y is called a formal concept of I if C↑ = D and D↓ = C, i.e. if 〈C,D〉 is a fixpoint
of ↑ and ↓. C and D are called the extent and intent of 〈C,D〉. For an object x, C(x)
is interpreted as a degree to which formal concept 〈C,D〉 applies to x; for an attribute y,
D(y) is interpreted as a degree to which 〈C,D〉 applies to y. The set of all formal concepts
of I is denoted by B(X, Y, I), i.e.

B(X, Y, I) = {〈C,D〉 ∈ LX × LY |C↑ = D, D↓ = C}.

A partial order ≤ defined by

〈C1, D1〉 ≤ 〈C2, D2〉 iff C1 ⊆ C2 (iff D2 ⊆ D1)

for 〈C1, D1〉, 〈C2, D2〉 ∈ B(X, Y, I), makes B(X, Y, I) a complete lattice, called the concept
lattice of I [7]. Note that ⊆ is defined by (9). For L = {0, 1}, B(X, Y, I) coincides with
the ordinary concept lattice [16]. Efficient algorithms for computing B(X, Y, I) exist [10].

Matrices AF and BF . Let

F = {〈C1, D1〉, . . . , 〈Ck, Dk〉}

be a set of pairs of L-sets Cl and Dl in {1, . . . , n} and {1, . . . ,m}, respectively, with values
from L. In what follows, we always assume that there is a fixed order on the set F and
indicate this order by indices. Thus, we may speak of the first pair in F which is 〈C1, D1〉,
up to the k-th pair which is 〈Ck, Dk〉. Given F with such a fixed order, define n × k and
k ×m matrices AF and BF by

(AF)il = (Cl)(i) and (BF)lj = (Dl)(i).

That is, the l-th column of AF is the transpose of the vector corresponding to L-set Cl

and the l-th row of BF is the vector corresponding to Dl. (The vectors corresponding to
Cl and Dl are (Cl(1), . . . , Cl(n)) and (Dl(1), . . . , Dl(m)).)

Example 2. Let X = {1, . . . , 4}, Y = {1, . . . , 6}. Let F = {〈C1, D1〉, 〈C2, D2〉} with the
vectors corresponding to C1 and D1 being (1.0 1.0 0.8 0.2) and
(1.0 1.0 0.0 0.0 0.0 0.0), and the vectors corresponding to C2 and D2 being (1.0 0.7 0.9 0.0)
and (0.8 1.0 0.0 0.0 0.0 0.0). That is, C1(1) = 1.0, C1(2) = 1.0, C1(3) = 0.8, etc. For the
matrices AF and BF we have

AF =

 1.0 1.0
1.0 0.7
0.8 0.9
0.2 0.0

 and BF =
(

1.0 1.0 0.0 0.0 0.0 0.0
0.8 1.0 0.0 0.0 0.0 0.0

)
.

2

6



Next, we show the role of formal concepts of I for decompositions of I. The first
theorem says that for every I, there exists a decomposition of I in which formal concepts
of I are used as factors. The theorem is a particular instance of Theorem 4 (see Remark
3 (b)).

Theorem 1 (universality of formal concepts as factors). For every I with entries from a
residuated lattice L there exists a finite set F ⊆ B(X, Y, I) such that I = AF ◦BF .

However, Theorem 1 and its proof (see the proof of Theorem 4) only yield that the
number k = |F| of factors equals the number of attributes (columns) of I, i.e. k = m.
Obviously, there can be better decompositions, i.e. those with k < m. The next theorem
shows optimality of using formal concepts as factors for decomposition of I. The theorem
is a particular instance of Theorem 5 (see Remark 4 (a)).

Theorem 2 (optimality of formal concepts as factors). Let I = A◦B for n×k and k×m
matrices A and B with entries from L. Then there exists a finite set F ⊆ B(X, Y, I) with

|F| ≤ k

such that for the n× |F| and |F| ×m matrices AF and BF we have

I = AF ◦BF .

From the computational point of view, Theorem 1 and Theorem 2 say that when
looking for factors for decompositions of I, we can confine ourselves to formal concepts
from B(X, Y, I).

3. Transformations Between Spaces of Attributes and Factors

In this section, we provide basic results and considerations regarding natural transfor-
mations between the m-dimensional space of attributes and the k-dimensional space of
factors which are induced by decomposition (1), particularly by matrix B describing a re-
lationship between factors and attributes. Further results are provided within the general
framework in Section 5.3.

To facilitate our discussion, we identify the set LY of all L-sets in Y with the set Lm

of all m-dimensional vectors of grades, i.e. we identify an L-set P : {1, . . . ,m} → L
with a vector (P (1), . . . , P (m)). Likewise, we identify an L-set Q : {1, . . . , k} → L with
(Q(1), . . . , Q(k)).

Let thus I = A ◦ B. In general, we do not assume that A = AF and B = BF for some
set F of formal concepts of I. Consider the transformations g : Lm → Lk and h : Lk → Lm

defined for P ∈ Lm and Q ∈ Lk by

(g(P ))l =
∧m

j=1(Blj → Pj), (12)

(h(Q))j =
∨k

l=1(Ql ⊗Blj), (13)

for 1 ≤ l ≤ k and 1 ≤ j ≤ m. Let us first observe that even on the domains where it makes
sense to consider linearity, g and h are non-linear. The following example demonstrates
this fact in the case of h.
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Example 3. Let L = [0, 1] be equipped with  Lukasiewicz t-norm. Let I = A ◦B be(
0.3 0.0 0.1
0.3 0.7 0.5
0.5 0.8 0.6

)
=

(
0.2 0.8
0.9 0.8
1.0 1.0

)
◦
(

0.4 0.8 0.6
0.5 0.2 0.3

)
.

Then for Q1 = (0.6 0.2) and Q2 = (0.4 0.3) we have h(Q1 + Q2) = (Q1 + Q2) ◦ B =
(1.0 0.5)◦B = (0.4 0.8 0.6) 6= (0.0 0.6 0.2) = (0.0 0.4 0.2)+(0.0 0.2 0.0) = Q1◦B+Q2◦B =
h(Q1) + h(Q2). 2

I = A ◦B provides a representation of object i by Ii (i-th row of I) in the space Lm of
attributes, and a representation of i by Ai (i-th row of A) in the space Lk of factors. The
next theorem describes basic properties of g and h in case the decomposition of I involves
formal concepts of I as factors.

Theorem 3. Let I = AF ◦BF for some F ⊆ B(X, Y, I). Then

g(Ii ) = Ai and h(Ai ) = Ii

for every i. Moreover, BF is the largest of the matrices D for which I = AF ◦D. Likewise,
AF is the largest of the matrices C for which I = C ◦BF .

In addition to the fact that formal concepts as factors are easy to interpret (see Section
4), Theorem 3 shows another reason to look for decompositions that use formal concepts.
(a) Such approach guarantees that g and h transform rows of I to rows of A and vice
versa. (b) Maximality conditions for AF and BF guarantee that the grades to which factors
apply to objects and attributes which are implied by the decomposition I = AF ◦ BF are
actually the largest grades for which the factor model still faithfully reconstructs the data
represented by I. That is, we avoid models which reconstruct data but provide only lower
estimations of grades to which factors apply to objects and attributes. This feature is
desirable because otherwise the interpretation of factors might be difficult. As an example,
if an attribute is a manifestation of two distinct factors, we may remove it from the first
factor (lower the grade to which the factor applies to the attribute) and still have factors
which represent the data. Doing so, the first factor becomes “unnatural” (consider factor
“speed” from which remove attribute “good performance in 100 m”, cf. Section 4). (c)
If we subscribe to preference of large As and Bs over smaller ones, as suggested by (b),
Theorem 3 can be seen as claiming uniqueness of BF given AF and uniqueness of AF given
BF .

The following are the basic properties of g and h (they can be easily checked, (14)–(17)
follow from the general results of Section 5.3).
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g(
∧

s∈S Ps) =
∧

s∈S g(Ps), (14)

h(
∨

t∈T Qt) =
∨

t∈T h(Qt), (15)

h(g(P )) ≤ P, (16)

Q ≤ g(h(Q)), (17)

g(a→ P ) = a→ g(P ), (18)

h(a⊗Q) = a⊗ h(Q), (19)

P ≈ P ′ ≤ g(P ) ≈ g(P ′), (20)

Q ≈ Q′ ≤ g(Q) ≈ g(Q′). (21)

(14) and (15) say that g and h are
∧

- and
∨

-preserving morphisms between Lm and Lk.
An immediate consequence is that

P ≤ P ′ implies g(P ) ≤ g(P ′), (22)

Q ≤ Q′ implies h(Q) ≤ h(Q′), (23)

where P ≤ P ′ means Pj ≤ P ′j for all j, and Q ≤ Q′ means Ql ≤ Q′l for all l. Properties
(22) and (23) are can be regarded as requirements for reasonable transformations between
the attribute space and the factor space. Namely, (22) says that the more attributes
an object has, the more factors apply, while (23) says that the more factors apply, the
more attributes an object has. This is in accordance with the structure of our factor
model given by (1). (16) and (17) say that the compositions gh and hg are extensive and
intensive, and as is argued in Section 5.3, form a particular closure and interior operator,
respectively. (18) and (19) say that g and h are compatible with →-multiplication and
⊗-multiplication, respectively. Note that a → P and a ⊗ Q, called the →-multiplication
of P and ⊗-multiplication of Q, are defined by (a→ P )j = a→ Pj and (a⊗Q)l = a⊗Ql,
respectively. To sum up, g is a

∧
-morphism that preserves →-multiplication and h is a∨

-morphism that preserves ⊗-multiplication. (20) and (21) say that g and h preserve
certain natural similarities on Lm and Lk. Namely, for P, P ′ ∈ Lm and Q,Q′ ∈ Lk, let

P ≈ P ′ =
∧m

j=1(Pj ↔ P ′j), Q ≈ Q′ =
∧k

l=1(Ql ↔ Q′l),

where ↔ is the so-called biresiduum defined by a↔ b = (a→ b) ∧ (b→ a). For example,
for  Lukasiewicz t-norm, the corresponding biresiduum is a ↔ b = 1 − |a − b|. The value
of a↔ b can be interpreted as the grade to which grades a and b are close and, therefore,
P ≈ P ′ can be seen as the least grade to which all the coordinates of P and P ′ are similar,
i.e. a degree of similarity between P and P ′. It is well-known in fuzzy set theory that
P ≈ P ′ = 1 iff P = P ′, P ≈ P ′ = P ′ ≈ P , and that (P ≈ P ′) ⊗ (P ′ ≈ P ′′) ≤ (P ≈ P ′′),
i.e. that ≈ is an L-equality, see e.g. [19]. (20) and (21) show that g and h preserve these
similarities, i.e. images of two vectors are at least as similar as the two vectors.

Furthermore, Fig. 1 illustrates the following property of g and h. The space Lm of
attributes and the space Lk of factors are partitioned into an equal number of convex
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(0, . . . , 0)

(1, . . . , 1)

(0, . . . , 0)

(1, . . . , 1)

Lm Lk

P = h(Q)

Q = g(P )

g

h

...

...

...

...

Figure 1: Illustration of property of g and h.

subspaces. The subspaces of the attribute space have least elements, the subspaces of the
factor space have greatest elements. One can pair the subspaces in such a way that g
maps all vectors of the subspace U of the attribute space to the largest element of the
corresponding subspace V of the factor space and conversely, h maps all vectors from V to
the least vector from U . This property is proved in the general framework in Section 5.3
(see Theorem 8).

4. Illustrative example

In order to demonstrate usefulness of the decompositions dealt with in this paper, we
now shortly present an illustrative example which is presented in full in [12]. Consider the
following 5× 10 matrix I:

Sebrle
Clay

Karpov
Macey

Warners

1
0
0

m
lo

ng
ju

m
p

sh
ot

pu
t

hi
gh

ju
m

p
4
0
0

m
1
1
0

m
hu

rd
l.

di
sc

us
th

ro
w

po
le

va
ul

t
ja

ve
lin

th
ro

w
1
5
0
0

m

The matrix represents results of top five athletes in 2004 Olympic Games decathlon. The
rows and columns correspond to the athletes and decathlon disciplines, respectively. The
entries are colored boxes which represent degrees from a five-element  Lukasiewicz chain
with L = {0, 0.25, 0.5, 0.75, 1} (the darker the color, the larger the degree), see Section 1.3.
The matrix was obtained by a straightforward transformation to the degrees from L of the
actual scores assigned to the athletes according to the IAAF Scoring Tables. This means
that the above matrix represents the athletes’ scores only approximately (due to rounding,
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Fi Extent Ci Intent Di

F1 {.5/Sebrle,Clay,Karpov, .5/Macey, .75/Warners} {10, lj, .75/sp, .75/hj, .5/40, 11, .5/di, .25/pv, .25/ja, .5/15}
F2 {Sebrle, .75/Clay, .25/Karpov, .5/Macey, .25/Warners} {.5/10, lj, sp,hj, .75/40, 11, .75/di, .75/pv, ja, .75/15}
F3 {.75/Sebrle, .5/Clay, .75/Karpov,Macey, .5/Warners} {.5/10, .5/lj, .75/sp,hj, .75/40, .5/11, .75/di, .25/pv, .5/ja, 15}
F4 {Sebrle, .75/Clay, .75/Karpov, .5/Macey,Warners} {.5/10, .75/lj, .5/sp, .5/hj, .75/40, 11, .25/di, .5/pv, .25/ja, .75/15}
F5 {.75/Sebrle, .75/Clay,Karpov, .75/Macey, .25/Warners} {.75/10, .75/lj, .75/sp, .75/hj, .75/40, .75/11, di, .25/pv, .25/ja, .75/15}
F6 {.75/Sebrle, .5/Clay,Karpov, .75/Macey, .75/Warners} {.75/10, .75/lj, .75/sp, .75/hj, 40, .75/11, .5/di, .25/pv, .25/ja, .75/15}
F7 {Sebrle,Clay, .25/Karpov, .5/Macey, .25/Warners} {.5/10, lj, .75/sp, .75/hj, .5/40, 11, .75/di, .5/pv, ja, .5/15}〉

Table 1: Factor Formal Concepts for Decathlon Data. Legend: 10—100 m; lj—long jump; sp—shot
put; hj—high jump; 40—400 m; 11—110 m hurdles; di—discus throw; pv—pole vault; ja—javelin throw;
15—1500 m.

two close scores are assigned the same grade) but such an approximation is sufficient for
the purpose of illustration. Matrix I can decomposed into a product I = AF ◦ BF of a
5× 7 matrix AF and a 7× 10 matrix BF , in which F = {〈Cl, Dl〉 | l = 1, . . . , 7} is a set of
formal concepts of I. In [12], an efficient approximation algorithm for computing optimal
◦-decompositions is provided. The decomposition presented below is computed by this
algorithm:

fac
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r F
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fac
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fac
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F 6

F 7
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1
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Matrix AF is the bottom-left matrix with athletes’ names labeling the rows; matrix BF is
the top matrix with disciplines’ names labeling the columns. As described in Section 2, the
l-th column of AF and the l-th row of BF are the vectors corresponding to the extent Cl

and the intent Dl, respectively, of the l-th factor Fl = 〈Cl, Dl〉 (l = 1, . . . , k). The formal
concepts (factors) from F are depicted with a detialed description in Table 1.

The first line of Fig. 2 shows the rectangular matrices (see Definition 1) corresponding
to formal concepts from F = {F1, . . . , F7}. The second line of Fig. 2 shows the

∨
-

superpositions F1∨· · ·∨Fl of the first l factors (l = 1, . . . , 7). Note that since I = AF ◦BF ,
I equals F1 ∨ · · · ∨ F7. However, as we can see from the visual inspection of the matrices,
already the first two or three factors explain the data reasonably well, i.e. both F1 ∨ F2

and F1 ∨ F2 ∨ F3 are reasonable approximations of I.
Let us now consider the interpretation of the first three factors. For this purpose, it

is convenient to inspect the rectangular matrices from the first line of Fig. 2 and, to see
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F1 F2 F3 F4 F5 F6 F7

F1 F1 ∨ F2 F1 ∨ F2 ∨ F3 F1 ∨ · · · ∨ F4 F1 ∨ · · · ∨ F5 F1 ∨ · · · ∨ F6 F1 ∨ · · · ∨ F7

Figure 2: First line: Rectangular matrices representing the factors for decathlon data. Second line:
∨
-

superposition of factors.

more details, Table 1. Factor F1: Manifestations of this factor with grade 1 are 100 m, long
jump, and 110 m hurdles. This factor can be interpreted as the ability to run fast for short
distances and can thus be termed speed. Note that this factor applies particularly to Clay
and Karpov which is well known in the world of decathlon. Factor F2: Manifestations of
this factor with grade 1 are long jump, shot put, high jump, 110 m hurdles, and javelin. F2

can be interpreted as the ability to apply very high force in a very short time and can thus
be termed speed explosiveness. F2 applies particularly to Sebrle, and to a lesser degree
to Clay, who are known for this ability. Factor F3: Manifestations with grade 1 are high
jump and 1500 m. This factor is typical for light, not very muscular athletes (too much
muscles prevent jumping high and running long distances). Macey, who is evidently that
type among decathletes (196 cm and 98 kg) is the athlete to whom the factor applies to
degree 1. These are the most important factors behind data matrix I.

This example demonstrates that the matrix decompositions discussed in this paper can
be conveniently used for factor analysis of data matrices with elements from residuated
lattices which are interpreted as degrees to which attributes (columns) apply to objects
(rows).

5. General framework for matrix (relational) operations involving residuation

This section presents a framework which enables us to consider the ◦-decompositions
studied in this paper and the /-decompositions studied in [8] as two particular cases of a
general type of decompositon. We restrict to the results directly related to the decomposi-
tion problems. More information about the general framework, its role in fuzzy set theory
and fuzzy logic, and related work is be presented in a forthcoming paper [9].

5.1. The framework

Let for i = 1, 2, 3, Li = 〈Li,≤i〉 be a complete lattice. The operations in Li are denoted
as usual, adding subscript i. That is, the infima, suprema, the least, and the greatest
element in L2 are denoted by

∧
2,
∨
2, 02, and 12, respectively; the same for L1 and L3.

Consider now an operation � : L1 × L2 → L3 that commutes with suprema in both
arguments. That is, for any a, aj ∈ L1 (j ∈ J), b, bj′ ∈ L2 (j′ ∈ J ′),

(
∨
1j∈Jaj) � b =

∨
3j∈J(aj � b) and a � (

∨
2j′∈J ′bj′) =

∨
3j′∈J ′(a � bj′). (24)

12



We call a quadruple 〈L1,L2,L3,�〉 satisfying (24) a supremum preserving aggregation
structure (aggregation structure for short).

In our setting, 〈L1,L2,L3,�〉 plays a role analogous to the role of residuated lattices
in case of ◦- and /-decompositions.

Consider a matrix (relation) composition operator � defined by

(A � B)ij =
∨
3
k
l=1Ail � Blj

for every n× k matrix A and k×m matrix B with Ail ∈ L1, Blj ∈ L2. The decompositon
problem may now be defined as follows. Given an n ×m object-attribute matrix I with
Iij ∈ L3, we look for a decomposition

I = A � B

of I into a product A�B of an n× k object-factor matrix A and a k×m factor-attribute
matrix B with Ail ∈ L1, Blj ∈ L2, such that the number k of factors is the smallest
possible. As the next example shows, both the ◦-decomposition and the /-decomposition
problems are particular cases of the �-decomposition problem.

Example 4. Let 〈L,∧,∨,⊗,→, 0, 1〉 be a complete residuated lattice with a partial order
≤. The following two particular cases, in which Li = L and ≤i is either ≤ or the dual of
≤ (i.e. ≤i=≤ or ≤i=≤−1) are important for our purpose.

(1) Let L1 = 〈L,≤〉, L2 = 〈L,≤〉, and L3 = 〈L,≤〉, let � be ⊗. Then, as is well
known from the properties of residuated lattices [28, 18], � commutes with suprema
in both arguments. Clearly, the �-composition coincides with the ◦-composition (2)
and the �-decomposition problem coincides with the ◦-decomposition problem.

(2) Let L1 = 〈L,≤〉, L2 = 〈L,≤−1〉, and L3 = 〈L,≤−1〉, let � be →. Then, � com-
mutes with suprema in both arguments. Namely, the conditions (24) for commuting
with suprema in this case become

(
∨

j∈J aj)→ b =
∧

j∈J(aj → b) and a→ (
∧

j∈J bj) =
∧

j∈J(a→ bj)

which are well-known properties of residuated lattices. One may thus easily see
that in this case, the �-composition coincides with the /-composition (4) and the
�-decomposition problem coincides with the /-decomposition problem studied in [8].

Remark 1. Note that there are two predecessors to the structure 〈L1,L2,L3,�〉. First,
it is discussed in [5] that a residuated lattice may alternatively be defined as a bounded
lattice with operation → that satisfies certain properties for which there exists operation
⊗ satisfying adjointness w.r.t. →, as opposed to the usual definition according to which a
residuated lattice is a bounded lattice with a monoidal operation ⊗ for which there exists
operation→ satisfying adjointness w.r.t. ⊗. The fact that the formal properties of→ and
⊗ used in such two kinds of definition are alsmost the same suggests a “duality” between
⊗ and → (cf. Example 4 (1) and (2)). The second one is studied in [24] and [11] where a
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three-sorted residuated structure, slightly more general than the one used in this paper, is
investigated. Note that the possibility to obtain two particular kinds of concepts lattices
as particular instances, which is proposed in this paper (see Example 6), is not mentioned
in [11, 24]. Namely, the motivation in [11, 24] consists in developing formal concepts
with extents and intents using different truth degrees and the possibility mentioned in the
previous sentence is not realized in those papers. Another important work is [17] in which
the authors provide a framework consisting of five lattices and two basic opertions that
allows one to consider both antitone and isotone fuzzy Galois connections as a single type
of a fuzzy Galois connection. A more comprehensive information about related work is to
be presented in [9].

Define operations ◦� : L1 × L3 → L2 and �◦ : L3 × L2 → L1 (adjoints to �) by

a1 ◦� a3 =
∨
2{a2 | a1 � a2 ≤3 a3}, (25)

a3 �◦ a2 =
∨
1{a1 | a1 � a2 ≤3 a3}. (26)

We put indices in a1 and the like for mnemonic reasons. For example, a1 indicates that a1 is
taken from L1. One may prove several properties of �, ◦�, and �◦ which are counterparts
to well-known properties of residuated lattices. The following properties are needed in
what follows.

a1 � a2 ≤3 a3 iff a2 ≤2 a1 ◦� a3 iff a1 ≤1 a3 �◦ a2, (27)

a1 � (a1 ◦� a3) ≤3 a3, (28)

(a3 �◦ a2) � a2 ≤3 a3, (29)

a ◦�(
∧

3j∈Jcj) =
∧

2j∈J(a ◦� cj), (30)

(
∨

1j∈J
aj) ◦� c =

∧
2j∈J

(aj ◦� c), (31)

c �◦(
∨
2j∈Jbj) =

∧
1j∈J(c �◦ bj), (32)

(
∧

3j∈J
cj) �◦ b =

∧
1j∈J

(cj �◦ b). (33)

One gets various monotony conditions as a corollary of (30)–(33). For example, (30) and
(31) imply that ◦� is isotone in the second and antitone in the first argument, respectively.

Example 5. (1) If Lis and � are as in Example 4 (1), i.e. in case of ◦-composition,
we have

a1 ◦� a3 =
∨
{a2 | a1 ⊗ a2 ≤ a3} = a1 → a3

and, similarly, a3 �◦ a2 = a2 → a3. Then, for instance, (27) says that a1 ⊗ a2 ≤ a3 iff
a2 ≤ a1 → a3 iff a1 ≤ a2 → a3; (28) says that a1 ⊗ (a1 → a3) ≤ a3; and (30) says
that a→ (

∧
j∈J cj) =

∧
j∈J(a→ cj).

(2) If Lis and � are as in Example 4 (2), i.e. in case of /-composition, we have

a1 ◦� a3 =
∧
{a2 | a1 → a2 ≥ a3} = a1 ⊗ a3
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and
a3 �◦ a2 =

∨
{a1 | a1 → a2 ≥ a3} = a3 → a2.

In this case, (27) says that a1 → a2 ≥ a3 iff a2 ≥ a1 ⊗ a3 iff a1 ≤ a3 → a2; (28) says
that a1 → (a1 ⊗ a3) ≥ a3; and (30) says that a⊗ (

∨
j∈J cj) =

∨
j∈J(a⊗ cj).

5.2. Optimal decompositions

Call an n×m matrix J �-Cartesian if there exists an L1-set C in {1, . . . , n} (that is, C
is a mapping of {1, . . . , n} to L1) and an L2-set D in {1, . . . ,m} such that Jij = C(i)�D(j)
for 1 ≤ i ≤ n, 1 ≤ j ≤ m. In this case, we write J = C � D.

Lemma 2. I = A � B for n× k and k ×m matrices A and B iff I is a
∨
3-superposition

of k �-Cartesian matrices J1, . . . , Jk, i.e. iff

I = J1∨3J2∨3 · · · ∨3Jk.

Proof. Directly from definition: I = A � B means Iij =
∨
3
k
l=1(Ail � Blj). Obviously,

this means that I is a
∨
3-superposition of �-Cartesian matrices Jl defined by (Jl)ij =

Ail � Blj.

Remark 2. Clearly, for the settings of Example 4 (1) and (2), �-Cartesian matrices
become rectangular matrices introduced in this paper and I-beam matrices introduced in
[8]. Hence, Lemma 2 generalizes Lemma 1 as well as Theorem 1 from [8].

Given sets X = {1, . . . , n}, Y = {1, . . . ,m}, and an n×m matrix I with entries from
L3, let the operators ↑ : LX

1 → LY
2 and ↓ : LY

2 → LX
1 be defined by

C↑(y) =
∧

2x∈X(C(x) ◦� Ixy) and D↓(x) =
∧

1y∈Y (Ixy �◦D(y)). (34)

A formal concept of I is then a pair 〈C,D〉 consisting of an L1-set C in X and an L2-set
D in Y for which C↑ = D and D↓ = C. B(X, Y, I) denotes the set of all formal concepts
of I, i.e.

B(X, Y, I) = {〈C,D〉 ∈ LX
1 × LY

2 |C↑ = D, D↓ = C}.

Example 6. (1) If Lis and � are as in Example 4 (1), i.e. in case of ◦-composition,
then (34) become the concept-forming operators (11) and B(X, Y, I) is the concept
lattice introduced in Section 2.2.

(2) If Lis and � are as in Example 4 (2), , i.e. in case of /-composition, (34) become

C↑(y) =
∨

x∈X(C(x)⊗ Ixy) and D↓(x) =
∧

y∈Y (Ixy → D(y)),

i.e. the operators denoted by ∩ and ∪ in [8], and B(X, Y, I) coincides with the set of
the fixpoints of these operators, denoted by B(X∩, Y ∪, I) in [8].
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Denote for F = {〈C1, D1〉, . . . , 〈Ck, Dk〉} ⊆ B(X, Y, I) by AF and BF the n × k and
k ×m matrices given by (AF)il = (Cl)(i) and (BF)lj = (Dl)(j). Again, we assume a fixed
order on F given by the indices 1, . . . , k. We are ready to present the theorems on �-
decompositons which generalize the results from Section 2 and from [8]. Denote by ⊆i the
inclusion relation induced by ≤i, cf. (9). That is, if C,C ′ are Li-sets in universe U , we put
C ⊆i C

′ if and only if for each u ∈ U , C(u) ≤i C
′(u), for i = 1, 2, 3.

Theorem 4 (universality). Let (a3 �◦ 12)�12 = a3 for every a3 ∈ L3 or 11�(11 ◦� a3) = a3
for every a3 ∈ L3. For every matrix I there exists a finite set F ⊆ B(X, Y, I) such that
I = AF � BF .

Proof. Let (a3 �◦ 12) � 12 = a3 for every a3 ∈ L3. Denote for l ∈ {1, . . . ,m}, 〈Cl, Dl〉 =
〈{12/l}↓, {12/l}↓↑〉. Here, {12/l} is a singleton in {1, . . . ,m}, i.e. an L2-set defined by
{12/l}(l) = 12 and {12/l}(j) = 02 for j 6= l. 〈Cl, Dl〉 are particular formal concepts from
B(X, Y, I) because 〈D↓, D↓↑〉 is a formal concept for every L2-set D in Y .

The latter claim follows from the following argument: (a) ↑ and ↓ form a Galois con-
nection [27] between partially ordered sets 〈LX

1 ,⊆1〉 and 〈LY
2 ,⊆2〉; (b) D↓ = D↓↑↓ is one

of the basic properties of Galois connections [27]; (c) 〈D↓, D↓↑〉 thus satisfies the definition
of a formal concept. To verify (a) is a matter of routinely checking the definition of a
Galois connection conditions, i.e. that ↑ and ↓ are antitone, C ⊆1 C↑↓, and D ⊆2 D↓↑.
Namely, the antitony of ↑ follows from the antitony of ◦� in the first argument which
follows from (31); C ⊆1 C↑↓ iff C(x) ≤1 Ixy �◦C↑(y) for each x ∈ X iff (due to (27))
C(x) � C↑(y) ≤3 Ixy. Now, since � preserves suprema, it is isotone in both arguments
and hence C(x) �C↑(y) ≤3 C(x) � (C(x) ◦� Ixy) ≤3 Ixy, the last inequality being true due
to (28); the antitony of ↓ and D ⊆2 D

↓↑ can be checked analogously using (32), (27), and
(29).

To verify I = AF � BF , i.e.

Ixy =
∨
3
n
l=1Cl(x) � Dl(y),

observe that the “≥”-part follows from Ixy ≥3 Cl(x)�Dl(y) which is equivalent to Cl(x) ≤1

Ixy �◦Dl(y), the last inequality being true due to Cl(x) =
∧

1y∈Y (Ixy �◦Dl(y)). The “≤”-

part follows from the fact that
∨
3
n
l=1

(Cl(x) � Dl(y)) ≥3 Cy(x) � Dy(y) = {12/y}↓(x) �
{12/y}↓↑(y) ≥3 (Ixy �◦ 12) � 12 = Ixy, the last equality being true due to the assumption
(a3 �◦ 12) � 12 = a3. Putting thus F = {〈Cl, Dl〉 | l = 1, . . . ,m}, we get I = AF ◦BF .

If 11 � (11 ◦� a3) = a3 for every a3 ∈ L3, one proceeds analogously with 〈Cl, Dl〉 =
〈{11/l}↑↓, {11/l}↑〉.

Remark 3. (a) Note that due to (27), (a3 �◦ 12) � 12 ≤3 a3 and 11 � (11 ◦� a3) ≤3 a3 for
every a3 ∈ L3. However, the converse inequalities, assumed by Theorem 4, may not be
satisfied, as the following example shows.

Let L1 = {0, 1}, L2 = [0, 1], L3 = [0, 1], let ≤1, ≤2, ≤3 be the usual total orders on
L1, L2, and L3, respectively. Let � be defined by a1 � a2 = min(a1, a2). Then L1, L2,
L3, and � satisfy (24). However, (a3 �◦ 12) � 12 ≥3 a3 is violated for 0 < a3 < 1. Indeed,
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for 0 < a3 < 1, (a3 �◦ 12) =
∨
1{a1 | a1 � 12 ≤ a3} = 01, hence (a3 �◦ 12) � 12 = 01 � 12 =

min(0, 1) = 0 < a3.
(b) For the setting of Example 4 (1), (a3 �◦ 12)�12 = a3 and 11�(11 ◦� a3) = a3 become

(1→ a3)⊗ 1 = a3 and 1⊗ (1→ a3) = a3, respectively, and hence both are satisfied. As a
consequence, Theorem 1 is a consequence of Theorem 4.

(c) For the setting of Example 4 (2), (a3 �◦ 12) � 12 = a3 becomes (a3 → 0) → 0 = 0
which is not satisfied in general. However, 11 � (11 ◦� a3) = a3 becomes 1→ (1⊗ a3) = a3
which is always true. As a consequence, Theorem 3 from [8] is a consequence of Theorem 4.

(d) Let L1 = L3 be supports of a residuated lattice with a partial order ≤, L2 = {0, 1}
with its natural order, let a1 ⊗ a2 = min(a1, a2) for a1 ∈ L1, a2 ∈ L2. Decompositions
corresponding to the aggregation structure consisting of L1, L2, and L3 are studied in [1].
It may be checked that the results from [1] may easily be obtained from those presented
in this section.

Theorem 5 (optimality). Let I = A � B for n × k and k × m matrices A and B with
entries from L. Then there exists a finite set F ⊆ B(X, Y, I) of formal concepts of I with

|F| ≤ k

such that for the n× |F| and |F| ×m matrices AF and BF we have

I = AF � BF .

Proof. Let I = A � B. According to Lemma 2 and its proof, I is a
∨
3-superposition of

�-Cartesian matrices J1, . . . , Jk defined as follows. Denote the L-sets in {1, . . . , n} and
{1, . . . ,m} corresponding to the l-th column of A and the l-th row of B by Gl and Hl,
respectively, and put Jl = Gl � Hl, i.e. (Jl)ij = Gl(i) � Hl(j). Then,

Gl � Hl ⊆3 I. (35)

We need the following claim which generalizes Theorem 4 of [3].

Claim. 〈C,D〉 ∈ B(X, Y, I) iff 〈C,D〉 is a maximal pair that is contained in I. Maximality
is considered w.r.t. a partial order v defined by 〈C1, D2〉 v 〈C2, D2〉 iff C1 ⊆1 C2 and
D1 ⊆2 D2; a pair 〈C,D〉 is said to be contained in I if C�D ⊆3 I, i.e. C(x)�D(y) ≤3 Ixy
for every x ∈ X, y ∈ Y .

Proof of Claim. If 〈C,D〉 ∈ B(X, Y, I), we have D = C↑, hence D(y) =
∧

2x∈X(C(x) ◦� Ixy) ≤2

C(x) ◦� Ixy for every x, y. According to (27), C(x)�D(y) ≤3 Ixy, i.e. C�D ⊆3 I, showing
that 〈C,D〉 is contained in I. If 〈C1, D1〉 is contained in I and 〈C,D〉 v 〈C1, D1〉 then it
follows from C1 � D1 ⊆3 I, (27), and the antitony of ◦� in the first argument that

D1(y) ≤2 C1(x) ◦� Ixy ≤2 C(x) ◦� Ixy

for every x, y, and thus D2 ⊆2 C
↑ = D, showing D = D1. Similarly, C = C1, proving that

〈C,D〉 is maximal w.r.t. v among the pairs contained in I.
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Conversely, let 〈C,D〉 be maximal pair contained in I. C � D ⊆3 I implies D(y) ≤2∧
2(C(x) ◦� Ixy) = C↑(y) for each y, i.e. D ⊆2 C

↑. Note that 〈C,C↑〉 is contained in I since

C(x) �
∧

2x∈X
(C(x) ◦� Ixy) ≤3 C(x) � (C(x) ◦� Ixy) ≤3 Ixy.

Therefore, if D 6= C↑ were the case, one would have D ⊂2 C↑ and 〈C,C↑〉 would be
contained in I and would be larger w.r.t. v than 〈C,D〉, contradicting the assumption.
QED (Claim)

Due to (35), Claim implies that there exists a formal concept 〈Cl, Dl〉 ∈ B(X, Y, I) such
that Gl ⊆1 Cl and Hl ⊆2 Dl. As shown above, since 〈Cl, Dl〉 is a formal concept, we have
Cl � Dl ⊆3 I. Finally, for F = {〈C1, D1〉, . . . , 〈Ck, Dk〉} we get |F| ≤ k and conclude

I = A � B =
∨
3
k
l=1Gl � Hl ⊆3

∨
3
k
l=1Cl � Dl = AF � BF ⊆3 I,

i.e. AF � BF = I, finishing the proof.

Remark 4. (a) Theorem 5 generalizes both Theorem 2 and Theorem 4 from [8]. Both are
particular cases of Theorem 5 for the settings of Example 4 (1) and (2), respectively.

(b) In Theorem 4 and its proof, we identified particular formal concepts that can be used
to factorize I provided the condition in the first sentence of the theorem is satisfied. The
following statement, similar to Theorem 4, follows directly from Theorem 5: If I = A�B for
some A and B, then I = AF �BF for some finite F ⊆ B(X, Y, I) (i.e., if I is decomposable
at all, then I may be decomposed using formal concepts as factors). Namely, if I = A�B,
I is a

∨
3-superposition of k �-Cartesian matrices. Then, a reasoning similar to that used

in the proof of Theorem 5 yields a set F of at most k formal concepts of I for which
I = AF � BF .

(c) Not every I is decomposable. For example, for L1 = L2 = {0, 1}, L3 = [0, 1], and
a � b = min(a, b), if I contains and entry diferent from both 0 and 1, I is clearly not
decomposable.

5.3. Transformations between spaces of attributes and factors

In this section, we present results on transformations between the m-dimensional space
Lm
3 of attributes and the k-dimensional space Lk

1 of factors which are induced by decom-
position (25). The results generalize most results from Section 3 and include some further
ones. Again, we identify L3-sets P : {1, . . . ,m} → L3 with vectors (P (1), . . . , P (m)) of
elements from L3, and L1-sets Q : {1, . . . , k} → L1 with (Q(1), . . . , Q(k)).

Let thus I = A � B and consider g : Lm
3 → Lk

1 and h : Lk
1 → Lm

3 defined for P ∈ Lm
3

and Q ∈ Lk
1 by

(g(P ))l =
∧

1
m
j=1

(Pj �◦Blj), (36)

(h(Q))j =
∨
3
k
l=1(Ql � Blj), (37)

for 1 ≤ l ≤ k and 1 ≤ j ≤ m.
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Remark 5. For the setting of Example 4 (1), (36) and (37) become (12) and (13), respec-
tively. For the setting of Example 4 (2), (36) and (37) become

(g(P ))l =
∧m

j=1(Pj → Blj), (38)

(h(Q))j =
∧k

l=1(Ql → Blj), (39)

which are the transformations described in [8] (equations (7) and (8)).

As is shown in Example 3, mappings g and h are non-linear in general. We now explore
the properties of g and h. Denoting by Ii and Ai the i-th row of I and A, respectively,
I = A ◦B and (13) immediately yields

h(Ai ) = Ii (40)

for i = 1, . . . , n. The next lemma describes properties of g. Particularly, it shows that if
the columns of A are extents of formal concepts of I which correspond to the rows of B
(the rows of B need not be intents) then we also have

g(Ii ) = Ai . (41)

Lemma 3. If I = A◦B then (g(Ii ))l ≥1 Ail for every i and l. If, moreover, every column
of A is the extent induced by the corresponding row of B, i.e. A l = B↓l , then g(Ii ) = Ai .

Proof. Because I = A � B, we have (g(Ii ))l =
∧

1
m
j=1(Iij �◦Blj) =

∧
1
m
j=1((

∨
3
k
l=1Ail �

Blj) �◦Blj). Thus, in order to check (g(Ii ))l ≥1 Ail, we need to verify∧
1

m

j=1
((
∨

3

k

l′=1
Ail′ � Bl′j) �◦Blj) ≥1 Ail. (42)

Clearly, (42) holds true iff for each j we have (
∨
3
k
l′=1Ail′�Bl′j) �◦Blj ≥1 Ail. This inequality

is equivalent to Ail � Blj ≤3

∨
3
k
l′=1Ail′ � Bl′j which is evidently true. If, in additon,

A l = Bl
↓, then (g(Ii ))l =

∧
1
m
j=1(Iij �◦Blj) = Bl

↓(l) = Ail, finishing the proof.

The next lemma shows what happens if the rows of B are the intents corresponding to
the columns of A (columns of A need not be extents).

Lemma 4. Let I = A � B. If every row of B is the intent induced by the corresponding
column of A, i.e. Bl = A l

↑, then B is the largest matrix for which I = A � B. That is,
if I = A � B′ then B′lj ≤2 Blj for every l and j.

Proof. The assertion follows from the fact that for every decomposition I = A�B, matrix
D defined by Dlj =

∧
2
m
i=1(Ail ◦� Iij) is the largest one for which I = A � D. To check

this, one can check that adjointness property implies that if I = A � B then Blj ≤2∧
2
m
i=1(Ail ◦� Iij) = Dlj. Furthermore, as one can verify, using Ail � (Ail ◦� Iij) ≤3 Iij, we

get Iij = (A � B)ij ≤3 (A � D)ij ≤3 Iij. Now, if every row of B is the intent induced by
the corresponding column of A then, by definition of D, B = D, i.e. B itself is the largest
matrix for which I = A � B.
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As a consequence, we get the following theorem:

Theorem 6. Let I = AF � BF for a finite set F ⊆ B(X, Y, I). Then

g(Ii ) = Ai and h(Ai ) = Ii

for every i. Moreover, BF is the largest of the matrices D for which I = AF ◦D. Likewise,
AF is the largest of the matrices C for which I = C ◦BF .

Proof. The first part follows directly from Lemma 3 and 4. The fact that AF is the largest
one follows from symmetry under transposition of the matrices in I = AF �BF (or can be
proved directly the same way as the maximality of B in Lemma 4).

The orderings ≤3 and ≤1 on L3 and L1 induce coordinate-wise orderings of vectors in
the spaces Lm

3 of attributes and Lk
1 of factors, defined by P ≤3 P ′ if Pj ≤3 P ′j for all j,

and Q ≤1 Q
′ if Ql ≤1 Q

′
l for all l. The following theorem shows basic properties of g and

h w.r.t. these orderings.

Theorem 7. For P, P ′ ∈ Lm
3 and Q,Q′ ∈ Lk

1:

P ≤3 P
′ implies g(P ) ≤1 g(P ′), (43)

Q ≤1 Q
′ implies h(Q) ≤3 h(Q′), (44)

h(g(P )) ≤3 P, (45)

Q ≤1 g(h(Q)), (46)

g(P ) = ghg(P ), (47)

h(Q) = hgh(Q), (48)

g(
∧

3s∈SPs) =
∧

1s∈Sg(Ps), (49)

h(
∨
1t∈TQt) =

∨
3t∈Th(Qt). (50)

Proof. (43) and (44) follow from definitions of g and h and the fact that � is isotone and

�◦ is isotone in the first argument. (45):

h(g(P ))j =
∨

3

k

l=1
(g(P )l � Blj) =

∨
3

k

l=1
((
∧

1

m

j′=1
(Pj′ �◦Blj′)) � Blj) ≤3

≤3

∨
3

k

l=1
((Pj �◦Blj) � Blj) ≤3 Pj

because (a3 �◦ a2) � a2 ≤3 a3. (46) can be shown in a similar way. (43)–(46) mean that g
and h form a residuated pair of mappings [14]. (47)–(50) thus follow from the properties
of residuated mappings.

Remark 6. As is easily seen, for the setting of Example 4 (1), Theorem 7 generalizes the
corresponding properties from Section 3, namely (14)-(17), and provides further proper-
ties. Likewise, for the setting of Example 4 (2), Theorem 7 generalizes the corresponding
properties from Section 3 of [8].
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The next theorem shows that g and h partition the space of attributes and the space
of factors into particular convex subsets. Recall that a subset S ⊆ Lp is called convex if
V ∈ S whenever U ≤ V ≤ W for some U,W ∈ S. Let for P ∈ Lm

3 and Q ∈ Lk
1 denote by

g−1(Q) the set of all vectors mapped to Q by g and by h−1(P ) the set of all vectors mapped
to P by h, i.e. g−1(Q) = {P ∈ Lm

3 | g(P ) = Q}, and h−1(P ) = {Q ∈ Lk
1 |h(Q) = P}.

Theorem 8. (i) If g−1(Q) 6= ∅ then g−1(Q) is a convex partially ordered subspace of the
attribute space and h(Q) is the least element of g−1(Q).

(ii) If h−1(P ) 6= ∅ then h−1(P ) is a convex partially ordered subspace of the attribute
space and g(P ) is the largest element of h−1(P ).

Proof. (i) Let g−1(Q) 6= ∅. Let P be from g−1(Q), i.e. g(P ) = Q. Then, in particular,
Q ≤1 g(P ). Using (44) and (45), h(Q) ≤3 h(g(P )) ≤3 P , hence h(Q) ≤3 P . Moreover,
using (47) we get Q = g(P ) = ghg(P ) = gh(Q), hence h(Q) ∈ g−1(Q). Therefore, h(Q)
is the least vector of g−1(Q). Let now U,W ∈ g−1(Q) and U ≤3 V ≤3 W . (43) yields
Q = g(U) ≤1 g(V ) ≤1 g(W ) = Q, hence g(V ) = Q, proving that g−1(Q) is convex. The
proof of (ii) is similar.

Remark 7. For the setting of Example 4 (1), Theorem 8 provides the result behind Fig.
1 (see the discussion at the end of Section 3). For the setting of Example 4 (2), Theorem
7 generalizes Theorem 6 from [8].

6. Conclusions and future research

We describe optimal decompositions of matrices with entries from residuated lattices.
Factors in such decompositions are formal concepts in the sense of Port-Royal logic. In
addition, we describe transformations between the space of original attributes and the
space of new factors. Main results, comments and an illustrative example are presented for
the important case of ◦-decompositions. In addition, we present a general framework which
enables one to generalize the results regarding ◦-decomposition and /-decomposition and
prove results within this framework. The topics for future research include the following
ones.

– Algorithms for computing decompositions, computational complexity and approx-
imability of decomposition problems. In [12] we showed that the results presented
in this paper are relevant for a design of approximation algorithms. Namely, an effi-
cient greedy algorithm which computes formal concepts as factors is presented and
experimentally evaluated in [12] on datasets with thousands of rows and hundreds of
attributes. The case of binary data is studied in [13].

– Approximate decompositions, i.e. decompositions in which the input matrix I is to
be decomposed into A and B in such a way that with an appropriate definition of
approximate equality, I is approximately equal to the product of A and B.
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– Concept lattices and further topics in decompositions in the general framework pre-
sented in Section 5. This includes further study and possible variants of the general
framework which turnes out to be an interesting generalization of residuated lat-
tices. Such a study should make it possible to provide further general results on the
structures related to decompositons. As a particular example, we did not provide
a generalization of (18)–(21) because there is no direct way to represent the terms
involved in the expressions in the general framework. One way toward such a gen-
eralization is to consider a particular case of the general framework in which all the
three lattices have the same support set and which satisfy further conditions.

– Further applications of the general framework in fuzzy set theory and its applica-
tions, e.g. in providing a common generalization of the so-called sup-t-norm and
inf-residuum type of fuzzy relational equations [19]. One practical consequence of
such generalization is the fact that solution methods for both types of equations may
be investigated for the general type at once.
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[21] P. Hájek, Metamathematics of Fuzzy Logic, Kluwer, Dordrecht, 1998.
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