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Abstract

We show that if two fuzzy relations, representing data tables with graded at-
tributes, are ordinally equivalent then their concept lattices with respect to the
Gödel operations on chains are (almost) isomorphic and that the assumption of
Gödel operations is essential. We argue that measurement-theoretic results like
this one are important for pragmatic reasons in relational data modeling and
outline issues for future research.
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1. Introduction and problem setting1

A frequent objection to using degrees in representing vague terms such as2

“tall” can be articulated as follows. Why to assign the truth degree 0.764 to3

the proposition “John is tall”? Why not 0.682? This objection has a clear4

pragmatic aspect and suggests a fundamental problem in using truth degrees.5

The objection is found in various forms in the literature on vagueness, see e.g.6

[31, pp. 52–53] and also [13, 18, 19], and in many debates since the inception of7

fuzzy logic.8

Whether and to what extent this objection, appealing as it is, indeed presents9

a problem, calls for close scrutiny. Presumably, one needs to look for answers10

pertaining to the usage of truth degrees in general as well as those that apply to11

particular models and applications. In our view, the issues involved are naturally12

looked at from the viewpoint of the theory of measurement. Measurement13

theory has been initiated by [33], in which the so-called ordinal, interval and14

ratio scales were recognized, and further developed in many publications within15

mathematical psychology, see e.g. [12, 21, 25, 27, 30].16

In this paper, we examine some of the questions offered by the above consid-17

erations in a limited scope of a particular area, namely formal concept analysis18

(FCA), see [14, 11]. Limited as it is, formal concept analysis encompasses rather19

general structures such as lattices, closure structures and operators, and Galois20

connections, hence the ramifications are broad. The basic problem we consider21
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may be described as follows. Consider the following table, representing fuzzy22

relation I1 between objects x1, x2 and x3, and attributes y1, . . . , y4.23

I1 y1 y2 y3 y4

x1 1 0.9 0.8 1
x2 0 1 0.5 0.5
x3 0.8 0.8 0.2 0.1

24

To what extent do the values of truth degrees, i.e. 1, 0.9, 0.8, etc. matter? What25

happens if we replace 0.8 by 0.7 in the three entries in the table? This question26

is important from a pragmatic viewpoint. Namely, when filling in the table, by27

a domain expert or a data analyst, one needs to know about the impact of the28

values and their relationships on further processing of the table. Since the basic29

structures utilized in FCA are concept lattices derived from such data tables, we30

are particularly interested in the impact on the structure of the concept lattice31

corresponding to the given data table.32

In our previous work [1], later extended to the framework of general relational33

structures of first-order fuzzy logic [5], we showed then with an appropriately34

defined notion of similarity, the following claim can be proven: the degree of35

similarity of two data tables is less than or equal to the degree of similarity36

of the corresponding concept lattices, i.e. similar data tables lead to similar37

concept lattices. Hence, in a sense, the exact values of the truth degrees do not38

actually matter as far as the associated concept lattice is concerned.39

In this paper, we examine a related but different issue. It consists in con-40

sidering as essential the ordering of truth degrees, rather than the particular41

(numerical) values representing them. This view is implicitly present in de-42

scribing fuzzy logic as a “logic of comparative truth”. To make our point43

more concrete, consider as a simple example three propositions, ϕ1, ϕ2, and44

ϕ3, and two truth valuations, e1 and e2, corresponding to two experts. Let45

e1(ϕ1) = 0.2, e1(ϕ2) = 0.5, e1(ϕ3) = 0.9, and e2(ϕ1) = 0.15, e2(ϕ2) = 0.63,46

e2(ϕ3) = 0.8. Even though the degrees assigned to the same proposition by the47

two experts are different, and one sometimes has e1(ϕi) < e2(ϕi) and sometimes48

e1(ϕi) > e2(ϕi), there is still an important kind of consistency of e1 with e2.49

Namely, for every pair ϕi and ϕj of propositions we have50

e1(ϕi) ≤ e1(ϕj) if and only if e2(ϕi) ≤ e2(ϕj).

Similar kind of consistency in using degrees of membership was reported in51

experimental work on the psychology of concepts in the early 1970s [24, 28, 29].52

Continuing with our example, one might call the expert assignments e1 and53

e2 ordinally equivalent and ask whether and under which conditions a further54

processing based on ϕ1, ϕ2, and ϕ3 corresponding to the two truth valuations55

results in two consistent conclusions.56

In this paper, we define the notion of ordinal equivalence for data tables57

with fuzzy attributes and prove that when using the Gödel logic connectives58

on linearly ordered sets of degrees, the concept lattices associated to ordinally59

equivalent data tables are almost isomorphic (see Remark 1) with the corre-60

sponding formal concepts pairwise ordinally equivalent. In addition, if the ta-61
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bles are even strongly ordinally equivalent, the concept lattices are isomorphic.62

We describe the isomorphisms and prove that the assumption of Gödel oper-63

ations is essential. Results of this kind are important in addressing the issues64

regarding the significance of the values of truth degrees and the choice of fuzzy65

logic connectives in formal concept analysis as well as in a broader context of66

fuzzy logic models. The preliminary notions are surveyed in Section 2. Section67

3 presents the results. We conclude the paper by a summary and a brief outline68

of future research issues.69

2. Preliminaries70

Structures of truth degrees. As a scale of truth degrees we use a complete resid-71

uated lattice [15, 16, 17], i.e. an algebra L = 〈L,∧,∨,⊗,→, 0, 1〉 such that72

〈L,∧,∨, 0, 1〉 is a complete lattice with 0 and 1 being the least and greatest73

element of L, respectively; 〈L,⊗, 1〉 is a commutative monoid (i.e. ⊗ is com-74

mutative, associative, and a ⊗ 1 = 1 ⊗ a = a for each a ∈ L); and ⊗ and →75

satisfy the adjointness property: a ⊗ b ≤ c iff a ≤ b → c. Elements a of L are76

called truth degrees. ⊗ and→ are (truth functions of) “fuzzy conjunction” and77

“fuzzy implication”. A common choice of L is a structure with L = [0, 1] (unit78

interval), ∧ and ∨ being minimum and maximum, ⊗ being a left-continuous79

t-norm [16] with the corresponding →. Three most important pairs of adjoint80

operations on the unit interval are:  Lukasiewicz (a ⊗ b = max(a + b − 1, 0),81

a → b = min(1 − a + b, 1)), Gödel: (a ⊗ b = min(a, b), a → b = 1 if a ≤ b,82

a→ b = b else), Goguen (product): (a⊗ b = a · b, a→ b = 1 if a ≤ b, a→ b = b
a83

else). Namely, all other continuous t-norms are obtained as ordinal sums of these84

three [16, 17]. Alternatively, we can take a finite subset L ⊆ [0, 1] equipped with85

appropriate operations. Having L as the structure of truth degrees, we use the86

usual notions of fuzzy sets and fuzzy relations [2, 16, 34].87

Formal concept analysis of data with fuzzy attributes. Let X and Y be finite88

non-empty sets of objects and attributes, respectively, I be a fuzzy relation89

between X and Y . That is, I : X × Y → L assigns to each x ∈ X and each90

y ∈ Y a truth degree I(x, y) ∈ L to which the object x has the attribute y.91

The triplet 〈X,Y, I〉, called a formal L-context, represents a data table, such92

as the one shown above, with rows and columns corresponding to objects and93

attributes, and table entries containing degrees I(x, y).94

For fuzzy sets A ∈ LX and B ∈ LY , consider fuzzy sets A↑ ∈ LY and95

B↓ ∈ LX (denoted also A↑I and B↓I ) defined by96

A↑(y) =
∧
x∈X(A(x)→ I(x, y)) and B↓(x) =

∧
y∈Y (B(y)→ I(x, y)).

Using basic rules of predicate fuzzy logic, A↑(y) is the truth degree of “for each97

x ∈ X: if x belongs from A then x has y”. Similarly for B↓. That is, A↑ is98

a fuzzy set of attributes common to all objects of A, and B↓ is a fuzzy set of99

objects sharing all attributes of B. The set100

B (X,Y, I) = {〈A,B〉 | A↑ = B, B↓ = A},
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denoted also just by B(I), of all fixpoints of 〈↑, ↓〉 thus contains all pairs 〈A,B〉101

such that A is the collection of all objects that have all the attributes of B,102

and B is the collection of all attributes that are shared by all the objects of A.103

Elements 〈A,B〉 ∈ B (X,Y, I) will be called formal concepts of 〈X,Y, I〉; A and104

B are called the extent and intent of 〈A,B〉, respectively; B (X,Y, I) is called105

the L-concept lattice of 〈X,Y, I〉. Both the extent A and the intent B are in106

general fuzzy sets. This corresponds to the fact that in general, concepts apply107

to objects and attributes to intermediate degrees, not necessarily 0 and 1.108

For 〈A1, B1〉, 〈A2, B2〉 ∈ B (X,Y, I), put109

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (iff B2 ⊆ B1).

This defines a subconcept-superconcept hierarchy on B (X,Y, I). The structure of110

B (X,Y, I) is described by the so-called main theorem for fuzzy concept lattices.111

We only mention that B (X,Y, I) equipped with ≤ is a complete lattice where112

infima and suprema are given by113 ∧
j∈J 〈Aj , Bj〉 = 〈

⋂
j∈J Aj , (

⋃
j∈J Bj)

↓↑〉 , (1)∨
j∈J 〈Aj , Bj〉 = 〈(

⋃
j∈J Aj)

↑↓,
⋂
j∈J Bj〉 . (2)

For more information we refer to e.g. [4, 8, 22, 26, 32].114

3. Ordinally equivalent data tables and their concept lattices115

The kind of consistency alluded to above may be formalized as follows. We116

say that fuzzy relations I1 and I2 between X and Y are ordinally equivalent, in117

symbols I1 ≡ I2, if for every x1, x2 ∈ X and y1, y2 ∈ Y we have118

I1(x1, y1) ≤ I1(x2, y2) iff I2(x1, y1) ≤ I2(x2, y2).

We also need the following, stronger variant of≡. I1 and I2 are strongly ordinally119

equivalent, in symbols I1 ≡{1} I2, if120

I1 ≡ I2 and for every x1, x2 ∈ X, y1, y2 ∈ Y : I1(x, y) = 1 iff I2(x, y) = 1.

Clearly, ≡may be defined for fuzzy sets in general, by putting for A,B ∈ LU ,121

A ≡ B iff A(u) ≤ A(v) iff B(u) ≤ B(v) for every u, v ∈ U . From a different point122

of view, let for A define a binary relation ≤A in U by u ≤A v iff A(u) ≤ A(v).123

Then ≤A is a quasiorder and A ≡ B is equivalent to the fact that ≤A coincides124

with ≤B .125

If I1 and I2 represent two expert opinions, I1 ≡ I2 means that the experts126

agree on whether the degree to which the object x1 has the attribute y1 is higher127

than the degree to which the object x2 has the attribute y2, for every choice of128

objects and attributes. I1 ≡{1} I2 means that, in addition, the experts agree on129

when attributes fully apply to objects.130

Example 1. Consider the following data tables.131

I y1 y2

x1
3/4 1/4

x2 0 1/4

J y1 y2

x1 1 1/4
x2 0 1/4

K y1 y2

x1 1 1/2
x2 0 1/2

M y1 y2

x1 1 1/4
x2 0 0

132
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I and J are ordinally equivalent, i.e. I ≡ J , but not strongly ordinally equiv-133

alent, i.e. I 6≡{1} J because I(x1, y1) = 3/4 while J(x1, y1) = 1. J and K134

are even strongly ordinally equivalent, i.e. J ≡{1} K. None of I, J , and K135

is ordinally equivalent with M because while M(x2, y2) ≤ M(x2, y1), we have136

I(x2, y2) 6≤ I(x2, y1) and the same for J and K.137

The following example is instructive for our examination.138

Example 2. Let L = {0, 1/3, 2/3, 1}. The following fuzzy relations clearly satisfy139

I1 ≡{1} I2.140

I1 y1 y2

x 0 1/3
I2 y1 y2

x 1/3 2/3
141

While the concept lattices BG(I1) and BG(I2) of I1 and I2 are isomorphic when142

we equip L with the Gödel operations, the concept lattices B L(I1) and B L(I2)143

with respect to the  Lukasiewicz operations are not. This follows from the fact144

that formal concepts are uniquely determined by their intents and that the four145

concept lattices involved have the following intents (Y denotes {1/y1,
1/y2}):146

BG(I1) : {0/y1,
1
3 /y2}, {0/y1,

1/y2}, and Y,

BG(I2) : { 1
3 /y1,

2
3 /y2}, {

1
3 /y1,

1/y2}, and Y,

B L(I1) : {0/y1,
1
3 /y2}, {

1
3 /y1,

2
3 /y2}, {

2
3 /y1,

1/y2}, and Y,

B L(I2) : { 1
3 /y1,

1/y2}, {
2
3 /y1,

1/y2}, and Y.

That is, for the  Lukasiewicz operations, the concept lattices have different num-147

bers of formal concepts.148

As we show next, this example is no coincidence. In particular, we show that149

ordinally equivalent I1 and I2 lead to isomorphic concept lattices if I1 ≡{1} I2 or150

almost isomorphic (in a sense made precise in Theorem 3 and Remark 1) concept151

lattices for I1 ≡ I2 when L is equipped with the Gödel operations on linearly152

ordered sets of degrees. Looking at the results the other way around, they153

imply that one should use the Gödel operations if one requires that ordinally154

equivalent data imply isomorphic concept lattices.155

Unless otherwise stated, we assume from now on that the complete residu-156

ated lattice L is linearly ordered and is equipped with Gödel operations. That157

is, a ≤ b or b ≤ a for every a, b ∈ L and158

a⊗ b = a ∧ b,

a→ b =

{
1 if a ≤ b,
b if a > b.

In what follows, we utilize the fact that ordinal equivalence of I1 and I2159

means that either of I1 and I2 may be brought to the other one by means of160

an increasing bijection of the degrees involved (note that this claim holds for161

linearly as well as non-linearly ordered L). More precisely, let for i = 1, 2,162

Ii(X,Y ) = {Ii(x, y) | x ∈ X, y ∈ Y }. (3)
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Lemma 1. I1 ≡ I2 if and only if there exists an increasing bijection f :
I1(X,Y )→ I2(X,Y ) such that

I2 = f ◦ I1,
i.e. I2(x, y) = f(I1(x, y)) for every x and y. For I1 ≡{1} I2, the corresponding163

condition for f is stronger in that f(1) = 1 whenever 1 ∈ I1(X,Y ) or 1 ∈164

I2(X,Y ).165

Proof. If I1 ≡ I2 then the required f is defined by f(I1(x, y)) = I2(x, y), for ev-166

ery x ∈ X and y ∈ Y . This definition is correct because the ordinal equivalence167

of I1 and I2 and the antisymmetry of the ordering of truth degrees imply that168

I1(x, y) = I1(x′, y′) is equivalent to I2(x, y) = I2(x′, y′). The converse claim is169

obvious.170

Because for I1 ≡ I2 the function f from Lemma 1 is uniquely determined,
we call it the function corresponding to I1 and I2 and denote it also by fI1,I2 in
what follows. Furthermore, for a function f : I1(X,Y )→ I2(X,Y ), we consider
the function

f+ : I1(X,Y ) ∪ {1} → I2(X,Y ) ∪ {1}
defined by171

f+(a) =

{
f(a) if a ∈ dom(f),
1 if a = 1 and 1 6∈ dom(f).

where dom(f) denotes the set of degrees for which f is defined. For a mapping
h : L1 → L2 and a fuzzy set A ∈ LU1 , we define a fuzzy set h(A) ∈ LU2 by

(h(A))(u) = h(A(u)).

We first consider the stronger assumption of I1 ≡{1} I2.172

Theorem 1. If I1 ≡{1} I2 then the mapping g defined by173

g(A,B) = 〈f+
I1,I2

(A), f+
I1,I2

(B)〉
is an isomorphism of B (X,Y, I1) to B (X,Y, I2). Moreover, if g(A,B) = 〈C,D〉174

then A ≡{1} C and B ≡{1} D.175

Proof. Put L1 = I1(X,Y ) ∪ {1} and L2 = I2(X,Y ) ∪ {1}.176

First, observe that for any A ∈ LX we have A↑I1 (y) ∈ L1 for each y ∈ Y .177

Indeed, for any x ∈ X we have either A(x) ≤ I1(x, y) or A(x) > I1(x, y). In the178

former case, A(x) → I1(x, y) = 1 ∈ L1, in the latter case, A(x) → I1(x, y) =179

I1(x, y) ∈ L1. Due to finiteness of X we have180

A↑I1 (y) =
∧
x∈X A(x)→ I1(x, y) = minx∈X A(x)→ I1(x, y) ∈ L1.

Similarly we obtain A↑I2 (y) ∈ L2, and B↓I1 (y) ∈ L1 and B↓I2 (y) ∈ L2 for every181

B ∈ LY and each x ∈ X.182

It is easily observed that both L1 and L2 are closed under the operations183

of the original L. Therefore, L1 and L2, equipped with the restrictions of the184

operations of L form complete residuated lattices L1 and L2 (with the provision185

that if 0 does not belong to Li, then 0i is the least element of Li for i = 1, 2).186
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The assumption I1 ≡{1} I2 moreover implies that f+
I1,I2

is a (complete) lattice187

isomorphism of L1 into L2, because f+
I1,I2

is clearly a bijection and, moreover,188

a ≤ b for a, b ∈ L1 means a = I1(x1, y1) ≤ I1(x2, y2) = b for some x1, x2 ∈ X and189

y1, y2 ∈ Y , which is equivalent to f+
I1,I2

(a) = I2(x1, y1) ≤ I2(x2, y2) = f+
I1,I2

(b)190

due to I1 ≡{1} I2. Moreover, f+
I1,I2

preserves →. Indeed, either a ≤ b and191

then f+
I1,I2

(a) ≤ f+
I1,I2

(b) from which we get f+
I1,I2

(a → b) = f+
I1,I2

(1) = 1 =192

f+
I1,I2

(a)→ f+
I1,I2

(b), or a > b and f+
I1,I2

(a) ≤ f+
I1,I2

(b) and then f+
I1,I2

(a→ b) =193

f+
I1,I2

(b) = f+
I1,I2

(a)→ f+
I1,I2

(b).194

Now, Theorem 3.2 of [3] implies that g is an onto lattice homomorphism of195

the L1-concept lattice B(X,Y, I1) onto the L2-concept lattice B(X,Y, I2). But196

since L1 and L2 are subsets of L closed under the operations of L, B(X,Y, I1) and197

B(X,Y, I2) are also L-concept lattices. Furthermore, since f+
I1,I2

is a bijection,198

g is clearly a bijection, too, and hence an isomorphism of the L-concept lattices199

B (X,Y, I1) and B (X,Y, I2).200

The facts A ≡{1} C andB ≡{1} D are immediate. The proof is complete.201

Example 3. Consider the fuzzy relations J and K from Example 1. Recall
that J ≡{1} K. The bijection fJ,K : J(X,Y ) → K(X,Y ), i.e. the mapping f
from Lemma 1, is given by

fJ,K(0) = 0, fJ,K(1/4) = 1/2, and fJ,K(1) = 1.

Clearly, f+
J,K coincides with fJ,K . One may verify that

B(X,Y, J) = {〈 140, 11〉, 〈10, 1 1
4 〉, 〈

1
4

1
4 , 01〉, 〈11, 0 1

4 〉},
where 〈 140, 11〉 stands for the formal concept 〈A,B〉 for which A(x1) = 1/4,202

A(x2) = 0, B(y1) = 1, and B(y2) = 1; similarly for the other concepts. Accord-203

ing to Theorem 1, f+
J,K provides an isomorphism of B(X,Y, J) to B(X,Y,K).204

Hence, B(X,Y,K) consists of the formal concepts205

〈 120, 11〉 = f+
J,K(〈 140, 11〉), 〈10, 1 1

2 〉 = f+
J,K(〈10, 1 1

4 〉),
〈 12

1
2 , 01〉 = f+

J,K(〈 14
1
4 , 01〉), 〈11, 0 1

2 〉} = f+
J,K(〈11, 0 1

4 〉).

The following theorem shows that, as far as finite case is considered, no other206

than the Gödel operations have the property from Theorem 1.207

Theorem 2. Let L be a finite linearly ordered residuated lattice. If ⊗ is different208

from min, then there exist fuzzy relations I1, I2 ∈ LX×Y such that I1 ≡{1} I2209

and B(X,Y, I1) and B(X,Y, I2) are not isomorphic.210

Proof. Let us first prove that there exist q, r ∈ L such that211

q > r and q → r > r. (4)

Assume the contrary, i.e. that for every q > r we have q → r = r (this is212

indeed the contrary because we always have q → r ≥ r). Let us recall [2] that213

in every complete residuated lattice, p⊗ q =
∧
{r | p ≤ q → r}. Without loss of214
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generality, assume p ≤ q. Then215

p⊗ q =
∧
{r | p ≤ q → r} =

=
∧
{r | q > r, p ≤ q → r} ∧

∧
{r | q ≤ r, p ≤ q → r} =

=
∧
{r | q > r, p ≤ r} ∧ q =

=

{
1 ∧ q = q = min(p, q) if p = q,
p ∧ q = min(p, q) if p < q,

contradicting the assumption that ⊗ is different from min.216

Let now b be the largest r for which a q exists satisfying (4), and let a be217

the largest q for this b for which (4) holds, i.e. a→ b > b. Consider the tables218

I1 y
x b

and
I2 y
x a

219

Since 1 → r = r, we have a 6= 1, and hence also b 6= 1. Therefore, I1 ≡{1} I2.220

We show that B(X,Y, I1) and B(X,Y, I2) have different numbers of elements221

and are thus not isomorphic. In particular, we show that B(X,Y, I1) contains222

at least three formal concepts while B(X,Y, I2) only two.223

Indeed, recall that every formal concept 〈A,B〉 is uniquely determined by224

its intent B and that the intents are just all fuzzy sets in Y of the form C↑225

for some C ∈ LX . For α ∈ [0, b], we have α → I1(x, y) = α → b = 1,226

hence {α/x}↑I1 = {1/y}. For α = a, we have a → I1(x, y) = a → b, hence227

{α/x}↑I1 = {a→b/y}. For α ∈ (a, 1], which is nonempty due to a 6= 1, we have228

α→ b = b, since first, α→ b ≥ b is always the case, and second, α > a and a is229

the largest one for which a→ b > b. Hence, {α/x}↑I1 = {b/y}. Therefore, as 1,230

a → b, and b are mutually different, B(X,Y, I1) contains at least three formal231

concepts. Note that the fact that 1 6= b is established above, a→ b 6= b follows232

from the assumption (4) regarding a and b, particularly from a → b > b, and233

a→ b 6= 1 follows again from the assumption (4) regarding a and b, particularly234

from a > b, because a→ b = 1 would imply a ≤ b due to adjointness.235

Now, for α ∈ [0, a], we have α → I2(x, y) = α → a = 1, hence {α/x}↑I2 =236

{1/y}. For α ∈ (a, 1], we have α → I2(x, y) = α → a = a, because we always237

have α→ a ≥ a and because α→ a > a does not hold. Namely, we have a > b238

and by assumption, b is the largest one for which there exists q exists such that239

q → b > b. Hence, {α/x}↑I2 = {a/y}. As a result, B(X,Y, I2) contains exactly240

two formal concepts.241

Next, we consider the weaker assumption of I1 ≡ I2 instead of I1 ≡{1} I2.242

Let thus I1 ≡ I2 but not I1 ≡{1} I2. Then there exist x ∈ X, y ∈ Y , and243

a ∈ L such that either I2(x, y) = 1 I1(x, y) = a < 1, or I1(x, y) = 1 and244

I2(x, y) = a < 1. We assume the former, i.e. assume that x, y, and a satisfy245

a = I1(x, y). (5)

Clearly, I1 ≡ I2 implies that for every x′ and y′, I1(x′, y′) = a if and only if246

I2(x′, y′) = 1.247
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Let us denote by I+
1 the fuzzy relation resulting from I1 by replacing all248

occurrences of a by 1, i.e.249

I+
1 (x, y) =

{
1 if I1(x, y) = a,
I1(x, y) if I1(x, y) 6= a.

(6)

Furthermore, let for 〈A,B〉 ∈ B(X,Y, I+
1 ) denote by 〈A−, B−〉 and 〈A−, B−〉250

the pairs of fuzzy sets defined by251

A−(x) =

{
a if A(x) = 1,
A(x) if A(x) 6= 1;

B− = B; (7)

and252

A− = A; B−(x) =

{
a if B(x) = 1,
B(x) if B(x) 6= 1.

(8)

Recall that the 1-cut 1C of a fuzzy set C in universe U is the ordinary set 1C253

defined by254

1C = {u ∈ U | C(u) = 1}.
We need the following assertions.255

Lemma 2. Let 〈A,B〉 ∈ B(X,Y, I+
1 ).256

(1) If 1A 6= ∅ then 〈A−, B−〉 ∈ B(X,Y, I1).257

(2) If 1B 6= ∅ then 〈A−, B−〉 ∈ B(X,Y, I1).258

(3) 1A 6= ∅ or 1B 6= ∅.259

Proof. (1) and (2) are symmetric, hence we prove only (2). We need to verify260

A
↑I1
− = B− and B

↓I1
− = A−.261

First, we show A
↑I1
− = B−. We have262

A
↑I1
− (y) =

∧
x∈X

(A−(x)→ I1(x, y)) =

=
∧
x 6∈1A

(A−(x)→ I1(x, y)) ∧
∧
x∈1A

(A−(x)→ I1(x, y)). (9)

For x 6∈ 1A we have A−(x) = A(x) < a. Indeed, since A(x) = B
↓
I
+
1 (x) and263

since Y is finite, A(x) = B(y′)→ I+
1 (x, y′) for some y′, hence A(x) = I+

1 (x, y′)264

due to A(x) 6= 1 and the properties of →. Now I+
1 (x, y′) = A(x) < 1 be-265

cause I+
1 (x, y′) 6= 1 implies I+

1 (x, y′) = I1(x, y′) and for such 〈x, y′〉 the ordi-266

nal equivalence of I1 and I2 implies I1(x, y′) < a, hence also I+
1 (x, y′) < a.267

Since A(x) = I+
1 (x, y′), we conclude A(x) < a. The latter fact also implies268

A−(x) = A(x). We now get269

A−(x)→ I1(x, y) = A(x)→ I+
1 (x, y), (10)

for if I+
1 (x, y) 6= 1 then I1(x, y) = I+

1 (x, y); while if I+
1 (x, y) = 1 then I1(x, y) =270

a, whence we have A−(x) ≤ I1(x, y) and A(x) ≤ I+
1 (x, y) from which we get271

A−(x)→ I1(x, y) = A(x)→ I+
1 (x, y) = 1.272
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For x ∈ 1A we have A−(x) = a. Furthermore, if I+
1 (x, y) 6= 1 we get I1(x, y) =273

I+
1 (x, y) < a as above and so274

A−(x)→ I1(x, y) = a→ I1(x, y) = I1(x, y) = I+
1 (x, y) = A(x)→ I+

1 (x, y); (11)

if I+
1 (x, y) = 1 we have I1(x, y) = a and so275

A−(x)→ I1(x, y) = a→ I1(x, y) = 1 = A(x)→ I+
1 (x, y). (12)

Now, (9) along with (10), (11), (12), and the assumption 〈A,B〉 ∈ B(X,Y, I+
1 )276

imply277

A
↑I1
− (y) =

∧
x 6∈1A

(A(x)→ I1
+(x, y)) ∧

∧
x∈1A

(A(x)→ I1
+(x, y)) =

= A
↑
I
+
1
− (y) = B(y) = B−(y),

proving A↑I1 = B−.278

Next we show B
↑I1
− = A−. We distinguish two cases, x 6∈ 1A and x ∈ 1A.279

First, let x 6∈ 1A: Since A(x) < 1, we obtain similarly as above that A(x) < a,
i.e. A−(x) = A(x). Therefore, the finiteness of Y implies that there exists y ∈ Y
such that

B(y)→ I+
1 (x, y) = B

↓
I
+
1 (x) = A(x).

A(x) < a implies B(y) > I+
1 (x, y) = A(x), hence I+

1 (x, y) < a. By definition,280

I+
1 (x, y) < a implies I1(x, y) = I+

1 (x, y). Since B(y) > I+
1 (x, y), we have281

B(y) > I1(x, y), hence282

B(y)→ I1(x, y) = I1(x, y) = A(x). (13)

Now observe that283

B
↓I1
− (x) = B(y)→ I1(x, y). (14)

Indeed, for this equality, “≤” is obvious and “<” leads to a contradiction.

Namely, B
↓I1
− (x) < B(y) → I1(x, y), (13) and the fact B− = B would im-

ply the existence of y′ for which B(y′) → I1(x, y′) = I1(x, y′) < I1(x, y). But
since I1(x, y) < a, we have I1(x, y′) < a, hence also I+

1 (x, y′) = I1(x, y′) which
would imply

A(x) = B
↓
I
+
1 (x) ≤ B(y′)→ I+

1 (x, y′) = B(y′)→ I1(x, y′) < I1(x, y) = A(x),

a contradiction. Now, (14), (13), and the fact that for x 6∈ 1A we have A−(x) =284

A(x) imply285

B
↓I1
− (x) = A(x) = A−(x).

Second, let x ∈ 1A: Since B− = B, we have286

B
↓I1
− (x) =

∧
y 6∈1B

(B(y)→ I1(x, y)) ∧
∧
y∈1B

(B(y)→ I1(x, y)).

Let us first observe that the assumption B
↓
I
+
1 (x) = A(x) = 1 and the fact that287

b → c = 1 is equivalent to b ≤ c imply that B(y) ≤ I+
1 (x, y) for every y ∈ Y .288

Next, let us verify
∧
y 6∈1B B(y) → I1(x, y) = 1. If I+

1 (x, y) < 1 then I1(x, y) =289
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I+
1 (x, y) and since B(y) ≤ I+

1 (x, y), we have B(y) ≤ I1(x, y); if I+
1 (x, y) = 1, i.e.290

I1(x, y) = a, then since B(y) < 1 by assumption, we have B(y) < a = I1(x, y),291

because B(y) is equal to some I+
1 (x′, y′) < 1 and due to the ordinal equivalence292

of I1 with I2, all such values I+
1 (x′, y′) are strictly smaller than a. Therefore,293

B(y)→ I1(x, y) = 1 again. To sum up,
∧
y 6∈1B B(y)→ I1(x, y) = 1.294

To verify
∧
y∈1B B(y) → I1(x, y) = A−(x), observe that for every y ∈ 1B,295

B(y) ≤ I+
1 (x, y) implies I+

1 (x, y) = 1, whence I1(x, y) = a. Therefore, since296

1B 6= ∅, there exists at least one y ∈ 1B, hence297 ∧
y∈1B

(B(y)→ I1(x, y)) =
∧
y∈1B

(B(y)→ a) = 1→ a = a = A−(x),

As a result, B
↓I1
− (x) = A−(x), finishing the proof of B

↓I1
− = A−.298

(3): By contradiction, assume 1A = ∅ = 1B. From 1A = ∅ we get that for299

each x ∈ X we have A(x) =
∧
y∈Y B(y)→ I+

1 (x, y) < 1. Since Y is finite, there300

exists y ∈ Y such that A(x) = B(y)→ I+
1 (x, y) and from the properties of→ it301

follows that A(x) = I+
1 (x, y) < B(y). Analogously, from 1B = ∅ we get that for302

each y ∈ Y there is x ∈ X with B(y) < A(x). Now denote n = min(|X|, |Y |).303

If |X| ≤ |Y |, take an arbitrary x1 ∈ X. Due to the above observation, there304

is y1 ∈ Y with A(x1) < B(y1). For y1, there is x2 ∈ X with B(y1) < A(x2).305

Repeating this argument we get some yn for which there should exist xn+1 ∈ X306

such that B(yn) < A(xn+1). We obtained307

A(x1) < B(y1) < A(x2) < B(y2) < · · · < A(xn) < B(yn) < A(xn+1)

which is impossible since X has exactly n elements.308

Lemma 3. The mapping g defined by309

g(A,B) = 〈f+

I1,I
+
1

(A), f+

I1,I
+
1

(B)〉

is a complete homomorphism of B(X,Y, I1) onto B(X,Y, I+
1 ) for which g−1(C,D)310

is a singleton or a two-element interval for each 〈C,D〉 ∈ B(X,Y, I+
1 ); in par-311

ticular:312

g−1(C,D) =

{
{〈C−, D−〉, 〈C−, D−〉} if 1C 6= ∅ and 1D 6= ∅,
{〈C,D〉} otherwise.

Moreover, if g(A,B) = 〈C,D〉 then A ≡ C and B ≡ D.313

Proof. Let for the element a from (5), h : L→ L be defined by314

h(b) =

{
1 if b ≥ a,
b if b < a.

Clearly, h coincides with f+

I1,I
+
1

on I1(X,Y )∪{1}, hence g(A,B) = 〈h(A), h(B)〉.315

One can easily observe that h is a
∧

-morphism, i.e. a morphism that preserves316

arbitrary infima, of the residuated lattice L in L. Furthermore, h(I1) = I+
1317

since whenever I1(x, y) ≥ a, then I1(x, y) = a and thus I+
1 (x, y) = 1 = h(a) =318

h(I1(x, y)); and if I1(x, y) < a then h(I1(x, y)) = I1(x, y) = I+
1 (x, y). Accord-319

ing to Theorem 3.2 of [3], g is a complete homomorphism of B(X,Y, I1) onto320

B(X,Y, I+
1 ).321
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Let 1C 6= ∅ and 1D 6= ∅. We need to show that the set g−1(C,D) equals322

{〈C−, D−〉, 〈C−, D−〉}. Clearly, due to Lemma 2 and the definition of h, we323

have 〈C−, D−〉, 〈C−, D−〉 ∈ g−1(C,D). Furthermore, 〈C−, D−〉 is the least324

element of g−1(C,D). Namely, if g(A,B) = 〈C,D〉, we have for any x ∈ X the325

following two possibilities. Either C(x) < 1 in which case C(x) < a, because326

C(x) attains only values in I+
1 (X,Y ) and the largest one below 1 is strictly327

smaller than a, from which it follows that A(x) = h(A(x)) = C(x) = C−(x); or328

C(x) = 1 from which it follows that A(x) ≥ a = C−(x). As a result, C− ⊆ A,329

whence 〈C−, D−〉 ≤ 〈A,B〉. In a similar manner we get that 〈C−, D−〉 is the330

largest element of g−1(C,D). Therefore, it now suffices to show that there is331

no 〈A,B〉 ∈ B(X,Y, I1) for which 〈C−, D−〉 < 〈A,B〉 < 〈C−, D−〉. If this332

were the case, we would have A(x1) = 1 and A(x2) = a for some x1, x2 for333

which C(x1) = C(x2) = 1 and B(y1) = 1 and B(y2) = a for some y1, y2 for334

which D(x1) = D(x2) = 1. But this is impossible since then 1 = B(y1) =335 ∧
x∈X A(x)→ I1(x, y1) from which we get A(x1)→ I1(x1, y1) = 1, i.e. A(x1) ≤336

I1(x1, y1). Since A(x1) = 1, we get I1(x1, y1) = 1, a contradiction to the fact337

that I1(x, y) ≤ a for every x and y.338

Let 1C = ∅. We need to show that g−1(C,D) = {〈C,D〉} in this case.339

Lemma 2 (3) implies that 1D 6= ∅. Clearly, we have 〈C−, D−〉 = 〈C,D〉 and340

due to Lemma 2 (2), 〈C,D〉 = 〈C−, D−〉 ∈ g−1(C,D). Observe now that since341

1C = ∅, C is the only fuzzy set A for which h(A) = C. As a result, 〈C,D〉 is342

the only element of g−1(C,D). If 1D = ∅, we proceed analogously and obtain343

g−1(C,D) = {〈C,D〉}.344

The last claim to prove, i.e. that g(A,B) = 〈C,D〉 implies A ≡ C and345

B ≡ D, is immediate.346

The following is a counterpart of Theorem 1 for the assumption of I1 ≡ I2347

but not I1 ≡{1} I2. Without loss of generality we assume that I2(x, y) = 1 for348

some x and y. Let for the corresponding f+
I1,I2

and 〈C,D〉 ∈ B(X,Y, I2) define349

the fuzzy sets Cf , C
f ∈ LX and Df , D

f ∈ LY by350

Cf (x) = min(f+
I1,I2

)−1(C(x)), Df (y) = max(f+
I1,I2

)−1(D(y))

and351

Cf (x) = max(f+
I1,I2

)−1(C(x)), Df (y) = min(f+
I1,I2

)−1(D(y)),

for every x ∈ X and y ∈ Y , where min(f+
I1,I2

)−1(C(x)) is the smallest a ∈ L352

for which f+
I1,I2

(a) = C(x) and analogously for the other cases. Observe that if353

I2 = I+
1 then Cf = C−, Df = D−, Cf = C−, and Df = D−, cf. (7) and (8).354

Theorem 3. Let I1 ≡ I2 but not I1 ≡{1} I2, let I2(x, y) = 1 for some x and y.355

Then the mapping g defined by356

g(A,B) = 〈f+
I1,I2

(A), f+
I1,I2

(B)〉

is a complete homomorphism of B(X,Y, I1) onto B(X,Y, I2) for which g−1(C,D)357

is a singleton or a two-element interval in B(X,Y, I1) for each 〈C,D〉 ∈ B(X,Y, I2);358

12



in particular:359

g−1(C,D) =

{
{〈Cf , Df 〉, 〈Cf , Df 〉} if 1C 6= ∅ and 1D 6= ∅,
{〈Cf , Df 〉} = {〈Cf , Df 〉} otherwise.

Moreover, if g(A,B) = 〈C,D〉 then A ≡ C and B ≡ D.360

Proof. The claim follows from Lemma 3 and Theorem 1. Namely, consider I+
1

and the homomorphism g1 : B(X,Y, I1)→ B(X,Y, I+
1 ) from Lemma 3. Since I+

1

clearly satisfies I+
1 ≡{1} I2, Theorem 1 implies the existence of an isomorphism

g2 : B(X,Y, I+
1 ) → B(X,Y, I2). The composition g of g1 and g2 satisfies the

required properties, which is an easy consequence of Lemma 3; Theorem 1; the
fact that 1C 6= ∅ if and only if 1(f−1

I+1 ,I2
◦ C) 6= ∅ and the same for D; and due to

〈Cf , Df 〉 = 〈(f−1

I+1 ,I2
◦ C)−, (f

−1

I+1 ,I2
◦D)−〉

and

〈Cf , Df 〉 = 〈(f−1

I+1 ,I2
◦ C)−, (f−1

I+1 ,I2
◦D)−〉.

361

It is easy to see that Theorem 1 and Theorem 3 may be brought into one362

theorem assuming the weaker condition I1 ≡ I2 and handling both cases, I1 ≡{1}363

I2 and not I1 ≡{1} I2, because if I1 ≡{1} I2 then as one easily checks, 〈Cf , Df 〉 =364

〈Cf , Df 〉.365

Remark 1. The homomorphism g from Theorem 3 may be considered an366

“almost isomorphism” because only certain concepts of B(X,Y, I2) have non-367

singleton preimages and these are two-element intervals. Those intervals con-368

sist of two very similar formal concepts because one is brought to the other by369

switching 1s and as, where a is a truth degree smaller than 1 but larger than370

any other truth degree involved in these formal concepts. Moreover, it is easy to371

see that the mapping sending each 〈C,D〉 to 〈Cf , Df 〉 as well as the one sending372

each 〈C,D〉 to 〈Cf , Df 〉 are order embeddings of B(X,Y, I2) to B(X,Y, I1).373

Example 4. In this example, we illustrate Theorem 3, as well as Lemma 2 and374

Lemma 3. Consider the fuzzy relations I, J , and K from Example 1 (see also375

Example 3). Put I1 = I and I2 = K. As I ≡ K, I 6≡{1} K, and 1 6∈ I(X,Y ),376

Lemma 2, Lemma 3 and Theorem 3 apply. Notice first that in (5), we have377

a = 3/4, x = x1, and y = y1. Therefore, the relation I+
1 defined by (6) coincides378

with J . For the mapping f+

I1,I
+
1

= f+
I,J of I(X,Y ) ∪ {1} to J(X,Y ) ∪ {1} we379

have380

f+

I1,I
+
1

(0) = 0, f+

I1,I
+
1

(1/4) = 1/4, f+

I1,I
+
1

(3/4) = 1, and f+

I1,I
+
1

(1) = 1.

According to Lemma 3, f+

I1,I
+
1

induces a complete onto homomorphism, denoted381

here g1, of B(X,Y, I1) into B(X,Y, I+
1 ). The Hasse diagrams of B(X,Y, I1) and382

B(X,Y, I+
1 ) along with g1 are depicted in the left part of Fig. 1. Since I+

1 = J383

and I2 = K, Example 3 tells us that there exists an isomorphism of B(X,Y, I+
1 )384

onto B(X,Y, I2), denoted here g2. This isomorphism is depicted in the right part385
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Figure 1: Concept lattices and homomorphisms from Example 4.

of Fig. 1. The complete homomorphism g of B(X,Y, I1) onto B(X,Y, I2) from386

Theorem 3 results as the composition of g1 and g2 (cf. also the proof of Theorem387

3). Notice that according to Theorem 3, the formal concept 〈C,D〉 = 〈10, 1 1
2 〉388

of B(X,Y, I2) has two preimages, 〈Cf , Df 〉 = 〈 340, 1 1
4 〉 and 〈Cf , Df 〉 = 〈10, 3

4
1
4 〉,389

while every other formal concept in B(X,Y, I2) has a single preimage.390

4. Conclusions391

We proved that if two data tables with fuzzy attributes are ordinally equiv-392

alent, i.e. one may be brought to the other by means of an increasing function,393

the associated concept lattices based on Gödel fuzzy logic connectives are almost394

isomorphic (cf. Remark 1) and consist of ordinally equivalent formal concepts.395

If, moreover, the tables agree on entries with degree 1, representing that the at-396

tribute fully applies to the object, the concept lattices are isomorphic. We also397

showed that the assumption of Gödel operations is essential. The results confirm398

the experience of practitioners using fuzzy logic, sometimes articulated in an in-399

formal manner, that with Gödel connectives, what matters is the ordering of400

the truth degrees involved. This paper illustrates that such intuition, as well as401

further issues related to the general question of the significance of values of truth402

degrees, may properly be addressed from the standpoint of measurement theory.403

The paper suggests that from the practical viewpoint, measurement-theoretic-404

like results may provide a guide to the choice of fuzzy logic connectives. In case405

of the results presented in this paper, a user is told to use Gödel operations if406

the prospect of ordinally equivalent data leading to isomorphic concept lattices407
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is appealing or required. In this perspective, one stream of possible future re-408

search includes the investigation of a similar kind of results regarding further409

fuzzy logic connectives in more general settings of formal concept analysis such410

as those proposed in [6, 9, 10, 20, 23], as well as in fuzzy logic modeling of con-411

cepts in general [7, 8]. In a broader perspective, examination of the problems412

addressed in this paper in a broader context of fuzzy logic modeling seems a413

much needed project.414
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