On the regularity of MV-algebras and Wajsberg hoops

Radim Bělohlávek

University of Ostrava, Bráfova 7, CZ-701 03 Ostrava, Czech Republic, e-mail: belohlav@osu.cz

1991 Mathematics Subject Classification: 08A30, 08A40, 08B05

An algebra **A** is called *congruence regular* iff each congruence of **A** is determined by each of its classes, i.e. iff $[a]_{\theta} = [a]_{\phi}$ implies $\theta = \phi$ for every $\theta, \phi \in \text{Con } \mathbf{A}$ and each $a \in A$. A variety of algebras is congruence regular iff each of its members has this property. Congruence regular varieties have been characterized in [7, 8, 10]: A variety \mathcal{V} is congruence regular iff there are ternary terms t_1, \ldots, t_n (referred to as regularity terms) such that $[t_1(x, y, z) = z, \ldots, t_n(x, y, z) = z]$ iff x = y. Examples of regular varieties are quasigroups, groups, rings, Boolean algebras. All these algebras have a single regularity term, i.e. one may put n = 1 in the above characterization $(y/(z \setminus x)$ for quasigroups, $x \cdot y^{-1} \cdot z$ for groups etc.). The aim of this note is to show that MV-algebras (and more generally, Wajsberg hoops) are regular but don't have a single regularity term.

MV-algebras have been introduced as the algebraic counterpart of Lukasiewicz logic [5]. An MV-algebra is an algebra $\mathbf{A} = \langle A, \oplus, \neg, 0 \rangle$ with an associative, commutative binary operation \oplus with a neutral element 0, and a unary operation \neg satisfying $\neg \neg x = x$, $x \oplus \neg 0 = \neg 0$, $\neg (\neg x \oplus y) \oplus y =$ $\neg (\neg y \oplus x) \oplus x$. Putting $x \odot y = \neg (\neg x \oplus \neg y)$ we get a dual operation (associative, commutative, with the neutral element $1 = \neg 0$). A lattice order \leq is induced in each MV-algebra by $x \leq y$ iff $\neg x \oplus y = 1$ (suprema and infima are expressible by MV-algebra operations: $x \land y = x \odot (\neg x \oplus y)$ and $x \lor y = (x \odot \neg y) \oplus y$).

A hoop is a partially ordered commutative (dually) residuated (dually) integral monoid $\mathbf{A} = \langle A, \oplus, 0, \leq \rangle$ (i.e. $\langle A, \oplus, 0 \rangle$ is a monoid, $\langle A, \leq \rangle$ is a poset with the least element $0, \oplus$ is isotone w.r.t. \leq , and for any $a, b \in A$ there exists the least element c (denoted by a - b) satisfying $a \leq b \oplus c$) such that for every $a, b \in A$ we have $a \leq b$ iff $b = a \oplus c$ for some $c \in A$ (see e.g. [3]). The class of all hoops as algebras with operations $\oplus, -, 0$ forms a variety [3, p. 295]. Any MV-algebra is a hoop where $x - y = x \odot \neg y$. An arbitrary hoop can be embedded into a $\langle \oplus, -, 0 \rangle$ -reduct of an MV-algebra iff it satisfies (x - y) - y = (y - x) - x (combine [3, Proposition 4. 1] and [2, Proposition 1. 14]).

Theorem The variety of all MV-algebras is regular, however, it does not have a single regularity term.

Proof. Putting $t_1(x, y, z) = (z \oplus (x \odot \neg y)) \lor (z \oplus (\neg x \odot y)), t_2(x, y, z) = (z \odot (\neg x \oplus y)) \land (z \odot (x \oplus \neg y))$ we obtain regularity terms. Indeed, one easily verifies that $t_1(x, x, z) = (z \oplus 0) \lor (z \oplus 0) = z$ and $t_2(x, x, z) = (z \odot \neg 0) \land (z \odot \neg 0) = z$. On the other hand, by Chang's subdirect representation theorem [6], each MV-algebra is a subdirect product of linearly ordered MV-algebras. Therefore, to see that $t_1(x, y, z) = t_2(x, y, z) = z$ implies x = y, one may assume that **A** is linearly ordered. If z = 1 then from $t_2(x, y, 1) = 1$ we infer $\neg x \oplus y = 1$ and $x \oplus \neg y = 1$, i.e. $x \leq y$ and $y \leq x$, thus x = y. If z < 1, then, by $t_1(x, y, z) = z, z \oplus (x \odot \neg y) = z < 1$ and $z \oplus (\neg x \odot y) = z < 1$. From the first inequality we get $\neg z \nleq (x \odot \neg y)$ and thus $(x \odot \neg y) < \neg z$ by linearity. Now, $(x \odot \neg y) = \neg z \land (x \odot \neg y) = \neg z \odot (z \oplus (x \odot \neg y)) = \neg z \odot z = 0$, therefore $\neg x \oplus y = \neg (x \odot \neg y) = 1$, i.e. $x \leq y$. Similarly one obtains $y \leq x$ which gives x = y. We have proved that the variety of all MV-algebras is regular (this fact was proved (not by finding regularity terms) as a byproduct in an unpublished paper by L. P. Belluce [1]).

If there would be a single regularity term t(x, y, z) then the term q(x, y) =t(1, x, y) would satisfy q(x, y) = y iff x = 1 (a single local regularity term, see [4]). We show that such a term does not exist. Assume the contrary. Take the prototypic MV-algebra **A** with A = [0, 1] (real numbers between 0 and 1), $x \oplus y = \min(1, x + y), \neg x = 1 - x$. Consider the cube $[0, 1]^3$, the term function $q^{\mathbf{A}}$ induced by q(x, y), and the function $r = \{ \langle a, b, b \rangle | a, b \in [0, 1] \}$ splitting the cube (square-cut of $[0,1]^3$). Due to q(1,y) = y, q^A and r intersect in the line joining the vertices (1,0,0) and (1,1,1). Since $q(x,y) \neq y$ for $x \neq 1$, $q^{\mathbf{A}}$ and r intersect in no other point of r. It is immediate and well-known that $q^{\mathbf{A}}$ is a continuous function. If there would be some $\langle a_1, b_1 \rangle, \langle a_2, b_2 \rangle \in (0, 1] \times [0, 1]$ such that $q^{\mathbf{A}}(a_1, b_1) < r(a_1, b_1)$ and $q^{\mathbf{A}}(a_2, b_2) > r(a_2, b_2)$ or $q^{\mathbf{A}}(a_1, b_1) > r(a_1, b_1)$ and $q^{\mathbf{A}}(a_2, b_2) < r(a_2, b_2)$ then there would be another point of intersection of $q^{\mathbf{A}}$ and r, by elementary calculus. Therefore, $q^{\mathbf{A}}(a,b)$ for a < 1 have to lie all strictly below or all strictly above the square-cut r. An easy inspection shows that this is impossible.

Remark. (1) As in the case of quasigroups, groups etc., the variety of all MV-algebras is also congruence permutable, i.e. $\theta \circ \phi = \phi \circ \theta$ holds for every $\theta, \phi \in \text{Con } \mathbf{A}$ and each MV-algebra \mathbf{A} . Indeed, the term $p(x, y, z) = (x \odot (\neg y \oplus z)) \lor ((x \oplus \neg y) \odot z)$ satisfies p(x, y, y) = x and p(x, x, y) = y, i.e. p(x, y, z) is a Mal'cev permutability term [9]. Moreover, due to the lattice structure of MV-algebras, the congruence lattice of each MV-algebra is distributive. Clearly, the non-existence of a single regularity term implies that there are no MV-algebra terms which would make the MV-algebra into a quasigroup, group, Boolean algebra etc. (in general, an algebra which has a single regularity term).

(2) A closer look at the regularity terms used in the proof reveals that they can be expressed using only hoop operations \oplus and -, namely, $t_1(x, y, z) = (z \oplus (x - y)) \lor (z \oplus (y - x))$ and $t_2(x, y, z) = (z - (x - y)) \land (z - (y - x))$ (note that $x \land y = x - (x - y)$ and $x \lor y = (x - y) \oplus y$). Due to the above mentioned embedding property we therefore have a stronger result: the variety of all Wajsberg hoops is congruence regular (and does not have a single regularity term).

Acknowledgement. The author is indebted to the referee for valuable comments, esp. for suggesting Remark (2). Partial support by grant no. 201/99/P060 of the GAČR and grant no. 014/99 of IGS OU is also acknowledged.

- [1] Belluce L. P.: Personal communication (1999).
- [2] Blok W. J., Ferreirim I. M. A.: On the structure of hoops. Algebra Universalis (to appear).
- [3] Blok W. J., Raftery J. G.: Varieties of commutative residuated integral pomonoids and their residuation subreducts. J. Algebra 190(1997), 280– 328.
- [4] Chajda I.: Locally regular varieties. Acta Sci. Math. (Szeged) 64(1998), 431–435.
- [5] Chang C.C.: Algebraic analysis of many-valued logics. Trans. A.M.S. 88(1958), 467–490.
- [6] Chang C. C.: A new proof of completeness of the Łukasiewicz axioms. Trans. A.M.S. 93(1959), 74–90.
- [7] Csákány B.: Characterizations of regular varieties. Acta Sci. Math. (Szeged) 31(1970), 187–189.
- [8] Grätzer G.: Two Mal'cev-type theorems in universal algebra. J. Comb. Theory 8(1970), 334-342.
- [9] Mal'cev A.I.: On the general theory of algebraic systems (Russian). Matem. Sbornik 35(1954), 3-20.
- [10] Wille R.: Kongruenzklassengeometrien. Lecture Notes in Mathematics, vol. 113, Springer-Verlag, 1970.