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An algebra A is called congruence regular iff each congruence of A is de-
termined by each of its classes, i.e. iff [alg = [a], implies 6 = ¢ for every
0, € ConA and each a € A. A variety of algebras is congruence regu-
lar iff each of its members has this property. Congruence regular varieties
have been characterized in [7, 8, 10]: A variety V is congruence regular iff
there are ternary terms tj,...,%, (referred to as regularity terms) such that
[ti(z,y,2) = 2,...,ty(z,y,2) = 2] iff © = y. Examples of regular varieties are
quasigroups, groups, rings, Boolean algebras. All these algebras have a single
regularity term, i.e. one may put n = 1 in the above characterization (y/(z\x)
for quasigroups, z-y ! -z for groups etc.). The aim of this note is to show that
MV-algebras (and more generally, Wajsberg hoops) are regular but don’t have
a single regularity term.

MV-algebras have been introduced as the algebraic counterpart of
Lukasiewicz logic [5]. An MV-algebra is an algebra A = (A, ®,—,0) with
an associative, commutative binary operation @ with a neutral element 0, and
a unary operation - satisfying ——z = z, £ ® -0 = =0, 2(~z D y) Dy =
“(—y@x)@x. Putting 2@y = ~(—2® —y) we get a dual operation (associative,
commutative, with the neutral element 1 = —=0). A lattice order < is induced in
each MV-algebra by z < y iff =2 @ y = 1 (suprema and infima are expressible
by MV-algebra operations: Ay =z 0 (-nz®y) and z Vy = (2 © ~y) & y).

A hoop is a partially ordered commutative (dually) residuated (dually) in-
tegral monoid A = (A,®,0,<) (i.e. (4,8,0) is a monoid, (A, <) is a poset
with the least element 0, @ is isotone w.r.t. <, and for any a,b € A there
exists the least element ¢ (denoted by a — b) satisfying a < b @ c) such that
for every a,b € A we have a < b iff b = a @ ¢ for some ¢ € A (see e.g. [3]).
The class of all hoops as algebras with operations @, —,0 forms a variety [3,
p. 295]. Any MV-algebra is a hoop where £ — y = 2 ® —y. An arbitrary
hoop can be embedded into a (@, —,0)-reduct of an MV-algebra iff it satisfies
(x —y) —y = (y — ) — = (combine [3, Proposition 4. 1] and [2, Proposi-
tion 1. 14]).

Theorem The variety of all MV-algebras is reqular, however, it does not have
a single reqularity term.



Proof. Putting t1(z,y,2) = (2 ® (z © ~y)) V (2 & (- O y)), t2(z,y,2) = (2 ©
(mz®y)) A (2 ® (z@—y)) we obtain regularity terms. Indeed, one easily verifies
that ¢1(z,2,2) = (2®0) V(28 0) = 2z and ta(z,2,2) = (2 ® =0) A (z © =0) = 2.
On the other hand, by Chang’s subdirect representation theorem [6], each MV-
algebra is a subdirect product of linearly ordered MV-algebras. Therefore, to
see that ¢1(x,y,z) = to(x,y,2) = z implies £ = y, one may assume that A
is linearly ordered. If z = 1 then from t9(x,y,1) = 1 we infer -z y = 1
and z @ -y = 1, ie. o < yandy < x, thus v = y. If z < 1, then, by
bz, y,2) =2, 2®(x@-y)=2<1land 26 (-x ®y) = z < 1. From the first
inequality we get -z £ (z ® —y) and thus (z ® —y) < —z by linearity. Now,
(@) = 2A(z0y) =202 (x0w) =20z =0, therefore
2@y =—(r®-y) =1, e x <y. Similarly one obtains y < z which gives
x = y. We have proved that the variety of all MV-algebras is regular (this fact
was proved (not by finding regularity terms) as a byproduct in an unpublished
paper by L. P. Belluce [1]).

If there would be a single regularity term ¢(x,y, z) then the term ¢(z,y) =
t(1,z,y) would satisty ¢g(z,y) = y iff z = 1 (a single local regularity term,
see [4]). We show that such a term does not exist. Assume the contrary. Take
the prototypic MV-algebra A with A = [0,1] (real numbers between 0 and 1),
r®y =min(l,r +y), -~z = 1 — z. Consider the cube [0, 1]?, the term function
¢® induced by ¢(z,y), and the function r = {{a,b,b) | a,b € [0,1]} splitting the
cube (square-cut of [0,1]*). Due to ¢(1,y) = y, ¢* and r intersect in the line
joining the vertices (1,0,0) and (1,1,1). Since q(z,y) #y for z # 1, ¢® and r
intersect in no other point of r. It is immediate and well-known that ¢® is a
continuous function. If there would be some (a1, b1), (az,b2) € (0,1] x [0, 1] such
that ¢*(a1,b1) < r(a1,b1) and ¢ (ag,b2) > r(ag, by) or ¢™(a1,b1) > r(ay,br)
and ¢ (a9, bo) < r(ag,by) then there would be another point of intersection of
¢® and r, by elementary calculus. Therefore, ¢®(a,b) for a < 1 have to lie all
strictly below or all strictly above the square-cut r. An easy inspection shows
that this is impossible. O

Remark. (1) As in the case of quasigroups, groups etc., the variety of all
MV-algebras is also congruence permutable, i.e. 8 o ¢ = ¢ o 6 holds for every
0,¢ € Con A and each MV-algebra A. Indeed, the term p(z,y,2) = (z© (-y &
2))V ((z @ ~y) ® z) satisfies p(x,y,y) = z and p(z,z,y) =y, i.e. p(z,y,2) is a
Mal’cev permutability term [9]. Moreover, due to the lattice structure of MV-
algebras, the congruence lattice of each MV-algebra is distributive. Clearly, the
non-existence of a single regularity term implies that there are no MV-algebra
terms which would make the MV-algebra into a quasigroup, group, Boolean
algebra etc. (in general, an algebra which has a single regularity term).

(2) A closer look at the regularity terms used in the proof reveals that they
can be expressed using only hoop operations @ and —, namely, t1(z,y,2) =
(28 @~ y) V(26 (y o) and ta(a,y,2) = (2 = (x = y)) A (z = (y @)
(note that t Ay =z — (x — y) and zVy = (x — y) ®y). Due to the
above mentioned embedding property we therefore have a stronger result: the
variety of all Wajsberg hoops is congruence regular (and does not have a single
regularity term).
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