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Abstract. Presented is a reduction of fuzzy Galois connections and fuzzy concept lattices

to (crisp) Galois connections and concept lattices: each fuzzy concept lattice can be viewed

as a concept lattice (in a natural way). As a result, a simple proof of the characterization

theorem for fuzzy concept lattices is obtained. The reduction enables us to apply the results

worked out for concept lattices to fuzzy concept lattices.
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1. Introduction

The idea of extraction of information from a given data (recently referred to as data mining)

has a long tradition. Coming to the question of the form of the extracted information one

certainly feels as appealing the idea of methods producing information in the form of human

reasoning-like structures. An interesting method of this kind is the formal concept analysis

(called also the theory of concept lattices) being developed since the early 1980’s by a group led

by R. Wille at TU Darmstadt (see [17] for the first paper and [9] for mathematical foundations).

The input data (so called formal context) is a binary relation between a set of objects and a set

of attributes. The main goal is to reveal the hierarchical structure of formal concepts (in the
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sense of Port-Royal logic) hidden in the input data and to investigate the dependencies among

attributes. From the point of view of mathematics, although the basic construction yielding the

structure of concepts is not new (it is the construction of Birkhoff’s lattice of closed sets of a

given polarity [7]), several interesting lattice-theoretical results have been obtained [9].

It is appealing from the point of view of fuzzy set theory [18] that the input relation between

objects and attributes be fuzzy rather than sharp (two-valued). A first attempt to generalize the

basic notions and results has been undertaken in [8]. Independently, a more general approach

(in that the structure of truth values forms a complete residuated lattice) has been proposed

and further pursued in [2, 3, 4, 5] (see also the survey in [6]).

The basic result of the theory of concept lattices, the so called Main theorem of concept

lattices [17], characterizes the structure of formal concepts in a given formal context. This

result has been generalized for the fuzzy case in [4]. The main aim of this paper is to present

a reduction of fuzzy concept lattices to (two-valued) concept lattices. More precisely, we show

that each fuzzy concept lattice can be viewed as a (two-valued) concept lattice. The idea results

into a simple proof of the generalized version [4] of the Main theorem. In fact, we prove a bit

more general statements about fuzzy Galois connections. As a consequence, several results of

the theory of concept lattices can be almost directly applied to fuzzy concept lattices. However,

this does not mean that all questions about fuzzy concept lattices are reducible to questions

about concept lattices. Namely, in the fuzzy case there are several relevant phenomena (e.g.

similarity, logical precision etc. [5, 6]) which are degenerate, and therefore hidden, in the case of

(two-valued) concept lattices.

2. Fuzzy concept lattices

A fuzzy set [18] is a mapping from a universal set into an appropriate structure of truth values.

We use complete residuated lattices as structures of truth values.

Definition 2.1. A complete residuated lattice is an algebra L = 〈L,∧,∨,⊗,→, 0, 1〉 such that

(1) 〈L,∧,∨, 0, 1〉 is a complete lattice with the least element 0 and the greatest element 1,

(2) 〈L,⊗, 1〉 is a commutative monoid, i.e. ⊗ is commutative, associative, and x⊗1 = x holds

holds for each x ∈ L, and

(3) ⊗,→ form an adjoint pair, i.e.

x ⊗ y ≤ z iff x ≤ y → z (1)

holds for all x, y, z ∈ L.

For properties of complete residuated lattices we refer to [11, 13], for their role in fuzzy logic

(in narrow sense) we refer to [12, 14, 15].

The most studied and applied set of truth values is the real interval [0, 1] with a ∧ b =

min(a, b), a∨b = max(a, b), and with three important pairs of adjoint operations: the  Lukasiewicz

one (a⊗b = max(a+b−1, 0), a → b = min(1−a+b, 1)), Gödel one (a⊗b = min(a, b), a → b = 1
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if a ≤ b and = b else), and product one (a⊗ b = a · b, a → b = 1 if a ≤ b and = b/a else). For the

role of these “building stones” in fuzzy logic see [12]. Another important set of truth values is

the set {a0 = 0, a1, . . . , an = 1} (a0 < · · · < an) with ⊗ given by ak ⊗ al = amax(k+l−n,0) and the

corresponding → given by ak → al = amin(n−k+l,n). A special case of the latter algebras is the

Boolean algebra 2 of classical logic with the support 2 = {0, 1}. Moreover, each left-continuous

t-norm ⊗ (i.e. a mononotone, commutative, associative operation on [0, 1] with 1 as the unit)

makes [0, 1] a complete residuated lattice by putting a → b =
∨

{c | a ⊗ c ≤ b}. Note that each

of the preceding residuated lattices is complete.

A nonempty subset K ⊆ L is called a ≤-filter if for every a, b ∈ L such that a ≤ b it holds

that b ∈ K whenever a ∈ K. Unless otherwise stated, in what follows we denote by L a complete

residuated lattice and by K a ≤-filter in L.

An L-set (fuzzy set) [18, 10] A in a universe set X is any map A : X → L. The element

A(x) ∈ L is interpreted as the truth value of the fact “x belongs to A”. The concept of L-

relation is defined obviously. By LX we denote the set of all L-sets in X. Operations on L

extend pointwise to LX , e.g. (A ∨ B)(x) = A(x) ∨ B(x) for A,B ∈ LX . Following common

usage, we write A∪B instead of A∨B, etc. Given A,B ∈ LX , the subsethood degree [10] S(A,B)

of A in B is defined by S(A,B) =
∧

x∈X A(x) → B(x). We write A ⊆ B if S(A,B) = 1. Clearly,

2-sets are the characteristic functions of (classical) sets. In the following we identify 2-sets with

sets. By { a/x} (where a ∈ L, x ∈ X) we denote a so-called singleton, i.e. an L-set A in X such

that A(x) = a and A(y) = 0 for y 6= x.

A (formal) L-context (fuzzy context) is a tripple 〈X,Y, I〉 where I is a binary L-relation

between the sets X and Y , i.e. I ∈ LX×Y . X, Y , and I are interpreted as the set of objects,

the set of attributes, and the relation “to have”, i.e. I(x, y) is the truth degree of the fact that

the object x has the attribute y. By Port-Royal logic [1], a concept is determined by its extent,

i.e. a collection of all objects covered by the concept, and by its intent, i.e. a collection of

all attributes covered by the concept. The extent and intent of a concept have to satisfy the

following conditions: (a) the intent is the collection of all attributes shared by all objects of the

extent, and (b) the extent is the collection of all objects having all the attributes of the intent.

As an example, the extent of the concept DOG is the collection of all dogs, while its intent is

the collection of all attributes of dogs such as “to be a mammal”, “to bark” etc. Let A ∈ LX

be a fuzzy set of objects. A straightforward consideration shows (see e.g. [3, 6]) that the fuzzy

set of al attributes of Y shared by all objects of A is the fuzzy set A↑I ∈ LY given by

A↑I (y) =
∧

x∈X

(A(x) → I(x, y)). (2)

Similarly, given a fuzzy set B ∈ LY of attributes, the fuzzy set B↓I ∈ LX of all objects having

all the attributes of B is given by

B↓I (x) =
∧

y∈Y

(B(y) → I(x, y)). (3)

In what follows we omit the subscript I if it is obvious. The direct formalization of Port-Royal

ideas yields therefore the following definition: A (formal) L-concept (fuzzy concept) in a given
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fuzzy context 〈X,Y, I〉 is a pair 〈A,B〉 of A ∈ LX (extent) and B ∈ LY (intent) such that

A↑ = B and B↓ = A. The set B (X,Y, I) = {〈A,B〉 ∈ LX × LY | A↑ = B,B↓ = A} of all

fuzzy concepts is called an L-concept lattice (fuzzy concept lattice) given by the fuzzy context

〈X,Y, I〉. The term lattice is justified by the fact that the relation ≤ defined on B (X,Y, I) by

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (or iff B2 ⊆ B1)

makes B (X,Y, I) into a complete lattice [4]. A moment reflection shows that ≤ models in a

natural way the conceptual hierarchy, i.e. 〈A1, B1〉 ≤ 〈A2, B2〉 means that the concept 〈A2, B2〉

is more general than 〈A1, B1〉 (〈A1, B1〉 is more specific than 〈A2, B2〉).

3. Reduction of fuzzy concept lattices to concept lattices

For L = 2 (two-element Boolean algebra), the notions of L-concept and L-concept lattice coin-

cide (modulo identifying 2-sets with sets) with the notions of concept and concept lattice [17].

Our aim now is to show that each L-concept lattice can be viewed as a concept lattice. As

a result, we obtain a simple proof of the theorem characterizing L-concept lattices. The proof

makes a use of the Main theorem of concept lattices [17] the non-trivial part of which is the

following assertion.

Proposition 3.1. For a binary relation I ⊆ X × Y , B (X,Y, I) is a complete lattice w.r.t. ≤.

Moreover, an arbitrary complete lattice V = 〈V,≤〉 is isomorphic to B (X,Y, I) iff there are

mappings γ : X → V , µ : Y → V such that γ(X) is
∨

-dense in V, µ(Y ) is
∧

-dense in V, and

γ(x) ≤ µ(y) iff 〈x, y〉 ∈ I.

Note that V ′ ⊆ V is
∨

-dense (
∧

-dense) in V if each v ∈ V is the supremum (infimum) of

some subset of V ′.

L-concept lattices may also be viewed as lattices of fixed points of L-Galois connections.

Definition 3.1. Let K be a ≤-filter. An LK-Galois connection (fuzzy Galois connection) be-

tween the sets X and Y is a pair 〈↑, ↓〉 of mappings ↑ : LX → LY , ↓ : LY → LX , satisfying

S(A1, A2) ≤ S(A↑
2, A

↑
1) whenever S(A1, A2) ∈ K (4)

S(B1, B2) ≤ S(B↓
2 , B↓

1) whenever S(B1, B2) ∈ K (5)

A ⊆ (A↑)↓ (6)

B ⊆ (B↓)↑ . (7)

for every A,A1, A2 ∈ LX , B,B1, B2 ∈ LY .

LL-Galois connections are called L-Galois connections. Note that Galois connections between

sets [7] are just 2-Galois connections. Given an LK-Galois connection 〈↑, ↓〉 between X and Y ,

we call a fixed point of 〈↑, ↓〉 each pair 〈A,B〉 of A ∈ LX and B ∈ LY such that A↑ = B

and B↓ = A; furthermore, we denote by B
(

X,Y, 〈↑, ↓〉
)

the set of all fixed points of 〈↑, ↓〉, i.e.
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B
(

X,Y, 〈↑, ↓〉
)

= {〈A,B〉 ∈ LX × LY | A↑ = B,B↓ = A}. Since 〈↑, ↓〉 is a Galois connection

between the complete lattices 〈LX ,⊆〉 and 〈LY ,⊆〉 [7, 16], B
(

X,Y, 〈↑, ↓〉
)

is a complete lattice

w.r.t. ≤ defined by 〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (iff B2 ⊆ B1), see e.g. [6].

Recall now the result obtained in [3] which implies that each L-concept lattice is in fact a

lattice of fixed points of some L-Galois connection, and vice-versa.

Proposition 3.2. For a binary L-relation I ∈ LX×Y denote 〈↑I , ↓I 〉 the mappings defined for

A ∈ LX , B ∈ LY by (2) and (3). For an L-Galois connection 〈↑, ↓〉 between X and Y denote

by I〈↑,↓〉 the binary L-relation I ∈ LX×Y defined for x ∈ X, y ∈ Y by I(x, y) = { 1/x}↑(y) (=

{ 1/y}↓(x)). Then 〈↑I , ↓I 〉 is an L-Galois connection and it holds 〈↑, ↓〉 = 〈
↑I

〈↑,↓〉 ,
↓I

〈↑,↓〉 〉 and I =

I〈↑I ,↓I 〉.

Since 1 ∈ K holds for each ≤-filter K, each LK-Galois connection is also an L{1}-Galois

connection. We are going to show that L{1}-Galois connections between X and Y are in one-

to-one correspondence with special 2-Galois connections between X × L and Y × L. Note that

each L-set A ∈ LX is in fact a subset of X × L, i.e. A ⊆ X × L. However, the usual set-

theoretical operations with L-sets defined componentwise (which is usual in fuzzy set theory)

do not coincide with the operations defined on L-sets as on subsets of X × L. In order to have

such a correspondence, one may proceed as follows.

Definition 3.2. Call a subset A ⊆ X × L (L-set)-representative if (1) for each x ∈ X it holds

〈x, a〉 ∈ A and b ≤ a implies 〈x, b〉 ∈ A, and (2) for each x ∈ X the set {a ∈ L | 〈x, a〉 ∈ A} has

the greatest element.

For any L-set A ∈ LX put

⌊A⌋ = {〈x, a〉 ∈ X × L | a ≤ A(x)}. (8)

For any A ⊆ X × L put

⌈A⌉ = {〈x, a〉 ∈ X × L | a =
∨

〈x,b〉∈A

b}. (9)

The following lemma is immediate.

Lemma 3.1. Let A ∈ LXbe an L-set, A′ ⊆ X×L be a representative set. Then (1) ⌊A⌋ ⊆ X×L

is an representative set, (2) ⌈A′⌉ is an L-set such that (3) A = ⌈⌊A⌋⌉, A′ = ⌊⌈A′⌉⌋.

Definition 3.3. A 2-Galois connection 〈∧, ∨〉 between X ×L and Y × L is called commutative

w.r.t. ⌊⌈ ⌉⌋ if

⌊⌈A⌉⌋∧ = ⌊⌈A∧⌉⌋ and ⌊⌈B⌉⌋∨ = ⌊⌈B∨⌉⌋ (10)

holds for each A ∈ X × L, B ∈ Y × L.
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Remark 3.1. Note that ⌊⌈A⌉⌋∧ ⊆ A∧ ⊆ ⌊⌈A∧⌉⌋ holds for any 2-Galois connection 〈∧, ∨〉 be-

tween X × L and Y × L. Indeed, ⌊⌈A⌉⌋∧ ⊆ A∧ follows from A ⊆ ⌊⌈A⌉⌋ and antitonicity of ∧,

whereas A∧ ⊆ ⌊⌈A∧⌉⌋ follows from the fact that A ⊆ ⌊⌈A⌉⌋ holds for any A ∈ X ×L. It follows

that the first condition of (10) is equivalent to ⌊⌈A⌉⌋∧ ⊇ ⌊⌈A∧⌉⌋. Moreover, in this case we have

⌊⌈A⌉⌋∧ = A∧ = ⌊⌈A∧⌉⌋. Similarly for the second condition of (10) which is, in fact, equivalent

to ⌊⌈B⌉⌋∨ ⊇ ⌊⌈B∨⌉⌋.

For a pair 〈∧, ∨〉 of mappings ∧ : X × L → Y × L, ∨ : Y × L → X × L define the pair

〈↑〈∧,∨〉 , ↓〈∧,∨〉〉 of mappings ↑〈∧,∨〉 : LX → LY , ↓〈∧,∨〉 : LY → LX by

A↑〈∧,∨〉 = ⌈⌊A⌋∧⌉ and B↓〈∧,∨〉 = ⌈⌊B⌋∨⌉ (11)

for A ∈ LX , B ∈ LY . For a pair 〈↑, ↓〉 of mappings ↑ : LX → LY , ↓ : LY → LX by define a pair

〈
∧
〈↑,↓〉 ,

∨
〈↑,↓〉〉 of mappings

∧
〈↑,↓〉 : X × L → Y × L,

∨
〈↑,↓〉 : Y × L → X × L by

A
∧
〈↑,↓〉 = ⌊⌈A⌉↑⌋ and B

∨
〈↑,↓〉 = ⌊⌈B⌉↓⌋ (12)

for A ∈ X × L, B ∈ Y × L.

Theorem 3.1. Let 〈↑, ↓〉 be a L{1}-Galois connection between X and Y and 〈∧, ∨〉 be a 2-Galois

connection between X × L and Y × L which is commutative w.r.t. ⌊⌈ ⌉⌋. Then the following

conditions hold.

(1) 〈
∧
〈↑,↓〉 ,

∨
〈↑,↓〉〉 is a 2-Galois connection between X × L and Y × L which is commutative

w.r.t. ⌊⌈ ⌉⌋.

(2) 〈↑〈∧,∨〉 , ↓〈∧,∨〉〉 is a L{1}-Galois connection between X and Y .

(3) 〈∧, ∨〉 = 〈
∧
〈
↑
〈∧,∨〉 ,

↓
〈∧,∨〉〉 ,

∨
〈
↑
〈∧,∨〉 ,

↓
〈∧,∨〉〉〉 and

〈↑, ↓〉 = 〈
↑
〈
∧
〈↑,↓〉 ,

∨
〈↑,↓〉〉 ,

↓
〈
∧
〈↑,↓〉 ,

∨
〈↑,↓〉 〉〉.

Proof:

(1) Let A1, A2 ⊆ X × L, A1 ⊆ A2. We have S(⌈A1⌉, ⌈A2⌉) = 1, thus S(⌈A2⌉
↑, ⌈A1⌉

↑) = 1,

and hence A
∧
〈
↑
〈∧,∨〉 ,

↓
〈∧,∨〉〉

2 = ⌊⌈A2⌉
↑⌋ ⊆ ⌊⌈A1⌉

↑⌋ = A
∧
〈
↑
〈∧,∨〉 ,

↓
〈∧,∨〉〉

1 . We have established that

A1 ⊆ A2 implies A
∧
〈
↑
〈∧,∨〉 ,

↓
〈∧,∨〉〉

2 ⊆ A
∧
〈
↑
〈∧,∨〉 ,

↓
〈∧,∨〉〉

1 . Similarly for B1, B2 ∈ Y × L.

For A ⊆ X × L we have A
∧
〈
↑
〈∧,∨〉 ,

↓
〈∧,∨〉〉

∨
〈
↑
〈∧,∨〉 ,

↓
〈∧,∨〉〉 = ⌊⌈⌊⌈A⌉↑⌋⌉↓⌋ = ⌊⌈A⌉↑↓⌋. If 〈x, a〉 ∈

A then ⌈A⌉(x) ≥ a, thus ⌈A⌉↑↓(x) ≥ ⌈A⌉(x) ≥ a, therefore 〈x, a〉 ∈ ⌊⌈A⌉↑↓⌋, i.e. A ⊆

A
∨
〈
↑
〈∧,∨〉 ,

↓
〈∧,∨〉〉

∧
〈
↑
〈∧,∨〉 ,

↓
〈∧,∨〉〉 . Similarly for B ⊆ Y × L.

The commutativity follows by ⌊⌈A⌉⌋
∧
〈
↑
〈∧ ,∨〉 ,

↓
〈∧,∨〉〉 = ⌊⌈⌊⌈A⌉⌋⌉↑⌋ = ⌊⌈A⌉↑⌋ = ⌊⌈⌊⌈A⌉↑⌋⌉⌋ =

⌊⌈A
∧
〈
↑〈∧,∨〉 ,

↓〈∧,∨〉〉⌉⌋.

(2) Let A1, A2 ∈ LX , S(A1, A2) = 1. Then ⌊A1⌋ ⊆ ⌊A2⌋, ⌊A2⌋
∧ ⊆ ⌊A1⌋

∧ and A
↑
〈
∧
〈↑,↓〉 ,

∨
〈↑,↓〉〉

2 =

⌈⌊A2⌋
∧⌉ ⊆ ⌈⌊A1⌋

∧⌉ = A
↑
〈
∧
〈↑,↓〉 ,

∨
〈↑,↓〉 〉

1 . Similarly for B1, B2 ∈ LY .
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For A ∈ LX we have A
↑
〈
∧
〈↑,↓〉 ,

∨
〈↑,↓〉〉

↓
〈
∧
〈↑,↓〉 ,

∨
〈↑,↓〉〉 = ⌈⌊⌈⌊A⌋∧⌉⌋∨⌉ = ⌈⌊⌈⌊A⌋⌉⌋∧∨⌉ = ⌈⌊A⌋∧∨⌉ ⊇

A due to the commutativity and the fact ⌊A⌋∧∨ ⊇ ⌊A⌋. Similarly for B ∈ LY .

(3) Due to Remark following Definition 3.3 and the fact that for A′ ∈ LX it holds ⌈⌊A′⌋⌉ = A′

we have A
∧
〈
↑
〈∧,∨〉 ,

↓
〈∧,∨〉〉 = ⌊⌈A⌉↑〈∧ ,∨〉⌋ = ⌊⌈⌊⌈A⌉⌋∧⌉⌋ = ⌊⌈A∧⌉⌋ = A∧ for any A ⊆ X × L. For

any A ∈ LX , since ⌈⌊A⌋⌉ = A holds, we have A
↑
〈
∧
〈↑,↓〉 ,

∨
〈↑,↓〉〉 = ⌈⌊A⌋

∧
〈↑ ,↓〉⌉ = ⌊⌈⌊⌈A⌉⌋∧⌉⌋ = A↑.

Similarly for B ⊆ Y × L and B ∈ LY . ⊓⊔

Remark 3.2. The condition that 〈∧, ∨〉 is commutative is essential in the foregoing statement.

For consider X = {x}, Y = {y}, L = {0, 1
2 , 1}, and I ⊆ (X × L) × (Y × L) given by I =

{〈〈x, 0〉, 〈y, 1
2〉〉, 〈〈x, 1

2 〉, 〈y, 0〉〉, 〈〈x, 1
2 〉, 〈y, 1

2〉〉, 〈〈x, 1〉, 〈y, 1
2〉〉, 〈〈x, 1〉, 〈y, 1〉〉}. Let further 〈∧, ∨〉 be

the Galois connection between X ×L and Y ×L induced by I. Note that it is not commutative

since the commutativity fails for A = {〈x, 1〉}. For the mappings 〈↑, ↓〉 induced by 〈∧, ∨〉 by (11)

we have { 1/x}↑↓ = {
1
2/x} 6⊇ { 1/x}, i.e. 〈↑, ↓〉 is not a L{1}-Galois connection.

Note also that the L{1}-Galois connection 〈↑, ↓〉 induced by a Galois connection 〈∧, ∨〉 need

not be an L-Galois connection (a counterexample is easy to get).

Theorem 3.2. For any LK-Galois connection 〈↑, ↓〉, B
(

X,Y, 〈↑, ↓〉
)

and B (X × L, Y × L, 〈∧, ∨〉),

where 〈∧, ∨〉 = 〈
∧
〈↑,↓〉 ,

∨
〈↑,↓〉〉 of Theorem 3.1, are isomorphic lattices. Moreover, B (X × L, Y × L, 〈∧, ∨〉) =

B (X × L, Y × L, I×) where 〈〈x, α〉, 〈y, β〉〉 ∈ I× iff β ≤ { α/x}↑(y).

Proof:

We prove the assertion by showing that h : B
(

X,Y, 〈↑, ↓〉
)

→ B (X × L, Y × L, 〈∧, ∨〉) and g :

B (X × L, Y × L, 〈∧, ∨〉) → B
(

X,Y, 〈↑, ↓〉
)

defined by h(〈A,B〉) = 〈⌊A⌋, ⌊B⌋〉 and g(〈A′, B′〉) =

〈⌈A′⌉, ⌈B′⌉〉 are mutually inverse order-preserving maps. First, we show that h and g are correct-

ly defined, i.e. h(B
(

X,Y, 〈↑, ↓〉
)

) ⊆ B (X × L, Y × L, 〈∧, ∨〉) and g(B (X × L, Y × L, 〈∧, ∨〉)) ⊆

B
(

X,Y, 〈↑, ↓〉
)

. If 〈A,B〉 ∈ B
(

X,Y, 〈↑, ↓〉
)

then ⌊A⌋∧ = ⌊⌈⌊A⌋⌉↑⌋ = ⌊A↑⌋ = ⌊B⌋ and, similarly,

⌊B⌋∨ = ⌊A⌋, i.e. h(〈A,B〉) ∈ B (X × L, Y × L, 〈∧, ∨〉). If 〈A′, B′〉 ∈ B (X × L, Y × L, 〈∧, ∨〉)

then ⌈A⌉↑ = ⌈⌊⌈A′⌉⌋∧⌉ = ⌈A′∧⌉ = ⌈B′⌉ and, similarly, ⌈B′⌉∨ = ⌈A′⌉, i.e. g(〈A′, B′〉) ∈

B
(

X,Y, 〈↑, ↓〉
)

. By Lemma 3.1, h and g are mutually inverse. Finally, both h and g are

clearly order-preserving.

To see that B (X × L, Y × L, 〈∧, ∨〉) = B (X × L, Y × L, I×), it is enough to show that I×

is the relation I〈∧,∨〉 corresponding to 〈∧, ∨〉 by Proposition 3.2. This is, indeed, true, since

〈〈α, x〉, 〈β, x〉〉 ∈ I〈∧,∨〉 iff 〈m,β〉 ∈ {〈g, α〉}∧ which is by (12) equivalent to β ≤ { α/x}↑(y), i.e.

to 〈〈α, x〉, 〈β, x〉〉 ∈ I×. ⊓⊔

The following result shows that (modulo indentifying L-sets with representative sets) L-

concept lattices may be viewed as concept lattices.

Theorem 3.3. Any L-concept lattice B (X,Y, I) is isomorphic to the concept lattice B (X × L, Y × L, I×)

where 〈〈x, α〉, 〈y, β〉〉 ∈ I× iff α ⊗ β ≤ I(x, y).
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Proof:

Let 〈↑, ↓〉 be the L-Galois connection induced by I by Proposition 3.2. We have { α/x}↑(y) =
∧

x′∈X{ α/x}(x′) → I(x, y) = α → I(x, y), i.e. the adjunction property gives β ≤ { α/x}↑(y) iff

α ⊗ β ≤ I(x, y). The assertion now follows by By Theorem 3.2. ⊓⊔

The following theorem gives a characterization of lattices of fixed points of LK -Galois con-

nections and, in particular, of L-concept lattices.

Theorem 3.4. Let 〈↑, ↓〉 be an LK-Galois connection between X and Y . (1) The set B
(

X,Y, 〈↑, ↓〉
)

is under ≤ a complete lattice where the suprema and infima are given by

∧

j∈J

〈Aj , Bj〉 = 〈
⋂

j∈J

Aj, (
⋃

j∈J

Bj)
↓↑〉 ,

∨

j∈J

〈Aj , Bj〉 = 〈(
⋃

j∈J

Aj)
↑↓,

⋂

j∈J

Bj〉 . (13)

(2) Moreover, an arbitrary complete lattice V = 〈V,≤〉 is isomorphic to B
(

X,Y, 〈↑, ↓〉
)

iff

there are mappings γ : X × L → V , µ : Y × L → V such that

(i) γ(X,L) is
∨

-dense in V, µ(Y,L) is
∧

-dense in V;

(ii) γ(x, α) ≤ µ(y, β) iff β ≤ { α/x}↑(y).

If 〈↑, ↓〉 is an L-Galois connection, i.e. B
(

X,Y, 〈↑, ↓〉
)

= B (X,Y, I) for some I ∈ LX×Y , then

(ii) may be replaced by (ii’) γ(x, α) ≤ µ(y, β) iff α ⊗ β ≤ I(x, y).

Proof:

(1) follows from the description of infima and suprema of fixed points of Galois connection

between complete lattices (see e.g. [16]) and the fact that 〈↑, ↓〉 is a Galois connection between

the complete lattices 〈LX ,⊆〉 and 〈LY ,⊆〉. (2) Follows directly by Proposition 3.1, Theorem 3.2,

and Theorem 3.3. ⊓⊔

Remark 3.3. (1) Note that the characterization of L-concept lattices contained in Theorem 3.4

has been obtained in [4] by a direct proof without the reference to Proposition 3.1. Theorem 3.3,

however, makes the characterization a direct consequence of Proposition 3.1.

(2) Let us also remark that by [17], each complete lattice 〈V,≤〉 is isomorphic to the crisp

concept lattice B (V, V,≤). Therefore, any L-concept lattice B (X,Y, I) is isomorphic to the

crisp concept lattice B (B (X,Y, I),B (X,Y, I),≤). However, such a representation is unnatural

compared to that one of provided by Theorem 3.3. Moreover, our representation yields almost

directly Theorem 3.4, i.e. the characterization theorem for L-concept lattices.

Remark 3.4. Note also that formulas (13) can be derived directly from the assumption that

they are valid for L = 2. Namely, since, by Theorem 3.2, B
(

X,Y, 〈↑, ↓〉
)

and B (X × L, Y × L, 〈∧, ∨〉)

are isomorphic lattices with h, g (of Proof of Theorem 3.2) being the mutually inverse isomor-

phisms, it holds
∧

j∈J 〈Aj , Bj〉 = g(h(
∧

j∈J 〈Aj , Bj〉)). Furthermore, we have

g(h(
∧

j∈J

〈Aj , Bj〉)) = g(
∧

j∈J

h(〈Aj , Bj〉)) =
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= g(
∧

j∈J

〈⌊Aj⌋, ⌊Bj⌋〉) = g(〈
⋂

j∈J

⌊Aj⌋, (
⋃

j∈J

⌊Bj⌋)
∨∧〉) =

= 〈⌈
⋂

j∈J

⌊Aj⌋⌉, ⌈(
⋃

j∈J

⌊Bj⌋)
∨∧⌉〉 = 〈

⋂

j∈J

⌈⌊Aj⌋⌉, ⌈⌊⌈
⋃

j∈J

⌊Bj⌋⌉
↓⌋∧⌉〉 =

= 〈
⋂

j∈J

Aj, ⌈⌊⌈⌊⌈
⋃

j∈J

⌊Bj⌋⌉
↓⌋⌉↑⌋⌉〉 = 〈

⋂

j∈J

Aj, ⌈
⋃

j∈J

⌊Bj⌋⌉
↓↑〉 =

= 〈
⋂

j∈J

Aj,
⋃

j∈J

⌈⌊Bj⌋⌉
↓↑〉 = 〈

⋂

j∈J

Aj , (
⋃

j∈J

Bj)
↓↑〉,

i.e. the first part of (13) is valid. We used the validity of (13) for L = 2, Lemma 3.1, the

equalities ⌈
⋂

j∈J⌊Cj⌋⌉ =
⋂

j∈J⌈⌊Cj⌋⌉, ⌈
⋃

j∈J⌊Cj⌋⌉ =
⋃

j∈J⌈⌊Cj⌋⌉ (which hold for L-sets Cj),

and the definitions of ∧ and ∨. The second part of (13) can be obtained dually.

4. Conclusion

We have shown that each L-concept lattice can be viewed as a concept lattice. Our results are

more general in that they concern lattices of fixed points of LK-Galois connections of which L-

concept lattices are a special case. The L-concept lattice is interpreted as a structure of concepts

determined by a given L-context, i.e. a set of objects, a set of attributes, and an L-relation “to

have” between objects and attributes. In this respect, the context of the corresponding concept

lattice has no clear interpretation - each object of the new context is a pair 〈x, α〉 where x is

an object of the original L-context and α is a truth value, similarly for attributes. However,

the result enables us to apply the results obtained for concept lattices to L-concept lattices (a

problem concerning an L-concept lattice is to be “translated” into a problem concerning the

corresponding concept lattice, the translated problem is to be solved by results available for

concept lattices, and the solution obtained is to be translated back). In this way we obtained a

simple proof of the theorem characterizing L-concept lattices (obtained originally directly in [4]).

On the other hand, there are several phenomena which are degenerate in the case of (2-)concept

lattices (e.g. similarity [5], logical precision [6] etc.). Clearly, the study of such phenomena

cannot be “reduced” in the above mentioned way.
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[2] Bělohlávek R.: Networks Processing Indeterminacy. PhD thesis, Ostrava, 1998 (xviii+198 pp., avail-

able on request).
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