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Abstract

We present a simple framework which enables us to consider the well-known sup-t-norm and inf-residuum products of relations
as two particular cases of a single, more general type of product. We present basic properties of the framework and consequences
for the theory of fuzzy relations. Informally, the paper implies that in many cases of fuzzy relational modeling, such as in solving
fuzzy relational equations, there is no need to develop the methods for sup-t-norm and inf-residuum products separately, because
these methods are just two particular instances of a single method.
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1. Problem setting

1.1. Two types of relational product

Relational products (called also compositions) are a crucial concept in fuzzy set theory and its applications [25,29].
The so-called max–min product of fuzzy relations was introduced in Zadeh’s seminal paper [40] and has played an
important role ever since. Further types of products were introduced and extensively studied by Bandler and Kohout
[2–7,30,31]. Most important among them are the ◦- and �-products of fuzzy relations defined by

(R ◦ S)(x, z) =
∨
y∈Y

(R(x, y) ⊗ S(y, z)), (1)

(R � S)(x, z) =
∧
y∈Y

(R(x, y) → S(y, z)). (2)

Here, R and S are fuzzy relations between X and Y, and Y and Z, respectively; (R ◦ S) and (R � S) are new rela-
tions between X and Z;

∨
and

∧
denote the supremum and infimum, and ⊗ and → denote the (truth functions of)
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conjunction and implication, respectively, defined on a set L of truth degrees. One reasonable choice is to take the real
unit interval [0,1] for L, a left-continuous t-norm for ⊗ and its residuum for →, in which case ◦ and � are called the sup-
t-norm and inf-residuum products. Such choice is a particular case of a more general one in which 〈L , ∧, ∨, ⊗, →, 0, 1〉
forms a complete residuated lattice (see Section 1.6). Among the many existing studies of fuzzy relations and their
products, we mention [24,13,9] which emphasize residuated structures of truth degrees and focus on “graded” properties.
Note that

(R � S)(x, z) =
∧
y∈Y

(S(y, z) → R(x, y)) (3)

defines another type of product but since R � S = (S−1 � R−1)−1, with · · ·−1 denoting the inverse of . . ., we omit �

from our considerations below.
The above-mentioned relational products are employed in a variety of areas that deal with fuzzy relations and

their applications [25,29]. Perhaps the best known application of the ◦-product is the so-called compositional rule of
inference, which is employed in fuzzy controllers [24,29]. Further areas, that are referred to in our paper, include fuzzy
relational equations (started in [38], for surveys see [18,19,24,29]) and formal concept analysis (FCA) of data with
fuzzy attributes (started in [17] and continued in a number of studies including [37,11,14,33–35]; see also [20] for FCA
of data with binary attributes).

1.2. . . . and two types of product-based models with similar theories

Both the ◦- and the �-product have a distinct, easy-to-understand, meaning. Namely, x is related to z via (R ◦ S) if
there exists y that is related to both x (via R) and to z (via S), while x is related to z via (R � S) if every y that is related
to x (via R) is also related to z (via S). Think of a situation where x’s, y’s, and z’s are patients, symptoms, and diseases,
and R and S represent relationships “to have a symptom” and “to be a symptom of disease”. Then x is related to z via
(R ◦ S) if patient x has at least one symptom of disease z while x is related to z via (R � S) if all the symptoms that
patient x has are symptoms of disease z. As a result, two types of models involving products of relations were proposed
in the literature, one based on ◦ and the other on �. If one inspects the theories of these models one may notice a
remarkable similarity. That is, if one inspects the concepts involved, the theorems, and the proofs of a particular model
based on ◦, one may notice a similarity to those of the corresponding model based on �.

For illustration, we present an example regarding fuzzy relational equations and their solvability. Consider the
following two types of equations:

U ◦ S = T, (4)

called the sup-t-norm equation, and

U � S = T, (5)

called the inf-residuum equation. In (4) and (5), S ∈ LY×Z and T ∈ L X×Z are given fuzzy relations between Y and
Z, and X and Z, respectively. One looks for an (unknown) fuzzy relation U ∈ L X×Y satisfying (4) and (5). It is well
known that if (4) is solvable, (S � T −1)−1 is its largest solution (cf. Corollary 12), and that if (5) is solvable, T � S−1

is its largest solution (cf. Corollary 13). Even though (S � T −1)−1 and T � S−1 do not look apparently “dual”, the
proofs of the results behind these two types of equations are rather similar [24].

1.3. In bivalent case: the two products are mutually reducible

It is well-known that in the bivalent case, i.e. the case of ordinary (crisp) relations, the ◦- and �-products are mutually
definable (the argument appears e.g. in [21] where it is present in the context of operators induced by binary relations).
Namely, one can check that

R ◦ S = R � S and R � S = R ◦ S, (6)

where U denotes a complement of U.

Please cite this article as: R. Belohlavek, Sup-t-norm and inf-residuum are one type of relational product: Unifying framework and consequences,
Fuzzy Sets and Systems (2011), doi: 10.1016/j.fss.2011.07.015

http://dx.doi.org/10.1016/j.fss.2011.07.015


R. Belohlavek / Fuzzy Sets and Systems ( ) – 3

1.4. In general case: the two types of product are in fact one type

In a complete residuated lattice, however, (6) may not hold because the law of double negation is not satisfied in
residuated lattices in general. The situation is described by the following lemma. (A negation of a truth degree a is
defined by ¬a = a → 0 and U (x) = ¬U (x).)

Lemma 1. If the structure of truth degrees is a complete residuated lattice then (6) being true for every R and S is
equivalent to the law of double negation, i.e. to a = ¬¬a.

Proof. Note that every residuated lattice satisfying the law of double negation satisfies also

¬
(∨

i∈I

ai

)
=
∧
i∈I

¬ai , (7)

¬
(∧

i∈I

ai

)
=
∨
i∈I

¬ai , (8)

a → b = ¬(a ⊗ ¬b). (9)

Namely, (7) holds true in every complete residuated lattice and (8) and (9) are consequences of the law of double
negation [13, Eqn. (2.103), (2.104)]. We thus have

(R ◦ S)(x, z) = ¬¬((R ◦ S)(x, y)) = ¬
(

¬
(∨

y

R(x, y) ⊗ S(y, z)

))

= ¬
(∧

y

¬(R(x, y) ⊗ S(y, z))

)
= ¬

(∧
y

(R(x, y) → ¬S(y, z))

)
= R � S(x, y)

and thus also

R � S = R � S = R ◦ S.

Conversely, assume (6) and put X = Y = Z = {�}, R(�, �) = 1 and S(�, �) = a. Then a = (R � S)(�, �) =
R ◦ S(�, �) = ¬¬a, proving the claim. �

Nevertheless, there exists a simple framework, presented in Section 2, that enables us to see that both ◦ and � are
in fact two particular cases of a more general type of product.

1.5. Contributions and goals of the paper

The above-mentioned framework allows us to see a particular duality between ◦ and �. It follows from Section 1.3
that in the bivalent case, to obtain results for �, it is enough to establish results for ◦ and use the reduction formulas
(6), and vice versa. In the general case, however, one may get the results for both ◦ and � as a simple consequence of
the results for the general type of product.

The presentation of the framework, its basic properties, relationships to existing work, and applications to fuzzy set
theory is the main contribution of the present paper. In addition, our goal is to expound consequences for particular
areas of fuzzy relational modeling that involve relational products.

1.6. Preliminaries from residuated lattices

A residuated lattice [25,27,39] is an algebra L = 〈L , ∧, ∨, ⊗, →, 0, 1〉 such that 〈L , ∧, ∨, 0, 1〉 is a lattice with 0
and 1 being the least and greatest element of L, respectively; 〈L , ⊗, 1〉 is a commutative monoid (i.e. ⊗ is commutative,
associative, and a ⊗ 1 = 1 ⊗ a = a for each a ∈ L); ⊗ and → satisfy adjointness:

a ⊗ b ≤ c iff a ≤ b → c (10)

for each a, b, c ∈ L . A residuated lattice is called complete if 〈L , ∧, ∨, 0, 1〉 is a complete lattice.
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Residuated lattices play a fundamental role in fuzzy logic and fuzzy set theory [23,25,26]. Elements a of L are called
truth degrees (or grades); ⊗ and → are the (truth functions of) conjunction and implication. Examples of residuated
lattices are well-known; the most important ones are those with L = [0, 1] (real unit interval), ∧ and ∨ being the
minimum and maximum, ⊗ being a left-continuous t-norm [28] with the corresponding residuum →. A particular
case of a residuated lattice is the two-element Boolean algebra 〈{0, 1}, ∧, ∨, ⊗, →, 0, 1〉, in which the operations
∧, ∨, ⊗, → are the truth functions of the corresponding connectives of classical logic.

Given a residuated lattice L, we define the usual notions [23,25]: an L-set (fuzzy set, graded set) A in a universe U is
a mapping A : U → L , A(u) being interpreted as “the degree to which u belongs to A”. LU (or LU if it is desirable to
make the structure of L explicit) denotes the collection of all L-sets in U. Binary L-relations (binary fuzzy relations)
between U and V can be thought of as L-sets in the universe U × V . For L-sets A and B in universe U, we put

A ⊆ B if and only if A(u) ≤ B(u) for each u ∈ U ; (11)

in this case, we say that A is included in B.

2. Unifying framework

This section introduces the framework announced in Section 1.5. We intend to keep the framework simple, yet
expressive enough to see that ◦- and �-products are two particular cases of a general type of product and to handle
some essential properties of these products. Limitations that result from this simplicity as well as possible extensions
of the framework are briefly discussed in Section 4.

2.1. The framework: left-continuous isotone aggregation

Both the ◦- and �-products share a scheme that involves a function � which may be thought of as performing
aggregation of truth degrees. In case of ◦, � is ⊗; in case of �, � is →.

Trying to look at ⊗ and → as two instances of a general “aggregation” might seem strange at first. Namely, ⊗ and
→ are considered as the (truth functions of) conjunction and implication in fuzzy logic [25,26] and it is well known
that these functions have different properties. For example, conjunction is commutative, associative, isotone, etc., while
implication does not have any of these properties. However, a kind of duality between ⊗ and →, which is based on
looking at ⊗ and → as functions with essentially the same properties, is suggested in [13, Theorem 2.20] where it is
shown how a residuated lattice may be defined starting from the properties of residuum and adding multiplication as
the operation connected to residuum via adjointness.

We assume a general aggregation function � : L1 × L2 → L3 with L1, L2, and L3 being sets of grades. In particular,
the structure we use is defined as follows.

Definition 1. A sup-preserving aggregation structure (aggregation structure, for short) is a quadruple 〈L1, L2, L3, �〉
where Li = 〈Li , ≤i 〉 (i = 1, 2, 3) are complete lattices and � : L1 × L2 → L3 is a function which commutes with
suprema in both arguments.

Remark 1.
(a) The operations in Li are denoted as usual, adding subscript i. That is, the infima, suprema, the least, and the greatest

element in L2 are denoted by
∧

2,
∨

2, 02, and 12, respectively; the same for L1 and L3.
(b) Commuting of � with suprema in both arguments means that for any a, a j ∈ L1 ( j ∈ J ), b, b j ′ ∈ L2 ( j ′ ∈ J ′),⎛

⎝∨
j∈J

1
a j

⎞
⎠�b =

∨
j∈J

3
(a j �b) and a�

⎛
⎝∨

j ′∈J ′2
b j ′

⎞
⎠ =

∨
j ′∈J ′3

(a�b j ′). (12)

(c) Since the supremum of the empty set is the least element, commuting with suprema implies that

01�a2 = 03 and a1�02 = 03, (13)
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for every a1 ∈ L1 and a2 ∈ L2. If commuting with suprema were understood as commuting with suprema of
non-empty sets, the situation would be different. This is explained in Example 3. The concept of an aggregation
structure with � commuting with non-empty suprema is more general and is not considered in this paper.

(d) It follows from the well-known relationship between commuting with suprema and left-continuity (see e.g. [13,
Lemma 2.85]) that 〈〈[0, 1], ≤〉, 〈[0, 1], ≤〉, 〈[0, 1], ≤〉, �〉 is an aggregation structure if and only if the projections
x�x�b and y�a�y are non-decreasing left-continuous functions on [0, 1] for which 0�b = a�0 = 0, for all
a, b ∈ [0, 1].

(e) We put indices in a1 and the like for mnemonic reasons. For example, a1 indicates that a1 is taken from L1.

Define operations ◦� : L1 × L3 → L2 and �◦ : L3 × L2 → L1 (adjoints to �) by

a1◦�a3 =
∨

2
{a2|a1�a2 ≤3 a3}, (14)

a3�◦a2 =
∨

1
{a1|a1�a2 ≤3 a3}. (15)

Note that due to (13), sets {a2|a1�a2 ≤3 a3} and {a1|a1�a2 ≤3 a3} are both non-empty.
For convenience, we sometimes call an aggregation structure the 6-tuple 〈L1, L2, L3, �, ◦�, �◦〉. In our setting,

〈L1, L2, L3, �, ◦�, �◦〉 plays a role analogous to the role of residuated lattices.

Example 1. Let 〈L , ∧, ∨, ⊗, →, 0, 1〉 be a complete residuated lattice with a partial order ≤. The following two
particular cases, in which Li = L and ≤i is either ≤ or the dual of ≤ (i.e. ≤i=≤ or ≤i=≤−1) are important for our
purpose.

(a) Let L1 = 〈L , ≤〉, L2 = 〈L , ≤〉, and L3 = 〈L , ≤〉, let � be ⊗. Then, as is well known from the properties of
residuated lattices 39,23], � commutes with suprema in both arguments. Furthermore,

a1◦�a3 =
∨

{a2|a1 ⊗ a2 ≤ a3} = a1 → a3

and, similarly, a3�◦a2 = a2 → a3.
(b) Let L1 = 〈L , ≤〉, L2 = 〈L , ≤−1〉, and L3 = 〈L , ≤−1〉, let � be →. Then, � commutes with suprema in both

arguments. Namely, the conditions (12) for commuting with suprema in this case become⎛
⎝∨

j∈J

a j

⎞
⎠ → b =

∧
j∈J

(a j → b) and a →
⎛
⎝∧

j∈J

b j

⎞
⎠ =

∧
j∈J

(a → b j )

which are well-known properties of residuated lattices. In this case, we have

a1◦�a3 =
∧

{a2|a1 → a2 ≥ a3} = a1 ⊗ a3

and

a3�◦a2 =
∨

{a1|a1 → a2 ≥ a3} = a3 → a2.

Example 2. Let L1 = {0, 1}, L2 = [0, 1], L3 = [0, 1], let ≤1, ≤2, ≤3 be the usual total orders on L1, L2, and L3,
respectively. Let � be defined by a1�a2 = min(a1, a2). Then L1, L2, L3, and � satisfy (12). In this case,

0◦�a = 1, 1◦�a = a

and

a3�◦a2 =
{

0 for a2 > a3,

1 for a2 ≤ a3.

A more general version of this example: L1 = {0 = c0 < c1 < · · · < cp = 1}, L2 = [0, 1], L3 = [0, 1], let ≤1, ≤2,
≤3 be the usual total orders on L1, L2, and L3, respectively, let ⊗ be a left-continuous t-norm and → its residuum.
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Let � be the restriction of ⊗ to L1 × [0, 1]. Then � obviously satisfies (12) and we have a1◦�a3 = a1 → a3 and
a3�◦a2 is the largest c ∈ L1 that is ≤ a2 → a3. This is a simple example but it enables us to see that the so-called
one-sided concept lattices, introduced independently in [10,32], are in fact defined in terms of aggregation structures.

Example 3. Let L1 = {01 = 0, 1, . . . , p = 11}, L2 = {02 = 0, 1, . . . , q = 12}, L3 = L1 × L2, ≤1 and ≤2 be
the usual total orders, ≤3 be the lexicographic order, i.e. 〈c, d〉 ≤3 〈c′, d ′〉 iff c <1 c′ or c = c′ and d ≤2 d ′. Let
c�d = 〈c, d〉. One may check that � commutes with non-empty suprema (cf. Remark 1 (c)). However, (13) is not
satisfied. For example 01�1 = 〈0, 1〉 � 〈0, 0〉 = 03 and 1�02 = 〈1, 0〉 � 〈0, 0〉 = 03. In this case, it may happen that
{a2|a1�a2 ≤3 a3} is empty. In such case, one might put a1◦�a3 = 02 (which is consistent with letting the supremum
of the empty set be equal to the least element). Doing so, we get

a1◦�〈b1, b2〉 =

⎧⎪⎨
⎪⎩

12 for a1 <1 b1,

b2 for a1 = b1,

02 for a1 >1 b1.

Proceeding analogously for �◦, we get

〈b1, b2〉�◦a2 =

⎧⎪⎨
⎪⎩

b1 for a2 ≤2 b2,

b1 − 1 for b1 > 0, a2 >2 b2,

01 for b1 = 0, a2 >2 b2.

In such case, however, some properties valid for structures commuting with arbitrary suprema are lost. As an example,
it is not true in general that a2 ≤2 a1◦�a3 implies a1�a2 ≤3 a3 (cf. (16)). To see this, put a1 = 2, a2 = 0, a3 = 〈1, 1〉.
Moreover, in this example, we have the following cancellation properties: c◦�(c�d) = d and (c�d)�◦d = c.

In what follows, we show several properties of �, ◦�, and �◦. Most of them are counterparts to well-known properties
of residuated lattices. The proofs use standard arguments. Therefore, we present only parts of the proofs with comments.
Some properties of residuated lattices do not have their direct counterparts in terms of aggregation structures. For
example, a�1 = a (which is a direct transcription of a ⊗1 = a in the setting of Example 1 (a)) makes no sense because
L1 and L3 are in general different sets. However, these properties may still have a counterpart in terms of aggregation
structures. An example is (20) which is a counterpart to “a ≤ b = 1 iff a ≤ b”. We also mention some properties
of residuated lattices whose direct counterparts in terms of aggregation structures exist but are not true. An example
is 11�12 = 13 (a counterpart to 1 ⊗ 1 = 1 in the setting of Example 1(a)). Namely, putting a1�a2 = 03 defines an
aggregation structure for any 〈Li , ≤i 〉’s. In this case, 11�12 = 13 is obviously violated.

Theorem 1.

a1�a2 ≤3 a3 iff a2 ≤2 a1◦�a3 iff a1 ≤1 a3�◦a2, (16)

a1�(a1◦�a3) ≤3 a3, (a3�◦a2)�a2 ≤3 a3, (17)

a2 ≤2 a1◦�(a1�a2), a1 ≤1 (a1�a2)�◦a2, (18)

a1 ≤1 a3�◦(a1◦�a3), a2 ≤2 (a3�◦a2)◦�a3, (19)

a1◦�a3 = 12 iff a1�12 ≤3 a3, a3�◦a2 = 11 iff 11�a2 ≤3 a3, (20)

a1�a2 = 03 iff a2 ≤2 a1◦�03 iff a1 ≤1 03�◦a2, (21)

a1◦�13 = 12, 13�◦a2 = 11, (22)

01◦�a3 = 12, a3�◦02 = 11, (23)

a1◦�(a1�12) = 12, (11�a2)�◦a2 = 11. (24)

Proof. The proof uses standard arguments involving residuation. We prove only selected parts of the claim for
illustration.
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Eq. (16): If a1�a2 ≤3 a3, then a2 ≤2 a1◦�a3 follows directly from (14). Conversely, if a2 ≤2 a1◦�a3, then isotony
of � and (14) imply a1�a2 =≤3 a1�(a1◦�a3) = a1�

∨
2 a1�a2≤3a3

a2 = ∨
2 a1�a2≤3a3

(a1�a2) ≤3 a3. Similarly for �◦.
Eq. (24): a1◦�(a1�12) = 12 is equivalent to 12 ≤2 a1◦�(a1�12) which is equivalent (due to (16)) to a1�12 ≤2 a1�12;

the second part is similar. �

Remark 2.
(a) Let Li ’s and � be as in Example 1(a). Then, for instance, (16) says that a1 ⊗ a2 ≤ a3 iff a2 ≤ a1 → a3 iff

a1 ≤ a2 → a3; and the first part of (17) says that a1 ⊗ (a1 → a3) ≤ a3.
(b) Let Li ’s and � be as in Example 1(b). In this case, (16) says that a1 → a2 ≥ a3 iff a2 ≥ a1 ⊗ a3 iff a1 ≤ a3 → a2;

and the first part of (17) says that a1 → (a1 ⊗ a3) ≥ a3.
(c) Notice that for Example 1(a), (24) become a1 → (a1 ⊗ 1) = 1 and (1 ⊗ a2) → a2 = 1 which, in case of residuated

lattices, collapse to a single identity a → a = 1. In case of Example 1(b), however, the first identity of (24) becomes
a1 ⊗ (a1 → 0) = 0 while the second one becomes (1 → a2) → a2 = 1, i.e. a2 → a2 = 1.

Theorem 2.
(1) � is isotone in both arguments.
(2) ◦� is antitone in the first and isotone in the second argument.
(3) �◦ is isotone in the first and antitone in the second argument.

Proof. (1) follows from the fact that � is distributive w.r.t. suprema. For instance, if a1 ≤1 b1, then a1�a2 ≤2
(a1�a2) ∨3 (b1�a2) = (a1 ∨3 b1)�a2 = b1�a2. Antitony of ◦� in the first argument follows from the definition of ◦�

and from the isotony of �; isotony of ◦� in the second argument follows from the definition of ◦�. The proof for �◦ is
similar. �

Theorem 3.

a◦�

⎛
⎝∧

j∈J
3

c j

⎞
⎠ =

∧
j∈J

2
(a◦�c j ),

⎛
⎝∨

j∈J
1

a j

⎞
⎠ ◦�c =

∧
j∈J

2
(a j◦�c), (25)

c�◦
⎛
⎝∨

j∈J
2

b j

⎞
⎠ =

∧
j∈J

1
(c�◦b j ),

⎛
⎝∧

j∈J
3

c j

⎞
⎠

�◦b =
∧
j∈J

1
(c j �◦b), (26)

a◦�

⎛
⎝∨

j∈J
3

c j

⎞
⎠ ≥2

∨
j∈J

2
(a◦�c j ),

⎛
⎝∧

j∈J
1

a j

⎞
⎠ ◦�c ≥2

∨
j∈J

2
(a j◦�c), (27)

c�◦
⎛
⎝∧

j∈J
2

b j

⎞
⎠ ≥1

∨
j∈J

1
(c�◦b j ),

⎛
⎝∨

j∈J
3

c j

⎞
⎠

�◦b ≥1

∨
j∈J

1
(c j �◦b). (28)

Proof. The proof involves standard arguments regarding residuation. We prove only the first identity of (25): The
“≤”-part follows from isotony of ◦� in the second argument. For the “≥”-part,

∧
2 j∈J (a◦�c j ) ≤2 a◦�(

∧
3 j∈J c j ) iff

a�
∧

2 j∈J (a◦�c j ) ≤2
∧

3 j∈J c j iff a�
∧

2 j∈J (a◦�c j ) ≤2 c j for each j ∈ J iff
∧

2 j∈J (a◦�c j ) ≤2 a◦�c j for each
j ∈ J which is evidently true. �

Theorem 4.

a1◦�a3 is the greatest element of {a2 ∈ L2|a1�a2 ≤3 a3}, (29)

a1◦�a3 is the greatest element of {a2 ∈ L2|a1 ≤1 a3�◦a2}, (30)
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a3�◦a2 is the greatest element of {a1 ∈ L1|a1�a2 ≤3 a3}, (31)

a3�◦a2 is the greatest element of {a1 ∈ L1|a2 ≤2 a1◦�a3}, (32)

a1�a2 is the least element of {a3 ∈ L3|a2 ≤2 a1◦�a3}, (33)

a1�a2 is the least element of {a3 ∈ L3|a1 ≤1 a3�◦a2}. (34)

Proof. Eq. (29): Due to the first part of (17), a1◦�a3 is one of the a2’s satisfying a1�a2 ≤3 a3. For any a2 satisfying
a1�a2 ≤3 a3, we have a2 ≤2 a1◦�a3 due to (16), proving (29). Eq. (30) is a consequence of (29) and (16). The proofs
of (31)–(34) are similar. �

Remark 3.
(a) Let Li ’s and � be as in Example 1(a). Then, for instance, the first part of (25) says that a → (

∧
j∈J c j ) = ∧

j∈J (a →
c j ). Eqs. (29) and (33) become the well-known facts that a → c is the greatest b for which a ⊗ b ≤ c and that
a ⊗ b is the least c for which b ≤ a → c.

(b) Let Li ’s and � be as in Example 1(b). In this case, the first part of (25) says that a ⊗ (
∨

j∈J c j ) = ∨
j∈J (a ⊗ c j ).

The following theorem provides alternative definitions of aggregation structures.

Theorem 5. Let Li = 〈Li , ≤i 〉 be complete lattices for i = 1, 2, 3. The following conditions are equivalent for a
function � : L1 × L2 → L3.

1. � commutes with suprema, i.e. 〈L1, L2, L3, �〉 is an aggregation structure.
2. � is isotone in both arguments and the sets {b|a1�b ≤3 a3} and {a|a�a2 ≤3 a3} have greatest elements for every

a1, a2, a3.
3. There exist functions ◦� : L1 × L3 → L2 and �◦ : L3 × L2 → L1 which satisfy adjointness w.r.t. �, i.e. (16).

Proof. “1 ⇒ 2” is established in Theorem 2, (29), and (31). “1 ⇒ 3” is established in (16). We prove “2 ⇒ 3”
and “3 ⇒ 1”.

“2 ⇒ 3”: Let a2◦�a3 and a3�◦a1 be defined as the greatest elements of {b|a1�b ≤3 a3} and {a|a�a2 ≤3 a3},
respectively. If a1�a3 ≤3 a3 then a2 ≤2 a1◦�a3 by the definition of a1◦�a3. If a2 ≤2 a1◦�a3, isotony of � and the
definition of a1◦�a3 yield a1�a2 ≤3 a1�(a1◦�a3) ≤3 a3. Proving the rest of (16) is similar.

“3 ⇒ 1”: First we show that � is isotone in both arguments. Let a1 ≤1 b1. Since b1�a2 ≤3 b1�a2, we get
b1 ≤2 (b1�a2)�◦a2, hence also a1 ≤2 (b1�a2)�◦a2 which yields a1�a2 ≤3 b1�a2, proving isotony in the first
argument. Isotony in the right argument is proved in a similar way. a�(

∨
2 j b j ) ≥3

∨
3 j (a�b j ) follows from the

isotony of �. a�(
∨

2 j b j ) ≤3
∨

3 j (a�b j ) is equivalent to
∨

2 j b j ≤2 a◦�

∨
3 j (a�b j ). The latter inequality holds true

iff b j ≤2 a◦�

∨
3 j (a�b j ) for each j which is equivalent to a�b j ≤3

∨
3 j (a�b j ) being true for each j which is evidently

true. The proof is finished. �

Call an aggregation structure 〈L1, L2, L3, �〉 commutative if a1�a2 = a2�a1 for every a1, a2 ∈ L1 ∩ L2. Clearly,
if L1 = L2, we get the ordinary notion of commutativity of �. Recall that a principal ideal in a poset 〈U, ≤〉 given by
u ∈ U is the set (u]≤ = {v ∈ U |v ≤ u}.

Theorem 6. 〈L1, L2, L3, �〉 is commutative if and only if for every a ∈ L1 ∩ L2 and c ∈ L3,

L1 ∩ (a◦�c]≤2 = L2 ∩ (c�◦a]≤1 . (35)

Proof. If b ∈ L1 ∩ (a◦�c]≤2 then b ∈ L2 and b ≤2 a◦�c, hence a�b ≤3 c and due to commutativity, b�a ≤3 c from
which we get b ≤1 c�◦a, i.e. b ∈ L2 ∩ (c�◦a]≤1 , proving L1 ∩ (a◦�c]≤2 ⊆ L2 ∩ (c�◦a]≤1 ; the converse inequality
is proved in a similar way.

Assume (35), a1, a2 ∈ L1 ∩ L2, and c ∈ L3. If a1�a2 ≤3 c then a2 ≤2 a1◦�c, i.e. a2 ∈ L1 ∩ (a1◦�c]≤2 , hence also
a2 ∈ L2 ∩ (c�◦a1]≤1 , i.e. a2 ≤1 c�◦a1 from which we get a2�a1 ≤3 c. This shows that a1�a2 has the same upper
bounds as a2�a1 and thus proves a1�a2 = a2�a1. �
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The following corollary characterizes commutativity of � in terms of coincidence of its left and right residua (note
that such condition is known for non-commutative residuated lattices).

Corollary 7. 〈L1, L2, L3, �〉 with L1 = L2 is commutative if and only if ◦� coincides with �◦.

Proof. Immediately from Theorem 6 observing that two elements are equal if and only if their principal ideals are
equal. �

The following theorem shows that for a given residuated structure, any of the three operations, �, ◦�, or �◦, may
be considered the “basic aggregation function” and the remaining two as its residua. By Ld

i , we denote the dual of
Li , i.e. Ld

i = 〈Li , ≥i 〉. Moreover, for a function f : A × B → C , f d : B × A → C denotes a function defined by
f d(b, a) = f (a, b).

Theorem 8. Let L = 〈L1, L2, L3, �, ◦�, �◦〉 be an aggregation structure. Then

1. Ld = 〈L1, Ld
3, Ld

2, ◦�, �, �◦d〉 is an aggregation structure.
2. dL = 〈Ld

3, L2, Ld
1, �◦, ◦d

�
, �〉 is an aggregation structure.

Proof. By a direct application of Theorem 4 and elementary considerations. �

Remark 4.
(a) If 〈L1, L2, L3, �, ◦�, �◦〉 is set as in Example 1(a), then 〈L1, Ld

3, Ld
2, ◦�, �, �◦d〉 is just the aggregation structure

from Example 1(b).
(b) A particular consequence of Theorem 8 is mentioned in Remark 5.
(c) It is easily seen that (Ld)d = L and d(dL) = L.

2.2. Historical notes

In this section, we present an account of related work. The basic motivation behind aggregation structures is to
have a framework within which the (truth functions of) conjunction ⊗ and its residuated implication → have similar
properties. As far as the author knows, a kind of this duality was suggested for the first time in [13, Theorem 2.20] but
this line of thought has not been developed further in [13].

Another related work, with quite different motivations, is [33,16]. In [33] Krajči developed a common generalization
of two approaches to formal concept analysis (FCA) of data with fuzzy attributes, namely one presented e.g. in
[11–13,37] and the other presented in [32,10]. In doing so, he utilized a structure consisting of three sets of truth
degrees with certain isotone aggregation function. This approach looked different from the “mainstream approach”
that is based on residuated structures of truth degrees. It has been shown in [16, Theorem 5] that the structure with
three sets of truth degrees used in [33] is in fact a kind of a three-sorted residuated structure based on certain monotone
aggregation function, called tentatively a “residuated structure for generalized concept lattices” in [16]. The theorem
is given without proof in [16] with a reference for the proof to an extended version of the paper. The extended version
was never submitted and part of the present paper, namely the equivalence of conditions 1 and 3 of Theorem 5 (which
is essentially the content of [16, Theorem 5]), may be considered as filling the gap by providing the proof. However,
the three-sorted structure itself has not been investigated in [16]. The work from [33] has recently been continued by
Medina et al., see e.g. [35], who developed an approach to FCA with fuzzy attributes based on the so-called multi-
adjoint structures of truth degrees. Again, the structure of truth degrees utilized in that approach is not studied in
[35] itself. Note also that neither of [16,33,35] mentions the possibility of obtaining two particular types of concept
lattices, namely one when the aggregation function is conjunction and the other when the aggregation is implication
(cf. Example 1(a) and (b)). This possibility is observed in [15] where the concept of aggregation structure is utilized
to provide a common framework for optimal decompositions of matrices with entries from residuated lattices. The
present paper is a continuation of [15].

Let us provide more detailed comments on the structure of truth degrees used in [35] (we keep the notation from
[35]). The basic notion involved is that of an adjoint triple. Let 〈Pi , ≤i 〉 (i = 1, 2, 3) be partially ordered sets and
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& : P1 × P2 → P3, ↙: P3 × P2 → P1, and ↖: P3 × P1 → P2 be functions. Then 〈&, ↙, ↖〉 is called an adjoint
triple if

1. & is isotone in both arguments;
2. ↙ and ↖ are isotone in the first and antitone in the second argument;
3. the following form of adjointness holds for any x ∈ P1, y ∈ P2, z ∈ P3:

x ≤1 z ↙ y iff x&y ≤3 z iff y ≤2 z ↖ x . (36)

Let us first mention that this definition of an adjoint triple is redundant. Namely:

Lemma 2. 〈&, ↙, ↖〉 forms an adjoint triple if and only if (36) holds.

Proof. We need to show the monotony conditions from 1 and 2 of the above definition. One may check that the
argument showing isotony of � in the proof of “3 ⇒ 1” of Theorem 5 is independent of whether the underlying posets
are complete lattices and thus proves isotony of &. Isotony of ↙ and ↖ in the first argument may be proved similarly.
Let b2 ≤2 b1. As c ↙ b1 ≤1 c ↙ b1, we get (c ↙ b1)&b1 ≤3 c, hence b1 ≤2 c ↖ (c ↙ b1) due to (36). Therefore,
b2 ≤2 c ↖ (c ↙ b1) from which we get c ↙ b1 ≤1 c ↙ b2 by two applications of (36), proving anitony of ↙ in the
second argument. The case of ↖ is proved similarly. �

The structure used in [35], called a multi-adjoint frame, consists essentially of a collection of adjoint triples in which
〈P1, ≤1〉 and 〈P2, ≤2〉 are complete lattices. These structures are exactly the “residuated structure for generalized
concept lattices” from [16] mentioned above. Note also that in [35], the authors mention that there is a condition
missing in [16, Theorem], namely that the aggregation function preserves least elements, i.e. condition (13). However,
this is not correct because (13) is true as a consequence of commuting with suprema (see Remark 1 (c)) and thus need
not be mentioned in [16, Theorem].

Another paper related to the present one is [22]. The authors show that antitone fuzzy Galois connections studied
in [12] and their natural counterparts, isotone fuzzy Galois connections, which are introduced in [22], have a common
generalization. For this purpose, they introduce a structure consisting of five complete lattices equipped with two
functions that satisfy certain conditions regarding injectivity of their projections and their compatibility with lattice
operations. Obtaining isotone Galois connections from antitone ones is accomplished by flipping certain lattices which
is similar to the approach presented in this paper.

Another related stream of research are the various studies of systems of logic connectives, see e.g. [25]. Particularly
relevant to the present paper is the work by Morsi et al., on associatively tied implications, see e.g. [1,36]. In [1], the
authors study so-called implication triples which consist of three (truth functions of) connectives of conjunction and
two implications defined on a single partially ordered set with a greatest element that are related by adjointness of the
form (16) which satisfy some additional properties. As in the case of [35], the authors’ definition of an implication
triple is redundant because the authors overlooked that the monotony conditions of the connectives are entailed by
adjointness. Later [36], the authors extended this approach by involving two partially ordered sets in the notion of an
implication triple. The concept of an aggregation structure is more general than this concept of an implication triple.
The concept of an implication triple is itself employed in the notion of a tied adjointness algebra (10-tuple containing an
implication triple and a so-called residuation algebra which is “tied” to the implication triple via a condition generalizing
(a ⊗ b) → c = a → (b → c)). It is to be noted, however, that the idea of taking duals of partially ordered sets to
obtain new implication triples from given ones which leads to a certain duality principle of the propositional calculus
developed in [36] is present in that paper. A more detailed overview of and comparison to this work is beyond the scope
of this paper.

3. Consequences: pairs of classic concepts and results as pairs of instances of a general case

In this section, we show that the ◦ and � products are one type of product if developed within the framework of
aggregation structures, and provide, by means of examples, further consequences of developing fuzzy relational models
in this framework. As is mentioned in Section 2.2, further examples, related to decompositions of matrices, are to appear
in [15].
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3.1. ◦ (sup-t-norm) and � (inf-residuum) are one type of product

Let 〈L1, L2, L3, �〉 be an aggregation structure. Let �, ��, and � � be relational products defined as follows:

• For � ∈ LU×V
1 and � ∈ LV ×W

2 , let � � � ∈ LU×W
3 be defined by

(� � �)(u, w) =
∨
v∈V

3
(�(u, v)��(v, w)) (37)

for every u ∈ U and w ∈ W .
• For � ∈ LU×V

1 and � ∈ LV ×W
3 , let ���� ∈ LU×W

2 be defined by

(����)(u, w) =
∧
v∈V

2
(�(u, v)◦��(v, w)) (38)

for every u ∈ U and w ∈ W .
• For � ∈ LU×V

2 and � ∈ LV ×W
3 , let �� �� ∈ LU×W

1 be defined by

(�� ��)(u, w) =
∧
v∈V

1
(�(v, w)�◦�(u, v)) (39)

for every u ∈ U and w ∈ W .
The following example justifies the claim from the title of this paper.

Example 4 (sup-t-norm and inf-residuum are one type of product). (a) One may easily check that for the setting of
Example 1(a),

� � � = � ◦ � (furthermore, ���� = �� �, �� �� = � � �).

(b) For the setting of Example 1(b),

� � � = � � � (furthermore, ���� = � ◦ �, �� �� = (�−1
� �−1)−1 = �� �).

For instance,

(� � �)(u, w) =
∨
v∈V

3
(�(u, v)��(v, w))

=
∧
v∈V

(�(u, v) → �(v, w)) = �� �.

Remark 5. In view of Theorem 8, in order to establish properties of �� and � � within an aggregation structure
〈L1, L2, L3, �, ◦�, �◦〉, there is no need to provide direct proofs for them. Namely, they can be easily obtained from
the properties of �. For example, the properties of �� within an aggregation structure 〈L1, L2, L3, �, ◦�, �◦〉 are just
the properties of � within the aggregation structure 〈L1, Ld

3, Ld
2, ◦�, �, �◦d〉. We illustrate this remark by the following

results, provided here as an example.

Theorem 9. For any aggregation structure and fuzzy relations R, Ri ∈ L X×Y
1 and S, Si ∈ LY×Z

2 we have(⋃
i∈I

1
Ri

)
� S =

⋃
i∈I

3
(Ri � S), R �

(⋃
i∈I

2
Si

)
=
⋃
i∈I

3
(R � Si ). (40)

Proof. Follows directly from the definition of � and (12). �

Corollary 10. For any aggregation structure and fuzzy relations R, Ri ∈ L X×Y
1 and S, Si ∈ LY×Z

3 we have(⋃
i∈I

1
Ri

)
��S =

⋂
i∈I

2
(Ri��S), R��

(⋂
i∈I

3
Si

)
=
⋂
i∈I

2
(R��Si ). (41)
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Proof. Follows directly from Theorem 9, observing that the��-product in aggregation structure 〈L1, L2, L3, �, ◦�, �◦〉
is just the �-product in aggregation structure 〈L1, Ld

3, Ld
2, ◦�, �, �◦d〉, cf. Theorem 8. �

Therefore, we get the well-known results about ◦-, �- and �-products and their commutativity with unions and
intersections, such as (

⋃
i∈I Ri ) ◦ S = ⋃

i∈I (Ri ◦ S), R ◦ (
⋃

i∈I Si ) = ⋃
i∈I (R ◦ Si ), (

⋃
i∈I Ri ) � S = ⋂

i∈I (Ri � S),
R �(

⋂
i∈I Si ) = ⋂

i∈I (R � Si ), (
⋂

i∈I Ri ) � S = ⋂
i∈I (Ri � S), R �(

⋃
i∈I Si ) = ⋂

i∈I (R � Si ), as corollaries
of (40).

3.2. Fuzzy relational equations

As the second illustration, we consider the following relational equation. Let S ∈ LY×Z
2 , T ∈ L X×Z

3 , i.e. S and T are
fuzzy relations between Y and Z, and X and Z, respectively. We look for a fuzzy relation U ∈ L X×Z

1 for which

U � S = T . (42)

Theorem 11. Eq. (42) is solvable if and only if (S� �T −1)−1 is its solution. Moreover, if (42) is solvable, (S� �T −1)−1

is its largest solution.

Proof. Let (42) be solvable. If R a solution then∨
y∈Y

3
(R(x, y)�S(y, z)) = T (x, z)

for every x ∈ X , z ∈ Z , hence

R(x, y)�S(y, z) ≤3 T (x, z)

for every y ∈ Y , which is equivalent to

R(x, y) ≤1 T (x, z)�◦S(y, z)

due to (16). Therefore,

R(x, y) ≤1

∧
z∈Z

1
(T (x, z)�◦S(y, z)) =

∧
z∈Z

1
(T −1(z, x)�◦S(y, z)) = (S� �T −1)−1(x, y).

We proved

R ⊆1 (S� �T −1)−1, (43)

i.e. that any solution R is smaller than (S� �T −1)−1. Due to isotony of �, (43) implies R � S ⊆3 (S� �T −1)−1
� S.

Furthermore, one may easily verify that (S� �T −1)−1
� S ⊆3 T . Hence,

T = R � S ⊆3 (S� �T −1)−1
� S ⊆3 T,

showing that if R is a solution then (S� �T −1)−1 is a solution as well. �

Let us now observe that the well-known results on solvability of (4) and (5) are simple consequences of
Theorem 11.

Corollary 12. Eq. (4) is solvable if and only if (S � T −1)−1 is its solution. Moreover, if (4) is solvable, (S � T −1)−1

is its largest solution.

Proof. If Li ’s and � are as in Example 1(a), (42) becomes (4). Example 4(a) implies that (S� �T −1)−1 = (S � T −1)−1.
Since ⊆1 coincides with ⊆, the assertion is a particular instance of Theorem 11. �

Corollary 13. Eq. (5) is solvable if and only if T � S−1 is its solution. Moreover, if (5) is solvable, T � S−1 is its
largest solution.
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Proof. If Li ’s and � are as in Example 1(b), (42) becomes (5). Example 4(b) implies that (S� �T −1)−1 = (((T −1)−1

� S−1)−1)−1 = (T � S−1). Since ⊆1 coincides with ⊆, the assertion is again a particular instance of Theorem 11. �

Remark 6. For aggregation structures other than those from Example 1(a) and (b), Theorem 11 provides solutions to
other, new type of fuzzy relational equations. For example, consider the aggregation structure from Example 2 with
L1 = {0 = c0 < c1 < · · · < cp = 1}, L2 = [0, 1], L3 = [0, 1]. In this case, Theorem 11 provides results regarding
solutions of fuzzy relational equations that may be described as follows. Given fuzzy relations S ∈ [0, 1]Y×Z and
T ∈ [0, 1]X×Z , find a fuzzy relation U ∈ [0, 1]X×Y that satisfies U ◦ S = T and, at the same time, uses only truth
degrees from L1. Thus, if L1 = {0, 1

2 , 1}, one looks for fuzzy relations constrained by the requirement that any two
elements are not related at all, are half-related, or fully related.

4. Conclusions and further topics

In this paper, it is shown that the ◦ and � products of fuzzy relations, known also as the sup-t-norm and inf-residuum
products, are two particular cases of a more general type of product. For this purpose, a simple unifying framework
is developed which is based on a binary function commuting with suprema. Basic properties of this framework are
established and some applications in fuzzy relational modeling are provided as examples.

Future research shall include the following topics. First, applications of this framework to the theory of fuzzy sets,
including a more thorough studies of the ones mentioned in this paper, are to be explored. Note that the generalizations
within the framework presented in this paper, e.g. of the theorem describing solutions of fuzzy relational equations,
are more or less straightforward, given the established results, e.g. those for the particular cases of fuzzy relational
equations. However, this need not be the case, as is shown in [15], where proofs of certain properties of formal concepts
established in the framework of residuated lattices use properties that are not available in the framework of aggregation
structures; see also the paragraph preceding Theorem 1.

Second, further variants of the notion of aggregation structure need to be considered. Even though aggregation
structures make it possible to generalize important parts of fuzzy relational modeling (e.g. those from fuzzy relational
equations outlined in this paper and in [8], those from decomposition of matrices with truth degrees shown in [15],
as well as those from formal concept analysis shown in [15]), certain aspects cannot be expressed directly in terms
of aggregation structures. An example of this sort is graded inclusion of fuzzy sets. Another is represented by terms
involving multiple occurrences of logical connectives such as associativity. In both of these examples, the problem
is that the arguments of the connectives from an aggregation structure are taken from different sets of truth degrees.
One solution is to consider aggregation structures with the same sets of truth degrees. A different one is to consider
additional properties connecting the possibly different sets of truth degrees.
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[33] S. Krajči, A generalized concept lattice, Logic J. IGPL 13 (2005) 543–550.
[34] H. Lai, D. Zhang, Concept lattices of fuzzy contexts: formal concept analysis vs. rough set theory, Int. J. Approx. Reason. 50 (5) (2009)

695–707.
[35] J. Medina, M. Ojeda-Aciego, J. Ruiz-Claviño, Formal concept analysis via multi-adjoint concept lattices, Fuzzy Sets and Systems 160 (2009)

130–144.
[36] N.N. Morsi, W. Lotfallah, M.S. El-Zekey, The logic of tied implications, part 1: properties, applications and representation; part 2: Syntax,

Fuzzy Sets and Systems 157 (2006) 647–669 2030–2057.
[37] S. Pollandt, Fuzzy Begriffe, Springer-Verlag, Berlin, Heidelberg, 1997.
[38] E. Sanchez, Resolution of composite fuzzy relation equations, Inf. Control 30 (1) (1976) 38–48.
[39] M. Ward, R.P. Dilworth, Residuated lattices, Trans. Amer. Math. Soc. 45 (1939) 335–354.
[40] L.A. Zadeh, Fuzzy sets, Inf. Control 8 (1965) 338–353.

Please cite this article as: R. Belohlavek, Sup-t-norm and inf-residuum are one type of relational product: Unifying framework and consequences,
Fuzzy Sets and Systems (2011), doi: 10.1016/j.fss.2011.07.015

http://dx.doi.org/10.1016/j.fss.2011.07.015



