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36 1. Concept Lattices of Contexts

1.3 Many-Valued Contexts

In standard language the word “attribute” is not only lise? foi I{}Opegflil“?

i j : have. Attributes such as “colour, weight”,

hich an object may or may not b ; i

\:,elx“ “gracfe” have values. We call them many-valued attributes, n contrast
5 k]

to the one-valued attributes considered so far.

_valued context (G, M, W, I) consists of sets G,

iti . A man . ’
D and. - ylation I between G, M and W (i.e., ICGxMxW)

M and W and a ternary re
for which it holds that

(g,m,w) €1 and (g,m,v) €1 always imply v = v.

The elements of G are called objects, those of M (many-valued) at-

tribute W i values.

ibutes and those of attribute va . )

l (g m ‘w) eI we read as “the attribute m has the value w” for the object g.
k &l

G. M, W,I) is called a n-valued context, if W has n elenTents,. ’Fl?; m?onr)é—
v:x'l’ued, at;ributes can be regarded as partial maps from G 1n er;h Cle(:ren air,l
it seems reasonable to write m(g) = w instead of (g, m,w) € I. 'The

of an attribute m is defined to be
dom(m):={9€G | (g, m,w) € I for some W e W}l

i i = -valued context
The attribute m1s called complete, if dom(m) = G. A many N

is complete, if all its attributes are complete.

Like the one-valued contexts treated so far, many—vl:;,lue;d1 cogt.exts ;?13
¢ which are labelled by the objects

b resented by tables, the rows o ¢

t}(:erf:zlumns labelled by the attributes. The entry in row g and colcuglr‘ien;

then represents the attribute value m(g). If the attribute m does not ha

value for the object g, there will be no entry.

Example 5. The many-valued context represented ir.x Fbe upper part‘of Ftlﬁ—
ure 1 1% shows a comparison of the different possibilities of arranging the

engine and the drive chain of a motorcar (cf. Figure 1.12).

11\
e 5L

All-wheel

Conventional Front-wheel Rear-wheel Mid-engine

o7
Figure 1.12 Drive concepts for motorcars.

i i iven
6 Further information on the role of the “empty cells” in a context will be gi
in the notes at the end of the chapter.

7 Source: Schlag nach! 100 000 Tatsachen aus allen Wissensgebieten. BI-Verlag
Mannheim, 1982.
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How can we assign concepts to a many-valued context? We do this in the
following way: The many-valued context is transformed into a one-valued one,
in accordance with certain rules, which will be explained below. The concepts
of this derived one-valued context are then interpreted as the concepts of the
many-valued context. This interpretation process, however, called concep-
tual scaling, is not at all uniquely determined. The concept system of a
many-valued context depends on the scaling. This may at first be confusing,
but has proved to be an excellent instrument for a purposeful evaluation of
data.

In the process of scaling, first of all each attribute of a many-valued con-
text is interpreted by means of a context. This context is called conceptual
scale.

Definition 28. A scale for the attribute m of a many-valued context is a
(one-valued) context Sp, := (Gpy, Mm, I;n) with m(G) C G- The objects of
a scale are called scale values, the attributes are called scale attributes.

<

Every context can be used as a scale. Formally there is no difference
between a scale and a context. However, we will use the term “scale” only for
contexts which have a clear conceptual structure and which bear meaning.
Some particularly simple contexts are used as scales time and again. A
summary (in tabular form) of the most important ones can be found at the
end of the next section.

As already mentioned, the choice of the scale for the attribute m is not
mathematically compelling, it is a matter of interpretation. The same is
true for the second step in the process of scaling, the joining together of the
scales to make a one-valued context. In the simplest case, this can be achieved
by putting together the individual scales without connecting them. This is
described below as plain scaling. Particularly when dealing with numerical
scales this may well be unsatisfactory. In this case we need the scaling by
means of a composition operator. For details we refer to the pointers at the
end of the chapter.

In the case of plain scaling the derived one-valued context is obtained
from the many-valued context (G, M, W, I) and the scale contexts SmymeM
as follows: The object set G remains unchanged, every many-valued attribute
m is replaced by the scale attributes of the scale Sy,. If we imagine a many-
valued context as represented by a table, we can visualize plain scaling as
follows: Every attribute value m(g) is replaced by the row of the scale con-
text S,, which belongs to m(g). A detailed description will be given in the
following definition, for which we first introduce an abbreviation: The at-
tribute set of the derived context is the disjoint union of the attribute sets
of the scales involved. In order to make sure that the sets are disjoint, we
replace the attribute set of the scale S,, by

My, = {m} x My,.
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as in Definition 8 (p- 4).
and S, m € M are ’

G,M,W,I)isa many-valued context
t to plain scaling

Definition 29. If (
ived context with respec .

scale contexts, then the der
is the context (G, N, J) with

N := U M., .
meM £
£
and ' =] [5]5 ) 3
. _ 2
gJ(m,n) 1 &= m(g) = w and wlnn- s (=3 8(3(5 B 3
» P RERE T 2.8 =
O 2|5l X o' |
, S| |2l¢ L] = i
. - . E L x| w3 ¢
Example 6. We obtain the one-valued context 1n Figure 1.13 as the derived . NiE 2l x g X x|x s _% -
context of the many-valued context presented above it, if we use the following B EIEE + TE g
scales: g% + 3 < -z
, - = 3 S % g
EIE E|[x s ey s
<|3|=|8le &) . =
|| R = oo s = B 3
dlc|o 3 - X|X|X = £ 8= 2
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If we had used the scale Sg for the attributes De, Dl and R as well, the S| g |z A el | B X [X F oK o A
. . . R ¢ ..
derived context would have only turned out slightly different. The concept | T_ X FIOI ggll £
lattice is shown in Figure 1.14. Sl E|B|E 0 ~ 57 2
" . . s 5l88RERER  BRE ASi4 3
The formal definition of a context permits turning relations originating T + Bllg & !
. s . e . . . . L v|ow|v S 32 g
from any domain into contexts and examining their concept lattices, 1.€., —To1o + alﬂ S % =
) , PP 1 [x S
even contexts where an interpretation of the sets G and M as ‘objects” or 2 53 E ElE o[ <% :‘g ! E
. . . . . . [e] 3 1 oot =
“attributes” appears artificial. This is the case with many contexts from 8| & § 3 ¢ i 2G4 = g
. . . . . . X A .n =1
mathematics, and in this way we obtain concept lattices which often have — viole + X :EU ob 5 o =
. ! . . = — £
structural properties occurring very rarely with empirical data sets. Never- Eolsle S | T 535 =
i : i R - S1E3|8 v 8T 9 «
theless, these contexts are also of great importance for data analysis. They HHEEE SlzlglEle R -
an be used for example as “ideal st ; scales for the scali 5|:1%181E HEEHE EE R =
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introduced above. The scales which

ntary scales will be introduce les will follow in the next

eme d now. Other sca
section.
We will start with the definition of some operatio

construction of new contexts from given ones.

ns which permit the
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M4++,Cm,De-
Standard
All-wheel

Front-wheel

Figure 1.14 Concept lattice for the context of drive concepts.

= G 1"11 Il) and Kg =

i 30 Let K o= (GoM, D), Kaoi= (Gu Mu i) BRC B S

](:Zjﬁr]i;zu;:l) be contexts. We will use the abbreviations G; = {j} x Gj,
29 ) g

M; = {j} X M; and I = {((5,9), (G;m)) | (g,m) € I;} for j € {1,2} in the

following definition. It is:

K = (G,M,(Gx M\ )
the complementary context to K,
K o= (M,G,I7Y)

the dual context to K,
and, if G = G1 = G2,. .
Ky \Kz = (G,MxUMg,IlUlz)
the apposition of K; and Ky,
as well as dually, if M = M, = Ma,
—Kfl— = (Gl UG M, LU Ig)

Ko
the subposition of ¥; and Ka.

Ky UK, := (G1 U Gg, Ml U Mg,jl U ;)
is the disjoint union of K, and Ks.
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The context K¢ is called the contrary context to K. O

By using G; for {1} x G, and M;, respectively, we intend to make sure that
the sets are disjoint. However, strictly speaking, apposition and subposition
under this definition become non-associative. We will overlook this fact and
tacitly identify the contexts

(K |Kp ) |Ks and K| (K |Ks).

The same applies to the subposition, even to hybrid forms of the two opera-
tions. We do not distinguish between

K | Ky K, Ky
—————HQ [, and e R,
The two abbreviations
X = (G,M,Gx M)
O = (G,M,0)

are occasionally used without further describing the sets G and M, if they
are evident from the context. For example

K | X
D | K,

denotes the context (Gl U Gg, M, U J\;Iz, fl ulU (G1 X Mz)), the concept
lattice of which is isomorphic to the vertical sum of the concept lattices
B(K;) and B(Ky) (provided that K; does not contain a full column and K
does not contain a full row, cf. 4.3). . .

Each extent of K; U K2, apart from the extent G; U G, is entirely
contained in one of the sets G;. The corresponding applies to the intents.
Therefore, the concept lattice V := B(K; UK;) is a horizontal sum, i.e.,
it is the union V = Vi U V; of two sublattices which only overlap in the
smallest and the largest element: V3 NV, = {0y, 1y }. Provided that there
are no full rows or_columns in K; and Ky, we have V; = B(K;) or, more
generally, V= §(G1 U Gz, Ml U Mz, I,').

In Definition 28 we postulated that the values of the many-valued at-
tribute had to be the objects of the scale. In the following standardized scale
we frequently use n := {1,2,...,n} as the object set. In this case, in order
to scale a many-valued attribute, we first have to rename the objects. The
appropriate definitions for the isomorphy of scales will be introduced later,
in Chapter 7.3 (p. 258 fI.).
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Definition 3‘]: (elementary scales, see also Figure 1.15)

Nominal scales. Ny, := (n,n, =).

Nominal scales are used to scale attributes, the —
values of which mutually exclude each other. If an -l
1| x

attribute for example has the values {masculine,

feminine, neuter}, the use of a nominal scale sug- 2 X

gests itself. We thereby obtain a partition of the 3 X
objects into extents. In this case, the classes corre- 4 X

spond to the values of the attribute. The Nominal Scale Na.

(One-dimensional) ordinal scales. O, := (n,n, <).

I EEAEIEN

X

XXX

Ordinal scales scale many-valued attributes, the values of which are ordered
and where each value implies the weaker ones. If an attribute has for in-
stance the values {loud, very loud, extremely loud} ordinal scaling suggests
itself. The attribute values then result in a chain of extents, interpreted as a
hierarchy.

(One-dimensional) interordinal scales. I := (n,n, <) | (m,m,>) -

Questionnaires often offer opposite pairs as possible answers, as for exam-
ple active-passive, talkative-taciturn etc., allowing a choice of intermediate
values. In this case, we have a bipolar ordering of the values. This kind
of attributes lend themselves to scaling by means of an interordinal scale.
The extents of the interordinal scale are precisely the intervals of values, in
this way, the betweenness relation is reflected conceptually. However, bipolar

attributes often also lend themselves to biordinal scaling:

1.3 Many-valued Contexts 43

Biordinal scales. M, ,, := (n,n, <) U (m, m,>)

[ [<1[<2[<3[<4[>5]>6]

1 X X X %
2 X X X
P\Yﬂ4’2 =3 », >
4 X
b X
6 X ”

I . .
nr; lccs)éx;;':oi)luutsaige “{e oftenluseb opposite pairs not in the sense of an interordi
, simpler: each object is assigned one of the t ing
graduations. The values {very [ P R
; y low, low, loud, very loud} f
this way of scaling: loud and [  excl b exmpe sk
: . s : ow mutually exclude each oth
implies loud, very low implies low. W i i ith o
. ud, . We also find this kind of it ]
partition wit
hierarchy in the names of the school marks: An excellent performancew(ib}:/ia

ously is also very good i
o y good, good, and satisfactory, but not unsatisfactory or a

The dichotomic scale. D := ({
j ] X . :=({0,1},{0,1},=
The dichotomic scale constitutes a s})e}ciil ;age’, s)ince

it is isomorphic to the scales Ny and My ; and closely -ln
re'lated to 2. It is frequently used to scale attributes 0] x
with values of the kind {yes, no}. 1 al

A special ¢ . . .
. m;n;;eiljlluczsetff.sl?m sca'llbng which frequently occurs is the case that
y- ed attributes can be interpreted with r t ’
or family of scales. Thus we s i o comtont. 1t al
S. peak of a nominally scaled 1
scales S,, are nominal scales et J ’ o comtext ol
: ) c. We call a many-valued 3 i
if the nature of the data su 1 re: & ma e momina
] > data suggests nominal scaling; a m 1 i
called an ordinal context if fi i e ot i
or each attribute the set of values i i
; | > s ordered
a natural way. An example is presented in Figure 1.16, see also Figure 1 117n
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<4
4
<3
3
<2
2
<1
1

Figure 1.15 The concept lattices of the elementary scales are named after the
scales. The figure shows a nominal lattice, B(N4), a biordinal lattice, B(M 2 ),
an interordinal lattice, B(l4), and an ordinal lattice, B(04). The ordinal
lattice B(0n) is isomorphic to the n-element chain Chn.

— orwm Romanum ____[BCP | M [P
T T Arch of Septimus Severus ¥ * ok ¥
9 || Arch of Titus * K% %
3

Basilica Julia

4 || Basilica of Maxentius
5 || Phocas column
6 || Curia
7 || House of the Vestals
8 || Portico of Twelve Gods
9 || Tempel of Antonius and Fausta
10 || Temple of Castor and Pollux
11 || Temple of Romulus
12 || Temple of Saturn

13 || Temple of Vespasian
14 || Temple of Vesta

Figure 1.16 Example of an ordinal context: Ratings of monuments on the Forum
Romanum in different travel guides (B = Baedecker, GB = Les Guides Bleus, M
— Michelin, P = Polyglott). The context becomes ordinal through the number of
stars awarded. If no star has been awarded, this is rated zero.

1.3 Many-valued Contexts

P*

Curia

B*

Basilica of
of Maxentius
Romulus

Basilica Julia
House of the Vestals

C

Temple of
Vespasian

Column

Temple of Saturn of Phocas

Portico of the
Twelve Gods

Temple of Vesta Arch of Tit
us

Temple of Antoninus
and Faustina

Temple of Castor
and Pollux

Figure 1.17 The concept lattice of the ordinal context from Figure 1.16
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1.4 Context Constructions and Standard Scales

We have formulated the following frequently used sum and ;')roduct .Cm'lSt:qu—
tions for two contexts each, but the definitions can be easily genelallze o

any number of contexts. The additional statements on the concept lattices

of the resulting contexts carry OVer.

Definition 32. The direct sum of two contexts is defined by®
Ky + Ky = (G1 U G2, Ml U Mz, jl U ig @] (Gl X ;Mz) U (Gz X 1”1))
O

The concept lattice of a sum of contexts is isomorphic to the .product of
its concept lattices. In the case of two contexts we therefore obtain

B(Ky +Kz) = B(Ky) x B(Kz),
since (A, B) is a concept of K +Kz if and only if (_AOC'?i, BN M;) is a concept

of Ki := (Gi, Mi, Ii), for ie{l,2}. This means that the isomorphism is given
= iy Mgy L)y ) ! b
by (A\B) — ((A n Gl,B n 1"1), (A N Ga, BN M;))

Definition 33. The semiproduct is defined by
Kl X Kg = (Gl X Gz, ]"Il U ]”2, V)

with . ‘
(gl,gg)V(j, m): & g;I;m for j € {1,2}.
O

The extents of the semiproduct are precisely the} sets of the form A; >; 14};
cach set A; being an extent of K;. This also yields the: .st?ucttﬁue cz)dl.‘ct
concept lattice B(K; X Ks): Essentially, the concept latt.lc'e is t ed.pffcatio,l;
of the concept lattices of the factor contexts3 thougl} there 1sha mo 1mction
regarding the zero elements. Precisely, the instruction for td? COITS‘CEHt y
reads as follows: Provided that the extent of the correspor:B 1;{g co;hei w;
empty, we remove the zero element from eac‘h of the ext.ents' ~€1 & ) hen ve
form the product of these ordered sets and, if we have previously }16}131 ) ,ttice
element, we add a new zero element to make a com;_)]ete lattice. is lat
is then isomorphic to the concept lattice of the semiproduct.

Definition 34. The direct product is given by
]_[/1 x kg = (G1 X Gg,ﬂ[l X A,‘I'Z’V)

with (gl,gg)V(m;,zm) c = g1fym or g21ama.
O

—_—

8 For the notation see Definition &
Section 5.1.

(p. 4). A more general definition is given in
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The concept lattice of the direct product is called the tensor product of
the concept lattices of the factor contexts. We will later discuss the tensor
product in more detail (Sections 4.4, 5.4). We obtain the cross table of the
direct product by replacing each empty cell in the table of K; by a copy of K,
and each cross by a square full of crosses of the size of K;. For an example
see Figures 4.19 (page 164) and 4.20.

Another context construction, the so-called substitution sum, where a
context is inserted into an other context, will be described in section 4.3.
The sum and the product of reduced contexts are reduced (cf. Corollary 74,
p. 166). Reducible objects or attributes with empty intents or extents may
occur in the case of the disjoint union. Semi products of reduced contexts
are reduced if the factors (allowing for one exception at most) are atomistic,
i.e., if they satisfy ¢’ Ch' = g =h.

It is easy to state numerous simple arithmetical rules for context construc-
tions, which are useful for some proofs. In particular, the direct product is
(up to isomorphism) commutative and associative; it is distributive over the

direct sum, the apposition and the subposition.- We note down one of these
results for later:

Proposition 16.
(& +K2) x K3z = (H{l X Ks) + (Kz x K3).

Proof. We may assume that the three contexts K =: (Gi, M, L), i €
{1,2,3}, have disjoint object sets and disjoint attribute sets. By

(Gl UGz) x Gz = (G1 X Gg) U (Gg X G3)

and
(]\Jl @] ]Wz) x M3 = (M; X 1”3) U (1”2 x Ms),

the two contexts of the proposition have the same objects and attributes. For
the incidence we find the same on both sides as well, namely

g € Gy and m € M, or
g€ Gyand me M, or
(g, R)I(m,n) <= { hizn or O

g € Gi,m € M, and gIym  or
g € G3,m € My and glam.

We now state a list of interesting context families. Many of them have
proved to be useful as scales. We provide a summary of these scales, including
their basic meanings, in Figure 1.26 at the end of this section. Besides, these
contexts serve as a reservoir of examples for mathematical reasoning.
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(1) For every set S the contranominal scale
NS = (S, S, #)

is reduced. The concepts of this context are precisely the pairs (A4, S'\-l)f
for A C S. The concept lattice is isomorphic to the powe.r-se‘t Clattlce o
S, and thus has oSl elements. If § = {1,2,..., n} we write Ij.

9

Figure 1.18 Example of an ordered set (P, <) and its completion B(P, P, <).

(2) From an arbitrary ordered set P := (P, <) we obtain the general or-

i le
dinal sca 0p = (P,P,<).
Its concepts are precisely the pairs (X, Y) with X, Y CP whereé‘ lsft;e
set of all lower bounds of Y and Y is the .set of all upper boun slot. .
This concept lattice is called the Dedekmd—MacN-ell!e cor.nkll) ; ion
of the ordered set P. It is the smallest complffte lattice in whic can
be order-embedded, in the sense of the following theorem:

Theorem 4. (Dedekind’s Completion Theorem) For an ordered set

(7<) = ((z],[z)) forz € P

defines an embedding ¢ of (P,<) in Q(P, P, <); moreover, L.Vl)( :,i‘(s\t/;‘;
or t AX = N\ X if the supremum ot infimum .of X, res;wctzlv(;tyléee%} o
(P, ). If k is an arbitrary emb'eddmg of (P, <) m a complete lattice V, fhen
there is always also an embedding X of the ordered set B(P, P,<) in

K= AoL.

Proof. Evidently, the concepts of (P, P, <) are precisely the pairs (A, B)
with A, B C P and

I

.{xePlxgyforallyeB},
{yEP|m§yforallm€A};

A=B
B=A"

I
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in particular, all pairs ((z],[z)) with € P are concepts of (P, P, <), which
confirms ¢ as an embedding. If the supremum of X exists in (P, <), then

Vx) =N,

reX

i.e., L V X =

~((v v = (1 [w))l~ N =V bn=Vx

reX reX

The equation for existing infima is shown dually.
With respect to the missing part of the proof we refer to Proposition 33
(p- 99). O

(3) From an arbitrary ordered set P := (P, <) we furthermore obtain the
reduced context

04 = (P, P, ),

which is called the contraordinal scale. In this case, the concepts are

precisely the pairs (X,Y) with the following properties:

- XUY =Pand XNY =0,

— X is an order idealin P, i.e.,, z € X and z < z always imply z € X.
Because of X UY = P and X NY = @ this is equivalent to:

— Y is an order filterin P, ie.,y €Y and y < z always imply z € Y.

The context (P, P, %) is doubly founded, since

ey =Sy = =y

holds for &,y € P. Hence if z is an object and y is an attribute with
x4y (i.e., z > y), then ¢ Sz and 2’ = P\ [z) D P\ [y) =¥, hold for
the attribute z, as required by Definition 26.

The concept lattice B(P, P, #) is isomorphic to the lattice of the order
ideals of P. A look at (1) shows that all concepts of the contraordi-
nal scale are concepts of the contranominal scale N¢ as well. We will
prove later (Theorem 13, p. 112) that for this reason B(P, P, #) is
a complete sublattice of B(P, P,#), which means that these lattices
are completely distributive. Birkhoff’s theorem (Theorem 39, p. 220)
shows that the lattices constructed in this way, are precisely the doubly
founded completely distributive lattices. In particular, every finite dis-
tributive lattice is isomorphic to the concept lattice of a contraordinal
scale. The dual lattice, i.e., B(P, P, £), is often denoted by 2P because
it is also isomorphic to the lattice of the order-preserving maps of P to
the two-element lattice.
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[Jalblcldlelf]
X | X | X

a X X
e f b ﬂ X | X | X |[X
c X | X | X
c d — d x xx] —
e X
a b E X
(P,<) (P, P, %)

B(P, P, ¥)

Figure 1.19 An ordered set (P, <), the corresponding contraordinal scale and its
concept lattice, i.e., the ideal lattice of (P, <)

(4)

We obtain an interesting special case of (3) by choosing the power-set
of a set S as our ordered set P, i.e., by considering the context

(B(S), B(S5): 2)-
Because of A2 B <= BN(S\ A) # @, this context is isomorphic to
(B(S), B(5),4) with XAY i< (XNY)#0.

The concept lattice is called the free completely distributive lattice
FCD(S). Iffor §:={1,2,..., n} we denote the context (B(S), B(S), D)

by A,, we can state an easy recursion rule for the generation of these

AU: and  Apt1 :%——%’%——

The construction can be generalized by taking an ordered set (S, <) as
the base set, the set OZ(S, <) of the order ideals of (S, <) as the object
set and the set OF(S, <) of the order filters of (S, <) as the attribute

set. The concept lattice

contexts:

FCD(S, <) = (OZ(S, <), OF(S,<), )

is called the free completely distributive lattice over the ordered
set (5, <).

For an arbitrary ordered set (P, <), we define a filter to be a subset of
P which is an order filter and in which furthermore any two elements
have a common lower bound. Hence F'C P is a filter if and only if the

following two conditions are satisfied:
1. Fromzr € F and y > z it follows that y € F,
9. for any two elements r,y € [ there is an u € F with u <« and

u<y.

1.4 Context Constructions and Standard Scales

2
%
%
%

w0 BB

Fi . .

G ore intrainaed 33 T oxe o, T et e T 181, i
5 ' n 2.2. e one shown here is d PO S

method that led to it is explained in Example 14 (r; 1515‘;6 to S. Thiele [175]. The

[

J

1
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defined to be a subset of P which is an order ideal

Dually, an ideal is
Jlements contained

and contains a common upper bound for any two e
in it. Filters in this sense are among other things the principal filters.
Dually, each principal ideal is an ideal. The set of all filters is denoted by
F(P,<), the set of all ideals by Z(P,<). We obtain the doubly founded

context
Fip,<) = (F(P, <),I(P, <), 4),

where again
FAI: = FNI+#0O.

(6) Again from an ordered set P := (P, <) we obtain the general interor-

dinal scale

Ip:= (P,P,<) | (P, P, >), '

the concept system of which we explain by means of the extents: the
attribute extents are precisely the principal ideals and the principal
filters of P, the object extents are all intersections of those sets. These
include all intervals®. In general, these are all sets which constitute

intersections of intervals.
(7) By analogy with (6) we obtain the convex-ordinal scale

Cp := (P,P,ZH(P,P,f_)-

In this case, the extents are precisely the convex subsets of P, i.e., those
subsets which contain with any two elements a and b all elements ¢ with

a<c<b

- o laloloe
X
x| XXX X

x
x
X | X | % x
L’__'x’xxx

Figure 1.21 The convex-ordinal scale of the ordered set from Figure 1.19.

X

(8) Let S be aset and s € S an arbitrary element. If we now choose G to
be the set of all two-element subsets of S and M to be the set of all

subsets of S\ {s}, by the definition
(ry}o X 0 |z y} N XI#1

I
9 in the sense of Definition 5 (p- 3), 1.e., only the “closed” intervals.

1.4 Context Cons i 3
ext Constructions and Standard Scales 5e

Figure 1.22 The concept lattice of the convex-ordinal scale from Figure 1.21

we obtai » : S
ain a context (G, M,o) with 1)| objects and 2151-1 at-

trlbu'tes, which is reduced except for one full column. Every ext
of this context is a set of two-element subsets of S ie. it car)l E)\ o
dersto9d as a symmetric reflexive relation on S; act’ua;ll.\’r the rel i"m”
occurring are precisely the equivalence relations on S. i‘l’ence th: CIZ?\S
f:ll:ﬁfg;m%v%gr’fé ©) is isomorphic to the lattice &(S) of equivalence
. an give a mnemonic rule for this context seri
g}/e get Py := (0, {#},0) and obtain the n + 1-st context ofrltel?i:?se‘:ieelsl.
n+1, from the n-th as follows: We form the apposition of P, with ti ,
cross table PXV, which is identical to [P, apart from the fa 2 ‘t’v}i (b
columns are written down in the reversed order. c that the

n ]P);ev

2 — 1 2"—1 271—1_1 0

Z}’et;ddﬁnbfurther rOwsS, w:hich we fill with crosses such that the columns
o 1; subcontext look like the binary representations of the numbers
—1,...,0. An example is given in Figure 1.23.

( ) If R iS a symin tI'iC rela 1 i Yy
10N O S i i
9 ! (2 ) t ( | n (ea,Sll VlSlla.llZed by the edges Of an
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. ontext Constructions and Standard Scales

Sy
<

is a doubly founded context q i i
ey xt, the extents of which are precisely the sub-

10011001 For the special f th
32100123 s speclal case of the vector spaces over GF (2 i ;
< . : 7F(2) th
76543210 simple recursion for the generation of these contexti' )Forere e ®
Kia,2) := (GF(2)%, (GF(2)%)*, 1)
Figure 1.23 Context P4 for the lattice of equivalence relations on a 4-element set. : it is easy to prove that
(S, S, R) Kiagr,z) = d,2 ch,z
' Ka | Kaz) -~
we obtain a context, the concepts of which are precisely the pairs (A, B), An example is given in Figure 1.24
ACS,BCS, which are maximal with respect to the property that & e
each element of A is in the relation R with each element of B (in the
visualization these are maximal complete bipartite edge sets). Thus, X X X X X X X X
together with (4, B), (B, A) is also a concept, and the map X X X X
X X X X
(4, B) = (B, 4) X xx o ox
X X X X
is a polarity, i.e., an order-reversing bijection which is inverse to itself : x x xoox
(another term for this is involutory antiautomorphism). Conversely, x < x : x

every complete polarity lattice (i.e., every complete lattice with a Fi
ity) is i ic to the concept lattice of text (S, S, R) with igure 1.24 K35, a context deriv S
polarity) is isomorphic to the concept lattice ol a contex (S, S, R) wi two-cloment, f e“l((si .2) ntext derived from the 3-dimensional vector space over the

a symmetric relation R.
If the relation R is irreflexive, the extent and the intent of each concept

must be disjoint and we have (11) If H is .
: a Hilbert space and L is the ortho i .
. g onalit; lat
(4, B) A (B, 4) = (9,0 concept lattice of the context gonality relation, then the
and (4, B)V (B, 4) = (0, 0), (H, H, 1)

ie., (A, B) and (B, A) are complementary to each other: Their infi-
mum is the smallest, their supremum the largest element of the concept

}s{‘ls?morphic &0 t.he (orthomodular) lattice of the closed subspaces of
; since (U,U~) is a concept for each such subspace U.

lattice. A lattice with this kind of polarity is called an ortholattice; (12) The set of all permutations of the set {1 : .

the complete ortholattices are (up to isomorphism) precisely the concept order in a natural way. For this pur o,s'e' V;n} cSn be given a la.ttlce

lattices of contexts with an irreflexive, symmetric relation. inversion of the permutation ¢ if i <pj but Z,-Ci a plaflr (W,:fj) an
J t > @j. If we order the

There are many examples of such contexts in this book. They can be permutations by

easily recognized if the cross table is represented symmetric to the main

diagonal. The context K(2.3) in Figure 1.24 is the context of a polarity o < 17:4= every inversion of ¢ is also an inversion of r
: E]

lattice but not of an ortholattice. The same applies to the context in we obtain, as 7 z ;
Figure 5.9 (p. 205), although this only becomes clear after an adroit There is ;abi prc;ved by Yanagimoto and Okamoto [217], a lattice X,
) e simple recursi - ’
reassembly of the cross table. Putting . rsion rule for the description of the context:
(10) If Vis a finite dimensional vector space and V* is the dual space of V, Ko := Lo := |

=l = anc

then
(V,V*, 1) with alp:<=> pa=0 Loyt i= }L@ L, ‘ - _ K, | K,
n ]Ln ntl ]Kn ]L ’
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then we -obtain

S = B(En)-

s I, are reduced except for the full rows and full columns.

The context
34 is presented in Figure 1.25.

Figure 1.25 The lattice X4 of the permutations of {1,2, 3,4}.

the definitions for the standard scales are
compounded, for example as a cardinal sum or as a direct'pxzodu.ct, it is t'of
be expected that the respective scales can be.spht up. This is true, even 1
in different ways, as exemplified by the following rules:

If the ordered sets occurring in

Proposition 17.

Op,4p, = Op, UOP,
]IPH'Pz = le U HP2
Q)ll:::ix+P2 = (O)gi] + \O);;iz
Cp,4p, = Cp, +Cp,
@cPdle; = ©cPdl x @%iz

cd cd c c
Cp,xp, = OUp, X 0%, | Op, X 0,

1.4 Context Constructions and Standard Scales

Symbol Definition Name Basic meaning
Op (P, P,<) general ordinal hierarchy
scale
(O (n,n, <) one-dimensional rank order
ordinal scale
N, (n,n,=) nominal scale partition
M, . nk Ony44ny, multiordinal partition with
scale rank orders
M, n Om+n biordinal scale two-class
rank orders
B, (‘B(n), P(n), C) | n-dimensional dependency of
Boolean scale attributes
Gny,.onpe | Ony X -+ X @y, | k-dimensional multiple
grid scale ordering
og! (P,P, %) contraordinal scale | hierarchy and
independence
Ny, (n,n, #) contranominal partition and
scale independence
D ({0,1}, {0, 1}, =) | dichotomic scale dichotomy
Dk DX.-.-XD k-dimensional multiple
N dichotomic scale dichotomy
k—times
I§ 3 Op | Of general betweenness
interordinal scale | relation
In (08 | 0¢ one-dimensional linear between-
interordinal scale | ness relation
Cp 0g' | 0% convex-ordinal convex ordering
scale

Figure 1.26 Standardized scales of ordinal type.

5

-



