
DEPARTMENT OF COMPUTER SCIENCE

FACULTY OF SCIENCE

PALACKÝ UNIVERSITY, OLOMOUC

INTRODUCTION TO FORMAL CONCEPT ANALYSIS

RADIM BĚLOHLÁVEK

VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN
EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Olomouc 2008

Preface

This text develops fundamental concepts and methods of formal concept analysis. The text is meant as an
introduction to formal concept analysis. The presentation is rigorous—we include definitions and theorems
with proofs. On the other hand, we pay attention to the motivation and explanation of the presented
material in informal terms and by means of numerous illustrative examples of the concepts, methods,
and their practical meaning. Our goal in writing this text was to make the text accessible not only to
mathematically educated people such as mathematicians, computer scientists, and engineers, but also to
all potential users of formal concept analysis.

The text can be used for a graduate course on formal concept analysis. In addition, the text can be used as
an introductory text to the topic of formal concept analysis for researchers and practitioners.

Contents

1 Introduction . 4

1.1 What is Formal Concept Analysis? . 4

1.2 First Example . 4

1.3 Historical Roots and Development . 5

2 Concept Lattices . 6

2.1 Input data . 6

2.2 Concept-Forming Operators . 6

2.3 Formal Concepts and Concept Lattice . 7

2.4 Formal Concepts as Maximal Rectangles . 9

2.5 Basic Mathematical Structures Behind FCA: Galois Connections and Closure Operators . . . 10

2.6 Main Theorem of Concept Lattices . 15

2.7 Clarification and Reduction of Formal Concepts . 17

2.8 Basic Algorithm For Computing Concept Lattices . 23

3 Attribute Implications . 27

3.1 Basic Notions Regarding Attribute Implications . 27

3.2 Armstrong Rules and Reasoning With Attribute Implications 30

3.3 Models of Attribute Implications . 37

3.4 Non-Redundant Bases of Attribute Implications . 40

1 Introduction

1.1 What is Formal Concept Analysis?

Formal concept analysis (FCA) is a method of data analysis with growing popularity
across various domains. FCA analyzes data which describe relationship between a
particular set of objects and a particular set of attributes. Such data commonly appear
in many areas of human activities. FCA produces two kinds of output from the input
data. The first is a concept lattice. A concept lattice is a collection of formal concepts
in the data which are hierarchically ordered by a subconcept-superconcept relation.
Formal concepts are particular clusters which represent natural human-like concepts
such as “organism living in water”, “car with all wheel drive system”, “number di-
visible by 3 and 4”, etc. The second output of FCA is a collection of so-called attribute
implications. An attribute implication describes a particular dependency which is
valid in the data such as “every number divisible by 3 and 4 is divisible by 6”, “every
respondent with age over 60 is retired”, etc.

A distinguishing feature of FCA is an inherent integration of three components of
conceptual processing of data and knowledge, namely, the discovery and reasoning
with concepts in data, discovery and reasoning with dependencies in data, and vi-
sualization of data, concepts, and dependencies with folding/unfolding capabilities.
Integration of these components makes FCA a powerful tool which has been applied
to various problems. Examples include hierarchical organization of web search re-
sults into concepts based on common topics, gene expression data analysis, informa-
tion retrieval, analysis and understanding of software code, debugging, data mining,
and design in software engineering, internet applications including analysis and or-
ganization of documents and e-mail collections, annotated taxonomies, and further
various data analysis projects described in the literature. Interesting applications in
counterterrorism, in particular in analysis and visualization of data related to terrorist
activities, have been reported in a recent article “The N.S.A.’s Math Problem” in the
2006/05/16 edition of The New York Times.

1.2 First Example

A table with logical attributes can be represented by a triplet 〈X, Y, I〉 where I is a
binary relation between X and Y . Elements of X are called objects and correspond to
table rows, elements of Y are called attributes and correspond to table columns, and
for x ∈ X and y ∈ Y , 〈x, y〉 ∈ I indicates that object x has attribute y while 〈x, y〉 /∈ I
indicates that x does not have y. For instance, Fig. 1.2 (left) depicts a table with logical
attributes. The corresponding triplet 〈X, Y, I〉 is given by X = {x1, x2, x3, x4}, Y =

y1 y2 y3 · · ·
x1 × × ×

x2 × ×
...

x3 × ×
... · · · . . .

y1 y2 y3 · · ·
x1 1 1 0.7

x2 0.8 0.6 0.1
...

x3 0 0.9 0.9
... · · · . . .

Figure 1: Tables with logical attributes: crisp attributes (left), fuzzy attributes (right).

{y1, y2, y3}, and we have 〈x1, y1〉 ∈ I , 〈x2, y3〉 /∈ I , etc. Since representing tables with
logical attributes by triplets is common in FCA, we say just “table 〈X, Y, I〉” instead of
“triplet 〈X, Y, I〉 representing a given table”. FCA aims at obtaining two outputs out
of a given table. The first one, called a concept lattice, is a partially ordered collection

of particular clusters of objects and attributes. The second one consists of formulas,
called attribute implications, describing particular attribute dependencies which are
true in the table. The clusters, called formal concepts, are pairs 〈A,B〉 where A ⊆ X is
a set of objects and B ⊆ Y is a set of attributes such that A is a set of all objects which
have all attributes from B, and B is the set of all attributes which are common to all
objects from A. For instance, 〈{x1, x2}, {y1, y2}〉 and 〈{x1, x2, x3}, {y2}〉 are examples
of formal concepts of the (visible part of) left table in Fig. 1.2. An attribute implication
is an expression A ⇒ B with A and B being sets of attributes. A ⇒ B is true in table
〈X, Y, I〉 if each object having all attributes from A has all attributes from B as well.
For instance, {y3} ⇒ {y2} is true in the (visible part of) left table in Fig. 1.2, while
{y1, y2} ⇒ {y3} is not (x2 serves as a counterexample).

1.3 Historical Roots and Development

Although some previous attempts exist, it is generally agreed and FCA started by
Wille’s seminal paper [10]. Cautious development of mathematical foundations which
later proved useful when developing computational foundations is one strong feature
of FCA. Another is its reliance on a simple and robust notion of a concept inspired by
a traditional approach to concepts as developed in traditional logic. Introduction and
applications of FCA are described in [2], mathematical foundations are covered in [5],
the state of the art is surveyed in [6].

There are three international conferences devoted to FCA, namely, ICFCA (Interna-
tional Conference on Formal Concept Analysis), CLA (Concept Lattices and Their Ap-
plications), and ICCS (International Conference on Conceptual Structures). In addi-
tion, further papers on FCA can be found in journals and proceedings of other confer-
ences.

2 Concept Lattices

Goals: This chapter introduces basic notions of formal concept analysis, among which
are the fundamental notions of a formal context, formal concept, and concept lattice.
The chapter introduces these notions and related mathematical structures such as Ga-
lois connections and closure operators and their basic properties as well as basic prop-
erties of concept lattices. The chapter also presents NextClosure—a basic algorithm
for computing a concept lattice.

Keywords: formal context, formal concept, concept lattice, concept-deriving operator,
Galois connection.

2.1 Input data

In the basic setting, the input data to FCA is in the form of a table (called a cross-
table) which describes a relationship between objects (represented by table rows) and
attributes (represented by table columns). An example of such table is shown in Fig. 2.
A table entry containing ×indicates that the corresponding object has the correspond-

I y1 y2 y3 y4

x1 × × × ×
x2 × × ×
x3 × × ×
x4 × × ×
x5 ×

Figure 2: Cross-table.

ing attribute. For example, if objects are products such as cars and attributes are car
attributes such as “has ABS”,×indicates that a particular car has ABS (anti-block brak-
ing system). A table entry containing a blank symbol (empty entry) indicates that the
object does not have the attribute (a particular car does not have ABS). Thus, in Fig. 2,
object x2 has attribute y1 but does not have attribute y2.

Formally, a (cross-)table is represented by a so-called formal context.

Definition 2.1 (formal context). A formal context is a triplet 〈X, Y, I〉 where X and Y
are non-empty sets and I is a binary relation between X and Y , i.e., I ⊆ X × Y .

For a formal context, elements x from X are called objects and elements y from Y are
called attributes. 〈x, y〉 ∈ I indicates that object x has attribute y. For a given a cross-
table with n rows and m columns, a corresponding formal context 〈X, Y, I〉 consists of
a set X = {x1, . . . , xn}, a set Y = {y1, . . . , ym}, and a relation I defined by: 〈xi, yj〉 ∈ I
if and only if the table entry corresponding to row i and column j contains ×.

2.2 Concept-Forming Operators

Every formal context induces a pair of operators, so-called concept-forming operators.

Definition 2.2 (concept-forming operators). For a formal context 〈X, Y, I〉, operators
↑ : 2X → 2Y and ↓ : 2Y → 2X are defined for every A ⊆ X and B ⊆ Y by

A↑ = {y ∈ Y | for each x ∈ A : 〈x, y〉 ∈ I},
B↓ = {x ∈ X | for each y ∈ B : 〈x, y〉 ∈ I}.

Remark 2.3. – Operator ↑ assigns subsets of Y to subsets of X . A↑ is just the set of
all attributes shared by all objects from A.

– Dually, operator ↓ assigns subsets of X to subsets of Y . B↑ is the set of all objects
sharing all attributes from B.

– To emphasize that ↑ and ↓ are induced by 〈X, Y, I〉, we use ↑I and ↓I .

Example 2.4 (concept-forming operators). For table

I y1 y2 y3 y4

x1 × × × ×
x2 × × ×
x3 × × ×
x4 × × ×
x5 ×

we have:

– {x2}↑ = {y1, y3, y4}, {x2, x3}↑ = {y3, y4},
– {x1, x4, x5}↑ = ∅,
– X↑ = ∅, ∅↑ = Y ,
– {y1}↓ = {x1, x2, x5}, {y1, y2}↓ = {x1},
– {y2, y3}↓ = {x1, x3, x4}, {y2, y3, y4}↓ = {x1, x3, x4},
– ∅↓ = X , Y ↓ = {x1}.

2.3 Formal Concepts and Concept Lattice

The notion of a formal concept is fundamental in FCA. Formal concepts are particular
clusters in cross-tables, defined by means of attribute sharing.

Definition 2.5 (formal concept). A formal concept in 〈X, Y, I〉 is a pair 〈A,B〉 of A ⊆ X
and B ⊆ Y such that A↑ = B and B↓ = A.

For a formal concept 〈A,B〉 in 〈X, Y, I〉, A and B are called the extent and intent of
〈A,B〉, respectively. Note the following verbal description of formal concepts: 〈A,B〉
is a formal concept if and only if A contains just objects sharing all attributes from B
and B contains just attributes shared by all objects from A. Mathematically, 〈A,B〉 is
a formal concept if and only if 〈A,B〉 is a fixpoint of the pair 〈↑, ↓〉 of concept-forming
operators.

Example 2.6 (formal concept). For table

I y1 y2 y3 y4

x1 × × × ×
x2 × × ×
x3 × × ×
x4 × × ×
x5 ×

the highlighted rectangle represents formal concept

〈A1, B1〉 = 〈{x1, x2, x3, x4}, {y3, y4}〉

because

{x1, x2, x3, x4}↑ = {y3, y4} and {y3, y4}↓ = {x1, x2, x3, x4}.

But there are further formal concepts. Three of them are represented by the following
highlighted rectangles:

I y1 y2 y3 y4

x1 × × × ×
x2 × × ×
x3 × × ×
x4 × × ×
x5 ×

I y1 y2 y3 y4

x1 × × × ×
x2 × × ×
x3 × × ×
x4 × × ×
x5 ×

I y1 y2 y3 y4

x1 × × × ×
x2 × × ×
x3 × × ×
x4 × × ×
x5 ×

Namely, 〈A2, B2〉 = 〈{x1, x3, x4}, {y2, y3, y4}〉, 〈A3, B3〉 = 〈{x1, x2}, {y1, y3, y4}〉, and
〈A4, B4〉 = 〈{x1, x2, x5}, {y1}〉.

The notion of a formal concept can be seen as a simple mathematization of a well-
known notion of a concept, which goes back to Port-Royal logic. According to Port-
Royal, a concept is determined by a collection of objects (extent) which fall under
the concept and a collection of attributes (intent) covered by the concepts. Concepts
are naturally ordered using a subconcept-superconcept relation. The subconcept-
superconcept relation is based on inclusion relation on objects and attributes. For-
mally, the subconcept-superconcept relation is defined as follows.

Definition 2.7 (subconcept-superconcept ordering). For formal concepts 〈A1, B1〉 and
〈A2, B2〉 of 〈X, Y, I〉, put 〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (iff B2 ⊆ B1).

Remark 2.8. – ≤ represents the subconcept-superconcept ordering.
– 〈A1, B1〉 ≤ 〈A2, B2〉 means that 〈A1, B1〉 is more specific than 〈A2, B2〉 (〈A2, B2〉

is more general).
– ≤ captures the intuition behind DOG≤MAMMAL (the concept of a dog is more

specific than the concept of a mammal).

Example 2.9. Consider the following formal concepts from Example 2.6:
〈A1, B1〉 = 〈{x1, x2, x3, x4}, {y3, y4}〉, 〈A2, B2〉 = 〈{x1, x3, x4}, {y2, y3, y4}〉,
〈A3, B3〉 = 〈{x1, x2}, {y1, y3, y4}〉, 〈A4, B4〉 = 〈{x1, x2, x5}, {y1}〉. Then:
〈A3, B3〉 ≤ 〈A1, B1〉, 〈A3, B3〉 ≤ 〈A2, B2〉, 〈A3, B3〉 ≤ 〈A4, B4〉, 〈A2, B2〉 ≤ 〈A1, B1〉,
〈A1, B1〉||〈A4, B4〉 (incomparable), 〈A2, B2〉||〈A4, B4〉.

The collection of all formal concepts of a given formal contxt is called a concept lattice,
another fundamental notion in FCA.

Definition 2.10 (concept lattice). Denote by B(X, Y, I) the collection of all formal con-
cepts of 〈X, Y, I〉, i.e.

B (X, Y, I) = {〈A,B〉 ∈ 2X × 2Y | A↑ = B,B↓ = A}.

B (X, Y, I) equipped with the subconcept-superconcept ordering ≤ is called a concept
lattice of 〈X, Y, I〉.

– B (X, Y, I) represents all (potentially interesting) clusters which are “hidden” in
data 〈X, Y, I〉.

– We will see that 〈B (X, Y, I),≤〉 is indeed a lattice later.

Denote

Ext(X, Y, I) = {A ∈ 2X | 〈A,B〉 ∈ B (X, Y, I) for some B} (extents of concepts)

and

Int(X, Y, I) = {B ∈ 2Y | 〈A,B〉 ∈ B (X, Y, I) for some A} (intents of concepts).

Example 2.11. Consider the following cross-table (input data, taken from [5]):

a b c d e f g h i

leech 1 × × ×
bream 2 × × × ×

frog 3 × × × × ×
dog 4 × × × × ×

spike-weed 5 × × × ×
reed 6 × × × × ×
bean 7 × × × ×

maize 8 × × × ×

a: needs water to live, b: lives in water,
c: lives on land, d: needs chlorophyll to produce food,

e: two seed leaves, f : one seed leaf,
g: can move around, h: has limbs,

i: suckles its offspring.

The corresponding formal context 〈X, Y, I〉 contains the following formal concepts:

C0 = 〈{1, 2, 3, 4, 5, 6, 7, 8}, {a}〉, C1 = 〈{1, 2, 3, 4}, {a, g}〉, C2 = 〈{2, 3, 4}, {a, g, h}〉,
C3 = 〈{5, 6, 7, 8}, {a, d}〉, C4 = 〈{5, 6, 8}, {a, d, f}〉, C5 = 〈{3, 4, 6, 7, 8}, {a, c}〉,
C6 = 〈{3, 4}, {a, c, g, h}〉, C7 = 〈{4}, {a, c, g, h, i}〉, C8 = 〈{6, 7, 8}, {a, c, d}〉,
C9 = 〈{6, 8}, {a, c, d, f}〉, C10 = 〈{7}, {a, c, d, e}〉, C11 = 〈{1, 2, 3, 5, 6}, {a, b}〉,
C12 = 〈{1, 2, 3}, {a, b, g}〉, C13 = 〈{2, 3}, {a, b, g, h}〉, C14 = 〈{5, 6}, {a, b, d, f}〉,
C15 = 〈{3, 6}, {a, b, c}〉, C16 = 〈{3}, {a, b, c, g, h}〉, C17 = 〈{6}, {a, b, c, d, f}〉,
C18 = 〈{}, {a, b, c, d, e, f, g, h, i}〉.

The corresponding concept lattice B(X, Y, I) is depicted in the following figure:

C0

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12
C13

C14C15

C16
C17

C18

2.4 Formal Concepts as Maximal Rectangles

Alternatively, formal concepts can conveniently be defined as maximal rectangles in
the cross-table.

Definition 2.12 (rectangles in 〈X, Y, I〉). A rectangle in 〈X, Y, I〉 is a pair 〈A,B〉 such
that A × B ⊆ I , i.e.: for each x ∈ A and y ∈ B we have 〈x, y〉 ∈ I . For rectangles
〈A1, B1〉 and 〈A2, B2〉, put 〈A1, B1〉 v 〈A2, B2〉 iff A1 ⊆ A2 and B1 ⊆ B2.

Example 2.13. Consider

I y1 y2 y3 y4

x1 × × × ×
x2 × × ×
x3 × × ×
x4 × × ×
x5 ×

In this table, 〈{x1, x2, x3}, {y3, y4}〉 is a rectangle which is not maximal w.r.t. v.
〈{x1, x2, x3, x4}, {y3, y4}〉 is a rectangle which is maximal w.r.t. v.

Theorem 2.14 (formal concepts as maximal rectangles). 〈A,B〉 is a formal concept of
〈X, Y, I〉 iff 〈A,B〉 is a maximal rectangle in 〈X, Y, I〉.

Proof. Left as an exercise (by direct verification).

We will see that a “geometrical reasoning” in FCA based on the idea of formal concepts
as rectangles is important.

2.5 Basic Mathematical Structures Behind FCA: Galois Connections and
Closure Operators

In this section, we present the basic mathematical structures behind FCA and their
properties. We start with the concept of Galois connections. Namely, as we will see,
the concept-forming operators form a representative case of Galois connections.

Definition 2.15 (Galois connection). A Galois connection between sets X and Y is a pair
〈f, g〉 of f : 2X → 2Y and g : 2Y → 2X satisfying for A,A1, A2 ⊆ X , B,B1, B2 ⊆ Y :

A1 ⊆ A2 ⇒ f(A2) ⊆ f(A1), (2.1)
B1 ⊆ B2 ⇒ g(B2) ⊆ g(B1), (2.2)
A ⊆ g(f(A)), (2.3)
B ⊆ f(g(B). (2.4)

Definition 2.16 (fixpoints of Galois connections). For a Galois connection 〈f, g〉 be-
tween sets X and Y , the set

fix(〈f, g〉) = {〈A,B〉 ∈ 2X × 2Y | f(A) = B, g(B) = A}

is called a set of fixpoints of 〈f, g〉.

The following theorem shows a fundamental property of concept-forming operators.

Theorem 2.17 (concept-forming operators form a Galois connection). For a formal con-
text 〈X, Y, I〉, the pair 〈↑I , ↓I 〉 of operators induced by 〈X, Y, I〉 is a Galois connection between
X and Y .

Proof. Left as an exercise (by direct verification).

We have the following direct consequence.

Lemma 2.18 (chaining of Galois connection). For a Galois connection 〈f, g〉 between X
and Y we have f(A) = f(g(f(A))) and g(B) = g(f(g(B))) for any A ⊆ X and B ⊆ Y .

Proof. We prove only f(A) = f(g(f(A))), g(B) = g(f(g(B))) is dual:
“⊆”: f(A) ⊆ f(g(f(A))) follows from (2.4) by putting B = f(A).

“⊇”: Since A ⊆ g(f(A)) by (2.3), we get f(A) ⊇ f(g(f(A))) by application of (2.1).

Another important notion related to FCA is that of a closure operator.

Definition 2.19 (closure operator). A closure operator on a set X is a mapping C : 2X →
2X satisfying for each A,A1, A2 ⊆ X

A ⊆ C(A), (2.5)
A1 ⊆ A2 ⇒ C(A1) ⊆ C(A2), (2.6)
C(A) = C(C(A)). (2.7)

Definition 2.20 (fixpoints of closure operators). For a closure operator C : 2X → 2X ,
the set

fix(C) = {A ⊆ X |C(A) = A}
is called a set of fixpoints of C.

Closure operators result from the concept-forming operators by their composition:

Theorem 2.21 (from Galois connection to closure operators). If 〈f, g〉 is a Galois connec-
tion between X and Y then CX = f ◦ g is a closure operator on X and CY = g ◦f is a closure
operator on Y .

Proof. We show that f ◦ g : 2X → 2X is a closure operator on X :
(2.5) is A ⊆ g(f(A)) which is true by definition of a Galois connection.
(2.6): A1 ⊆ A2 impies f(A2) ⊆ f(A1) which implies g(f(A1)) ⊆ g(f(A2)).
(2.7): Since f(A) = f(g(f(A))), we get g(f(A)) = g(f(g(f(A)))).

The next theorem shows that extents and intents are just the images under the concept-
forming operators.

Theorem 2.22 (extents and intents).

Ext(X, Y, I) = {B↓ |B ⊆ Y },
Int(X, Y, I) = {A↑ |A ⊆ X}.

Proof. We prove only the part for Ext(X, Y, I), part for Int(X, Y, I) is dual.

“⊆”: If A ∈ Ext(X, Y, I), then 〈A,B〉 is a formal concept for some B ⊆ Y . By defini-
tion, A = B↓, i.e. A ∈ {B↓ |B ⊆ Y }.

“⊇”: Let A ∈ {B↓ |B ⊆ Y }, i.e. A = B↓ for some B. Then 〈A,A↑〉 is a formal concept.
Namely, A↑↓ = B↓↑↓ = B↓ = A by chaining, and A↑ = A↑ for free. That is, A is the
extent of a formal concept 〈A,A↑〉, whence A ∈ Ext(X, Y, I).

Closures of sets are the least extents and intents:

Theorem 2.23 (least extent containing A, least intent containing B). The least extent
containing A ⊆ X is A↑↓. The least intent containing B ⊆ Y is B↓↑.

Proof. For extents:
1. A↑↓ is an extent (by previous theorem).

2. If C is an extent such that A ⊆ C, then A↑↓ ⊆ C↑↓ because ↑↓ is a closure operator.
Therefore, A↑↓ is the least extent containing A.

The next theorem provides a useful description of a system of extents, intents, and a
concept lattice.

Theorem 2.24. For any formal context 〈X, Y, I〉:

Ext(X, Y, I) = fix(↑↓),
Int(X, Y, I) = fix(↓↑),
B(X, Y, I) = {〈A,A↑〉 |A ∈ Ext(X, Y, I)},
B(X, Y, I) = {〈B↓, B〉 |B ∈ Int(X, Y, I)}.

Proof. For Ext(X, Y, I):
We need to show that A is an extent iff A = A↑↓.
“⇒”: If A is an extent then for the corresponding formal concept 〈A,B〉 we have B =
A↑ and A = B↓ = A↑↓. Hence, A = A↑↓.
“⇐”: If A = A↑↓ then 〈A,A↑〉 is a formal concept. Namely, denoting 〈A,B〉 = 〈A,A↑〉,
we have both A↑ = B and B↓ = A↑↓ = A. Therefore, A is an extent.

For B(X, Y, I) = {〈A,A↑〉 |A ∈ Ext(X, Y, I)}:
If 〈A,B〉 ∈ B(X, Y, I) then B = A↑ and, obviously, A ∈ Ext(X, Y, I).

If A ∈ Ext(X, Y, I) then A = A↑↓ (above claim) and, therefore, 〈A,A↑〉 ∈ B(X, Y, I).

For B(X, Y, I) = {〈A,A↑〉 |A ∈ Ext(X, Y, I)}:
If 〈A,B〉 ∈ B(X, Y, I) then B = A↑ and, obviously, A ∈ Ext(X, Y, I).

If A ∈ Ext(X, Y, I) then A = A↑↓ (above claim) and, therefore, 〈A,A↑〉 ∈ B(X, Y, I).

Remark 2.25. The previous theorem says that in order to obtain B(X, Y, I), we can:

1. compute Ext(X, Y, I),

2. for each A ∈ Ext(X, Y, I), output 〈A,A↑〉.

There is a single condition which is equivalent to the four conditions from definition
of a Galois connection:

Theorem 2.26. 〈f, g〉 is a Galois connection between X and Y iff for every A ⊆ X and
B ⊆ Y :

A ⊆ g(B) iff B ⊆ f(A) (2.8)

Proof. “⇒”:
Let 〈f, g〉 be a Galois connection.
If A ⊆ g(B) then f(g(B)) ⊆ f(A) and since B ⊆ f(g(B)), we get B ⊆ f(A). In similar
way, B ⊆ f(A) implies A ⊆ g(B).

“⇐”:
Let A ⊆ g(B) iff B ⊆ f(A). We check that 〈f, g〉 is a Galois connection.
Due to duality, it suffices to check (a) A ⊆ g(f(A)), and (b) A1 ⊆ A2 implies f(A2) ⊆
f(A1).
(a): Due to our assumption, A ⊆ g(f(A)) is equivalent to f(A) ⊆ f(A) which is
evidently true.
(b): Let A1 ⊆ A2. Due to (a), we have A2 ⊆ g(f(A2)), therefore A1 ⊆ g(f(A2)). Using
assumption, the latter is equivalent to f(A2) ⊆ f(A1).

Basic behavior of Galois connections with respect to union and intersection is de-
scribed by the following theorem.

Theorem 2.27. 〈f, g〉 is a Galois connection between X and Y then for Aj ⊆ X , j ∈ J , and
Bj ⊆ Y , j ∈ J we have

f(
⋃
j∈J

Aj) =
⋂
j∈J

f(Aj), (2.9)

g(
⋃
j∈J

Bj) =
⋂
j∈J

g(Bj). (2.10)

Proof. (2.9):
For any D ⊆ Y : D ⊆ f(

⋃
j∈J Aj) iff

⋃
j∈J Aj ⊆ g(D) iff for each j ∈ J : Aj ⊆ g(D) iff

for each j ∈ J : D ⊆ f(Aj) iff D ⊆
⋂

j∈J f(Aj).
Since D is arbitrary, it follows that f(

⋃
j∈J Aj) =

⋂
j∈J f(Aj).

(2.10): dual.

Not only every pair of concept-forming operators forms a Galois, every Galois con-
nection is a concept-forming operator of a particular formal context:

Theorem 2.28. Let 〈f, g〉 be a Galois connection between X and Y . Consider a formal context
〈X, Y, I〉 such that I is defined by

〈x, y〉 ∈ I iff y ∈ f({x}) or, equivalently, iff x ∈ g({y}), (2.11)

for each x ∈ X and y ∈ Y . Then 〈↑I , ↓I 〉 = 〈f, g〉, i.e., the arrow operators 〈↑I , ↓I 〉 induced by
〈X, Y, I〉 coincide with 〈f, g〉.

Proof. First, we show y ∈ f({x}) iff x ∈ g({y}):
From y ∈ f({x}) we get {y} ⊆ f({x}) from which, using (2.8), we get {x} ⊆ g({y}),
i.e. x ∈ g({y}).
In a similar way, x ∈ g({y}) implies y ∈ f({x}). This establishes y ∈ f({x}) iff
x ∈ g({y}).

Now, for each A ⊆ X we have f(A) = f(∪x∈A{x}) = ∩x∈Af({x}) = ∩x∈A{y ∈ Y | y ∈
f({x})} = ∩x∈A{y ∈ Y | 〈x, y〉 ∈ I} = {y ∈ Y | for each x ∈ A : 〈x, y〉 ∈ I} = A↑I .

Dually, for B ⊆ Y we get g(B) = B↓I .

Now, using (2.9), for each A ⊆ X we have

f(A) = f(∪x∈A{x}) = ∩x∈Af({x}) =
= ∩x∈A{y ∈ Y | y ∈ f({x})} = ∩x∈A{y ∈ Y | 〈x, y〉 ∈ I} =
= {y ∈ Y | for each x ∈ A : 〈x, y〉 ∈ I} = A↑I .

Dually, for B ⊆ Y we get g(B) = B↓I .

Remark 2.29. – Relation I induced from 〈f, g〉 by (2.11) will be denoted by I〈f,g〉.

– Therefore, we have established two mappings:
I 7→ 〈↑I , ↓I 〉 assigns a Galois connection to a binary relation I .
〈↑, ↓〉 7→ I〈↑,↓〉 assigns a binary relation to a Galois connection.

Therefore, we get:

Theorem 2.30 (representation theorem). I 7→ 〈↑I , ↓I 〉 and 〈↑, ↓〉 7→ I〈↑,↓〉 are mutually
inverse mappings between the set of all binary relations between X and Y and the set of all
Galois connections between X and Y .

Proof. Using the results established above, it remains to check that I = I〈↑I ,↓I 〉:
We have

〈x, y〉 ∈ I〈↑I ,↓I 〉 iff y ∈ {x}↑I iff 〈x, y〉 ∈ I,

finishing the proof.

Remark 2.31. In particular, previous theorem assures that (2.1)–(2.4) fully describe all
the properties of our arrow operators induced by data 〈X, Y, I〉.

Having established properties of 〈↑, ↓〉, we can see the duality relationship between
extents and intents:

Theorem 2.32. For 〈A1, B1〉, 〈A2, B2〉 ∈ B(X, Y, I),

A1 ⊆ A2 iff B2 ⊆ B1. (2.12)

Proof. By assumption, Ai = B↓
i and Bi = A↑

i . Therefore, using (2.1) and (2.2), we get
A1 ⊆ A2 implies A↑

2 ⊆ A↑
1, i.e., B2 ⊆ B1, which implies B↓

1 ⊆ B↓
2 , i.e. A1 ⊆ A2.

Therefore, the definition of a partial order ≤ on B(X, Y, I) is correct.

An immediate consequence of the above properties is the following theorem:

Theorem 2.33 (extents, intents, and formal concepts). 1. 〈Ext(X, Y, I),⊆〉 and
〈Int(X, Y, I),⊆〉 are partially ordered sets.

2. 〈Ext(X, Y, I),⊆〉 and 〈Int(X, Y, I),⊆〉 are dually isomorphic, i.e., there is a mapping
f : Ext(X, Y, I) → Int(X, Y, I) satisfying A1 ⊆ A2 iff f(A2) ⊆ f(A1).

3. 〈B(X, Y, I),≤〉 is isomorphic to 〈Ext(X, Y, I),⊆〉.

4. 〈B(X, Y, I),≤〉 is dually isomorphic to 〈Int(X, Y, I),⊆〉.

Proof. 1.: Obvious because Ext(X, Y, I) is a collection of subsets of X and ⊆ is set
inclusion. Same for Int(X, Y, I).

2.: Just take f = ↑ and use previous results.

3.: Obviously, mapping 〈A,B〉 7→ A is the required isomorphism.

4.: Mapping 〈A,B〉 7→ B is the required dual isomorphism.

We know that B(X, Y, I) (set of all formal concepts) equipped with ≤ (subconcept-
superconcept hierarchy) is a partially ordered set. Now, the question is:

What is the structure of 〈B(X, Y, I),≤〉?

It turns out that 〈B(X, Y, I),≤〉 is a complete lattice (we will see this as a part of Main
theorem of concept lattices). The fact that 〈B(X, Y, I),≤〉 is a lattice is a “welcome
property”. Namely, it says that for any collection K ⊆ B(X, Y, I) of formal concepts,
B(X, Y, I) contains both the “direct generalization”

∨
K of concepts from K (supre-

mum of K), and the “direct specialization”
∨

K of concepts from K (infimum of K).
In this sense, 〈B(X, Y, I),≤〉 is a complete conceptual hierarchy. Let us now look at
details.

We start with the following abstract theorem.

Theorem 2.34 (system of fixpoints of closure operators). For a closure operator C on X ,
the partially ordered set 〈fix(C),⊆〉 of fixpoints of C is a complete lattice with infima and
suprema given by ∧

j∈J

Aj =
⋂
j∈J

Aj , (2.13)

∨
j∈J

Aj = C(
⋃
j∈J

Aj). (2.14)

Proof. Evidently, 〈fix(C),⊆〉 is a partially ordered set.

(2.13): First, we check that for Aj ∈ fix(C) we have
⋂

j∈J Aj ∈ fix(C) (intersection of
fixpoints is a fixpoint). We need to check

⋂
j∈J Aj = C(

⋂
j∈J Aj).

“⊆”:
⋂

j∈J Aj ⊆ C(
⋂

j∈J Aj) is obvious (property of closure operators).
“⊇”: We have C(

⋂
j∈J Aj) ⊆

⋂
j∈J Aj iff for each j ∈ J we have C(

⋂
j∈J Aj) ⊆ Aj

which is true. Indeed, we have
⋂

j∈J Aj ⊆ Aj from which we get C(
⋂

j∈J Aj) ⊆
C(Aj) = Aj .

Now, since
⋂

j∈J Aj ∈ fix(C), it is clear that
⋂

j∈J Aj is the infimum of Aj ’s: first,⋂
j∈J Aj is less of equal to every Aj ; second,

⋂
j∈J Aj is greater or equal to any A ∈

fix(C) which is less or equal to all Aj ’s; that is,
⋂

j∈J Aj is the greatest element of the
lower cone of {Aj | j ∈ J}).

(2.14): We verify
∨

j∈J Aj = C(
⋃

j∈J Aj). Note first that since
∨

j∈J Aj is a fixpoint of
C, we have

∨
j∈J Aj = C(

∨
j∈J Aj).

“⊆”: C(
⋃

j∈J Aj) is a fixpoint which is greater or equal to every Aj , and so C(
⋃

j∈J Aj)
must be greater or equal to the supremum

∨
j∈J Aj , i.e.

∨
j∈J Aj ⊆ C(

⋃
j∈J Aj).

“⊇”: Since
∨

j∈J Aj ⊇ Aj for any j ∈ J , we get
∨

j∈J Aj ⊇
⋃

j∈J Aj , and so
∨

j∈J Aj =
C(

∨
j∈J Aj) ⊇ C(

⋃
j∈J Aj).

To sum up,
∨

j∈J Aj = C(
⋃

j∈J Aj).

2.6 Main Theorem of Concept Lattices

The previous results enable us to formulate the following theorem characterizing the
structure of concept lattices.

Theorem 2.35 (Main theorem of concept lattices, Wille (1982)). (1) B (X, Y, I) is a com-
plete lattice with infima and suprema given by∧

j∈J

〈Aj , Bj〉 = 〈
⋂
j∈J

Aj , (
⋃
j∈J

Bj)↓↑〉 ,
∨
j∈J

〈Aj , Bj〉 = 〈(
⋃
j∈J

Aj)↑↓,
⋂
j∈J

Bj〉 . (2.15)

(2) Moreover, an arbitrary complete lattice V = (V,≤) is isomorphic to B (X, Y, I) iff there
are mappings γ : X → V , µ : Y → V such that

(i) γ(X) is
∨

-dense in V, µ(Y) is
∧

-dense in V;

(ii) γ(x) ≤ µ(y) iff 〈x, y〉 ∈ I .

Remark 2.36. (1) Note that K ⊆ V is supremally dense in V iff for each v ∈ V there
exists K ′ ⊆ K such that v =

∨
K ′ (i.e., every element v of V is a supremum of some

elements of K).
Dually for infimal density of K in V (every element v of V is an infimum of some
elements of K).

(2) Supremally (infimally) dense sets canbe considered building blocks of V .

Proof. For part (1) of the Main Theorem only: We check
∧

j∈J 〈Aj , Bj〉 =
〈
⋂

j∈J Aj , (
⋃

j∈J Bj)↓↑〉:

First, 〈Ext(X, Y, I),⊆〉 = 〈fix(↑↓),⊆〉 and 〈Int(X, Y, I),⊆〉 = 〈fix(↓↑),⊆〉. That is,
Ext(X, Y, I) and Int(X, Y, I) are systems of fixpoints of closure operators, and there-
fore, suprema and infima in Ext(X, Y, I) and Int(X, Y, I) obey the formulas from pre-
vious theorem.

Second, recall that 〈B (X, Y, I),≤〉 is isomorphic to 〈Ext(X, Y, I),⊆〉 and dually iso-
morphic to 〈Int(X, Y, I),⊆〉.

Therefore, infima in B (X, Y, I) correspond to infima in Ext(X, Y, I) and to suprema in
Int(X, Y, I).

That is, since
∧

j∈J 〈Aj , Bj〉 is the infimum of 〈Aj , Bj〉’s in 〈B (X, Y, I),≤〉: The
extent of

∧
j∈J 〈Aj , Bj〉 is the infimum of Aj ’s in 〈Ext(X, Y, I),⊆〉 which is, ac-

cording to (2.13),
⋂

j∈J Aj . The intent of
∧

j∈J 〈Aj , Bj〉 is the supremum of Bj ’s
in 〈Int(X, Y, I),⊆〉 which is, according to (2.14), (

⋃
j∈J Bj)↓↑. We just proved∧

j∈J 〈Aj , Bj〉 = 〈
⋂

j∈J Aj , (
⋃

j∈J Bj)↓↑〉.

Checking the formula for
∨

j∈J 〈Aj , Bj〉 is dual.

Consider now part (2) of the Main Theorem and take V := B(X, Y, I). Since B(X, Y, I)
is isomorphic to B(X, Y, I), there exist mappings

γ : X → B(X, Y, I) and µ : Y → B(X, Y, I)
satisfying properties from part (2). How do mappings γ and µ work? One may put

γ(x) = 〈{x}↑↓, {x}↑〉. . . object concept of x,

µ(y) = 〈{y}↓, {y}↓↑〉. . . attribute concept of y.

Then: (i) says that each 〈A,B〉 ∈ B(X, Y, I) is a supremum of some ob-
jects concepts (and, infimum of some attribute concepts). This is true since

〈A,B〉 =
∨

x∈A 〈{x}↑↓, {x}↑〉 and 〈A,B〉 =
∧

y∈B 〈{y}↓, {y}↓↑〉.

(ii) is true, too: γ(x) ≤ µ(y) iff {x}↑↓ ⊆ {y}↓ iff {y} ⊆ {x}↑↓↑ = {x}↑ iff 〈x, y〉 ∈ I .

What does then the Main Theorem say? Part (1) says that B(X, Y, I) is a lattice and
describes its infima and suprema. Part (2) provides a way to label a concept lattice so
that no information is lost.

The labeling has two rules:
Since γ(x) = 〈{x}↑↓, {x}↑〉, an object concept of x is labeled by x,
since µ(y) = 〈{y}↓, {y}↓↑〉, an attribute concept of y is labeled by y.

Now, how do we see extents and intents in a labeled Hasse diagram? Consider for-
mal concept 〈A,B〉 corresponding to node c of a labeled diagram of concept lattice
B(X, Y, I). What is then extent and the intent of 〈A,B〉?

x ∈ A iff node with label x lies on a path going from c downwards,
y ∈ B iff node with label y lies on a path going from c upwards.

One can verify correctness of the above labeling procedure.

Example 2.37. (1) Draw a labeled Hasse diagram of a concept lattice associated to
formal context

I y1 y2 y3 y4

x1 × × × ×
x2 × × ×
x3 × × ×
x4 × × ×
x5 ×

(2) Is every formal concept either an object concept or an attribute concept? Can a
formal concept be both an object concept and an attribute concept?

2.7 Clarification and Reduction of Formal Concepts

A formal context may be redundant in that one can remove some of its objects or at-
tributes and get a formal context for which the associated concept lattice is isomorphic
to that one of the original formal context. Two main notions in this regards are that of
a clarified formal context and that of a reduced formal context.

Definition 2.38 (clarified context). A formal context 〈X, Y, I〉 is called clarified if the
corresponding table does neither contain identical rows nor identical columns.

That is, if 〈X, Y, I〉 is clarified then
{x1}↑ = {x2}↑ implies x1 = x2 for every x1, x2 ∈ X ;
{y1}↓ = {y2}↓ implies y1 = y2 for every y1, y2 ∈ Y .

Clarification can therefore be performed by removing identical rows and columns
(only one of several identical rows/columns is left).

Example 2.39. The formal context on the right results by clarification from the formal
context on the left.

I y1 y2 y3 y4

x1 × × × ×
x2 × × ×
x3 × × ×
x4 × × ×
x5 ×

I y1 y2 y3

x1 × × ×
x2 × ×
x3 × ×
x5 ×

Theorem 2.40. If 〈X1, Y1, I1〉 is a clarified context resulting from 〈X2, Y2, I2〉 by clarification,
then B(X1, Y1, I1) is isomorphic to B(X2, Y2, I2).

Proof. Let 〈X2, Y2, I2〉 contain x1, x2 s.t. {x1}↑ = {x2}↑ (identical rows). Let
〈X1, Y1, I1〉 result from 〈X2, Y2, I2〉 by removing x2 (i.e., X1 = X2 − {x2},
Y1 = Y2). An isomorphism f : B(X1, Y1, I1) → B(X2, Y2, I2) is given by

f(〈A1, B1〉) = 〈A2, B2〉
where B1 = B2 and

A2 =
{

A1 if x1 6∈ A1,
A1 ∪ {x2} if x1 ∈ A1.

Namely, one can easily see that 〈A1, B1〉 is a formal concept of B(X1, Y1, I1)
iff f(〈A1, B1〉) is a formal concept of B(X2, Y2, I2) and that for formal concepts
〈A1, B1〉, 〈C1, D1〉 of B(X1, Y1, I1) we have

〈A1, B1〉 ≤ 〈C1, D1〉 iff f(〈A1, B1〉) ≤ f(〈C1, D1〉).

Therefore, B(X1, Y1, I1) is isomorphic to B(X2, Y2, I2). This justifies the claim for re-
moving one (identical) row. The same is true for removing one column. Repeated
application gives the theorem.

Example 2.41. Find the isomorphism between concept lattices of formal contexts from
the previous example.

Another way to simplify the input formal context: removing reducible objects and
attributes

Example 2.42. Draw concept lattices of the following formal contexts:

I y1 y2 y3

x1 ×
x2 × × ×
x3 ×

I y1 y3

x1 ×
x2 × ×
x3 ×

Why are they isomorphic?

(Hint: y2 = intersection of y1 and y3 (i.e., {y2}↓ = {y1}↓ ∩ {y3}↓).)

This leads us to the following definition.

Definition 2.43 (reducible objects and attributes). For a formal context 〈X, Y, I〉, an
attribute y ∈ Y is called reducible iff there is Y ′ ⊂ Y with y 6∈ Y ′ such that

{y}↓ =
⋂

z∈Y ′

{z}↓,

i.e., the column corresponding to y is the intersection of columns corresponding to zs
from Y ′. An object x ∈ X is called reducible iff there is X ′ ⊂ X with x 6∈ X ′ such that

{x}↑ =
⋂

z∈X′

{z}↑,

i.e., the row corresponding to x is the intersection of rows corresponding to zs from
X ′.

Note the following:

– y2 from the previous example is reducible (Y ′ = {y1, y3}).

– Analogy: If a (real-valued attribute) y is a linear combination of other attributes,
it can be removed (caution: this depends on what we do with the attributes).
Intersection = particular attribute combination.

– (Non-)reducibility in 〈X, Y, I〉 is connected to so-called
∧

-(ir)reducibility and
∨

-
(ir)reducibility in B(X, Y, I).

– In a complete lattice 〈V,≤〉, v ∈ V is called
∧

-irreducible if there is no U ⊂ V
with v 6∈ U s.t. v =

∧
U . Dually for

∨
-irreducibility.

– Determine all
∧

-irreducible elements in 〈2{a,b,c},⊆〉, in a “pentagon”, and in a
4-element chain.

– Verify that in a finite lattice 〈V,≤〉: v is
∧

-irreducible iff v is covered by exactly
one element of V ; v is

∨
-irreducible iff v covers exactly one element of V .

Furthermore, note the following:

– easily from definition: y is reducible iff there is Y ′ ⊂ Y with y 6∈ Y ′ s.t.

〈{y}↓, {y}↓↑〉 =
∧

z∈Y ′

〈{z}↓, {z}↓↑〉. (2.16)

– Let 〈X, Y, I〉 be clarified. Then in (2.16), for each z ∈ Y ′: {y}↓ 6= {z}↓, and
so, 〈{y}↓, {y}↓↑〉 6= 〈{z}↓, {z}↓↑〉. Thus: y is reducible iff 〈{y}↓, {y}↓↑〉 is an infi-
mum of attribute concepts different from 〈{y}↓, {y}↓↑〉. Now, since every concept
〈A,B〉 is an infimum of some attribute concepts (attribute concepts are

∧
-dense),

we get that y is not reducible iff 〈{y}↓, {y}↓↑〉 is
∧

-irreducible in B(X, Y, I).

– Therefore, if 〈X, Y, I〉 is clarified, y is not reducible iff 〈{y}↓, {y}↓↑〉 is
∧

-
irreducible.

– Suppose 〈X, Y, I〉 is not clarified due to {y}↓ = {z}↓ for some z 6= y. Then y is
reducible by definition (just put Y ′ = {z} in the definition). Still, it can happen
that 〈{y}↓, {y}↓↑〉 is

∧
-irreducible and it can happen that y is

∧
-reducible, see

the next example.

– Example. Two non-clarified contexts. Left: y2 reducible and 〈{y2}↓, {y2}↓↑〉
∧

-
reducible. Right: y2 reducible but 〈{y2}↓, {y2}↓↑〉

∧
-irreducible.

I y1 y2 y3 y4

x1 ×
x2 × × × ×
x3 × × × ×
x4 ×

I y1 y2 y3 y4 y5

x1 × ×
x2 × ×
x3 × × × ×
x4 × ×

– The same for reducibility of objects: If 〈X, Y, I〉 is clarified, then x is not reducible
iff 〈{x}↑↓, {x}↑〉 is

∨
-irreducible in B(X, Y, I).

– Therefore, it is convenient to consider reducibility on clarified contexts (then,
reducibility of objects and attributes corresponds to

∨
- and

∧
-reducibility of

object concepts and attribute concepts).

We now get the following theorem regarding reducibility.

Theorem 2.44. Let y ∈ Y be reducible in 〈X, Y, I〉. Then B(X, Y − {y}, J) is isomorphic
to B(X, Y, I) where J = I ∩ (X × (Y − {y})) is the restriction of I to X × Y − {y}, i.e.,
〈X, Y − {y}, J〉 results by removing column y from 〈X, Y, I〉.

Proof. Follows from part (2) of Main theorem of concept lattices:
Namely, B(X, Y − {y}, J) is isomorphic to B(X, Y, I) iff there are mappings
γ : X → B(X, Y, I) and µ : Y − {y} → B(X, Y, I) such that (a) γ(X) is

∨
-dense in

B(X, Y, I), (b) µ(Y − {y}) is
∧

-dense in B(X, Y, I), and (c) γ(x) ≤ µ(z) iff 〈x, z〉 ∈ J .
If we define γ(x) and µ(z) to be the object and attribute concept of B(X, Y, I) corre-
sponding to x and z, respectively, then:
(a) is evident.
(c) is satisfied because for z ∈ Y −{z}we have 〈x, z〉 ∈ J iff 〈x, z〉 ∈ I (J is a restriction
of I).

(b): We need to show that each 〈A,B〉 ∈ B(X, Y, I) is an infimum of attribute concepts
different from 〈{y}↓, {y}↓↑〉. But this is true because y is reducible: Namely, if 〈A,B〉 ∈
B(X, Y, I) is the infimum of attribute concepts which include 〈{y}↓, {y}↓↑〉, then we
may replace 〈{y}↓, {y}↓↑〉 by the attribute concepts 〈{z}↓, {z}↓↑〉, z ∈ Y ′ (cf. definition
of reducible attribute), of which 〈{y}↓, {y}↓↑〉 is the infimum.

Definition 2.45 (reduced formal context). 〈X, Y, I〉 is

– row reduced if no object x ∈ X is reducible,
– column reduced if no attribute y ∈ Y is reducible,
– reduced if it is both row reduced and column reduced.

Note that

– by the above observation: If 〈X, Y, I〉 is not clarified, then either some object is
reducible (if there are identical rows) or some attribute is reducible (if there are
identical columns). Therefore, if 〈X, Y, I〉 is reduced, it is clarified.

– The relationship between reducibility of objects/attributes and
∨

- and
∧

-
reducibility of object/attribute concepts gives us:

Remark 2.46. A clarified 〈X, Y, I〉 is

– row reduced iff every object concept is
∨

-irreducible,
– column reduced iff every attribute concept is

∧
-irreducible.

How to find out which objects and attributes are reducible? A useful way is provided
by so-called arrow relations.

Definition 2.47 (arrow relations). For 〈X, Y, I〉, define relations ↗, ↙, and l between
X and Y by

– x ↙ y iff 〈x, y〉 6∈ I and if {x}↑ ⊂ {x1}↑ then 〈x1, y〉 ∈ I .
– x ↗ y iff 〈x, y〉 6∈ I and if {y}↓ ⊂ {y1}↓ then 〈x, y1〉 ∈ I .
– x l y iff x ↙ y and x ↗ y.

Therefore, if 〈x, y〉 ∈ I then none of x ↙ y, x ↗ y, x l y occurs. The arrow relations
can therefore be entered in the table of 〈X, Y, I〉.

For

I y1 y2 y3 y4

x1 × × × ×
x2 × ×
x3 × × ×
x4 ×
x5 × ×

we get

I y1 y2 y3 y4

x1 × × × ×
x2 × × l ↙
x3 l × × ×
x4 ↗ × ↗
x5 ↗ × × l

We have the following theorem connecting arrow relations and reducibility.

Theorem 2.48 (arrow relations and reducibility). For any 〈X, Y, I〉, x ∈ X , y ∈ Y :

– 〈{x}↑↓, {x}↑〉 is
∨

-irreducible iff there is y ∈ Y s.t. x ↙ y;
– 〈{y}↓, {y}↓↑〉 is

∧
-irreducible iff there is x ∈ Y s.t. x ↗ y.

Proof. Due to duality, we verify
∧

-irreducibility:
x ↗ y IFF
x 6∈ {y}↓ and for every y1 with {y}↓ ⊂ {y1}↓ we have x ∈ {y1}↓ IFF
{y}↓ ⊂

⋂
y1:{y}↓⊂{y1}↓ IFF

〈{y}↓, {y}↓↑〉 is not an infimum of other attribute concepts IFF
〈{y}↓, {y}↓↑〉 is

∧
-irreducible.

Consider the following problem:
INPUT: (arbitrary) formal context 〈X1, Y1, I1〉
OUTPUT: a reduced context 〈X2, Y2, I2〉

This problem can be solved by the following algorithm (verify using the above obser-
vations):

1. clarify 〈X1, Y1, I1〉 to get a clarified context 〈X3, Y3, I3〉 (removing identical rows
and columns),

2. compute arrow relations ↙ and ↗ for 〈X3, Y3, I3〉,
3. obtain 〈X2, Y2, I2〉 from 〈X3, Y3, I3〉 by removing objects x from X3 for which

there is no y ∈ Y3 with x ↙ y, and attributes y from Y3 for which there is no
x ∈ X3 with x ↗ y. That is:
X2 = X3 − {x | there is no y ∈ Y3 s. t. x ↙ y},
Y2 = Y3 − {y | there is no x ∈ X3 s. t. x ↗ y},
I2 = I3 ∩ (X2 × Y2).

Example 2.49. Compute arrow relations ↙, ↗, l for the following formal context:

I1 y1 y2 y3 y4

x1 × × × ×
x2 × ×
x3 × × ×
x4 ×
x5 × ×

Start with ↗. We need to go through cells in the table not containing × and decide
whether ↗ applies.
The first such cell corresponds to 〈x2, y3〉. By definition, x2 ↗ y3 iff for each y ∈ Y

such that {y3}↓ ⊂ {y}↓ we have x2 ∈ {y}↓. The only such y is y2 for which we have
x2 ∈ {y2}↓, hence x2 ↗ y3.

And so on up to 〈x5, y4〉 for which we get x5 ↗ y4.

Compute arrow relations ↙, ↗, l for the following formal context:

I1 y1 y2 y3 y4

x1 × × × ×
x2 × ×
x3 × × ×
x4 ×
x5 × ×

Continue with ↙. Go through cells in the table not containing × and decide whether
↙ applies. The first such cell corresponds to 〈x2, y3〉. By definition, x2 ↙ y3 iff for
each x ∈ X such that {x2}↑ ⊂ {x}↑ we have y3 ∈ {x}↑. The only such x is x1 for which
we have y3 ∈ {x1}↑, hence x2 ↙ y3.

And so on up to 〈x5, y4〉 for which we get x5 ↙ y4.

Compute arrow relations ↙, ↗, l for the following formal context (left):

I1 y1 y2 y3 y4

x1 × × × ×
x2 × ×
x3 × × ×
x4 ×
x5 × ×

I1 y1 y2 y3 y4

x1 × × × ×
x2 × × l ↙
x3 l × × ×
x4 ↗ × ↗
x5 ↗ × × l

The arrow relations are indicated in the right table. Therefore, the corresponding re-
duced context is

I2 y1 y3 y4

x2 ×
x3 × ×
x5 ×

For a complete lattice 〈V,≤〉 and v ∈ V , denote

v∗ =
∨

u∈V,u<v

u,

v∗ =
∧

u∈V,v<u

u.

Example 2.50. – Show that x ↙ y iff 〈{x}↑↓, {x}↑〉 ∨ 〈{y}↓, {y}↓↑〉 =
〈{x}↑↓, {x}↑〉∗ < 〈{y}↓, {y}↓↑〉,

– Show that x ↗ y iff 〈{x}↑↓, {x}↑〉∧〈{y}↓, {y}↓↑〉 = 〈{y}↓, {y}↓↑〉∗ > 〈{y}↓, {y}↓↑〉.

Let 〈X1, Y1, I1〉 be clarified, X2 ⊆ X1 and Y2 ⊆ Y1 be sets of irreducible objects and
attributes, respectively, let I2 = I1 ∩ (X2 × Y2) (restriction of I1 to irreducible objects
and attributes).
How can we obtain from concepts of B(X1, Y1, I1) from those of B(X2, Y2, I2)? The
answer is based on:

1. 〈A1, B1〉 7→ 〈A1 ∩X2, B1 ∩ Y2〉 is an isomorphism from B(X1, Y1, I1) on
B(X2, Y2, I2).

2. therefore, each extent A2 of B(X2, Y2, I2) is of the form A2 = A1 ∩X2 where A1

is an extent of B(X1, Y1, I1) (same for intents).
3. for x ∈ X1: x ∈ A1 iff {x}↑↓ ∩X2 ⊆ A1 ∩X2,

for y ∈ Y1: y ∈ B1 iff {y}↓↑ ∩ Y2 ⊆ B1 ∩ Y2.

Here, ↑ and ↓ are operators induced by 〈X1, Y1, I1〉.

Therefore, given 〈A2, B2〉 ∈ B(X2, Y2, I2), the corresponding 〈A1, B1〉 ∈ B(X1, Y1, I1)
is given by

A1 = A2 ∪ {x ∈ X1 −X2 | {x}↑↓ ∩X2 ⊆ A2}, (2.17)
B1 = B2 ∪ {y ∈ Y1 − Y2 | {y}↓↑ ∩ Y2 ⊆ B2}. (2.18)

Example 2.51. Left is a clarified formal context 〈X1, Y1, I1〉, right is a reduced context
〈X2, Y2, I2〉 (see previous example).

I1 y1 y2 y3 y4

x1 × × × ×
x2 × ×
x3 × × ×
x4 ×
x5 × ×

I2 y1 y3 y4

x2 ×
x3 × ×
x5 ×

Determine B(X1, Y1, I1) by first computing B(X2, Y2, I2) and then using the method
from the previous slide to obtain concepts B(X1, Y1, I1) from the corresponding con-
cepts from B(X2, Y2, I2).

I1 y1 y2 y3 y4

x1 × × × ×
x2 × ×
x3 × × ×
x4 ×
x5 × ×

I2 y1 y3 y4

x2 ×
x3 × ×
x5 ×

B(X2, Y2, I2) consists of:
〈∅, Y2〉, 〈{x2}, {y1}〉, 〈{x3}, {y3, y4}〉, 〈{x3, x5}, {y3}〉, 〈X2, ∅〉.

We need to go through all 〈A2, B2〉 ∈ B(X2, Y2, I2) and determine the corresponding
〈A1, B1〉 ∈ B(X1, Y1, I1) using (2.17) and (2.18). Note: X1 −X2 = {x1, x4}, Y1 − Y2 =
{y2}.

1. for 〈A2, B2〉 = 〈∅, Y2〉 we have
{x1}↑↓ ∩X2 = {x1} ∩X2 = ∅ ⊆ A2, {x4}↑↓ ∩X2 = X1 ∩X2 = X2 6⊆ A2,
hence A1 = A2 ∪ {x1} = {x1}, and
{y2}↓↑ ∩ Y2 = {y2} ∩ Y2 = ∅ ⊆ B2,
hence B1 = B2 ∪ {y2} = Y1. So, 〈A1, B1〉 = 〈{x1}, Y1〉.

I1 y1 y2 y3 y4

x1 × × × ×
x2 × ×
x3 × × ×
x4 ×
x5 × ×

I2 y1 y3 y4

x2 ×
x3 × ×
x5 ×

2. for 〈A2, B2〉 = 〈{x2}, {y1}〉 we have
{x1}↑↓ ∩X2 = ∅ ⊆ A2, {x4}↑↓ ∩X2 = X2 6⊆ A2,
hence A1 = A2 ∪ {x1} = {x1, x2}, and
{y2}↓↑ ∩ Y2 = {y2} ∩ Y2 = ∅ ⊆ B2,
hence B1 = B2 ∪ {y2} = {y1, y2}. So, 〈A1, B1〉 = 〈{x1, x2}, {y1, y2}〉.

3. for 〈A2, B2〉 = 〈{x3}, {y3, y4}〉 we have
{x1}↑↓ ∩X2 = ∅ ⊆ A2, {x4}↑↓ ∩X2 = X2 6⊆ A2,
hence A1 = A2 ∪ {x1} = {x1, x3}, and
{y2}↓↑ ∩ Y2 = {y2} ∩ Y2 = ∅ ⊆ B2,
hence B1 = B2 ∪ {y2} = {y2, y3, y4}. So, 〈A1, B1〉 = 〈{x1, x3}, {y2, y3, y4}〉.

I1 y1 y2 y3 y4

x1 × × × ×
x2 × ×
x3 × × ×
x4 ×
x5 × ×

I2 y1 y3 y4

x2 ×
x3 × ×
x5 ×

4. for 〈A2, B2〉 = 〈{x3, x5}, {y3}〉 we have
{x1}↑↓ ∩X2 = ∅ ⊆ A2, {x4}↑↓ ∩X2 = X2 6⊆ A2,
hence A1 = A2 ∪ {x1} = {x1, x3, x5}, and
{y2}↓↑ ∩ Y2 = {y2} ∩ Y2 = ∅ ⊆ B2,
hence B1 = B2 ∪ {y2} = {y2, y3}. So, 〈A1, B1〉 = 〈{x1, x3, x5}, {y2, y3}〉.

5. for 〈A2, B2〉 = 〈X2, ∅〉 we have
{x1}↑↓ ∩X2 = ∅ ⊆ A2, {x4}↑↓ ∩X2 = X2 ⊆ A2,
hence A1 = A2 ∪ {x1, x4} = X1, and
{y2}↓↑ ∩ Y2 = {y2} ∩ Y2 = ∅ ⊆ B2,
hence B1 = B2 ∪ {y2} = {y2}. So, 〈A1, B1〉 = 〈X1, {y2}〉.

Example 2.52. Determine a reduced context from the following formal context. Use
the reduced context to compute B(X, Y, I).

I y1 y2 y3 y4 y5

x1
x2 × ×
x3 × × ×
x4 × × ×
x5 × ×
x6 × × ×
x7 × × ×

Hint: First clarify, then compute arrow relations.

2.8 Basic Algorithm For Computing Concept Lattices

We now consider the problem of computing concept lattices, i.e. following problem:
INPUT: formal context 〈X, Y, I〉,
OUTPUT: concept lattice B(X, Y, I) (possibly plus ≤)

– Sometimes one needs to compute the set B(X, Y, I) of formal concepts only.
– Sometimes one needs to compute both the set B(X, Y, I) and the conceptual hi-

erarchy ≤. ≤ can be computed from B(X, Y, I) by definition of ≤. But this is
not efficient. Algorithms exist which can compute B(X, Y, I) and ≤ simultane-
ously, which is more efficient (faster) than first computing B(X, Y, I) and then
computing ≤.

A good survey on algorithms for computing Kuznetsov S. O., Obiedkov S. A.: Com-
paring performance of algorithms for generating concept lattices. J. Experimental &
Theoretical Artificial Intelligence 14(2003), 189–216.

We will describe NextClosure which can be considered a basic algorithm for comput-
ing B(X, Y, I). The following are the basic characteristics of this algorithm:

– author: Bernhard Ganter (1987)

– input: formal context 〈X, Y, I〉,

– output: Int(X, Y, I) . . . all intents (dually, Ext(X, Y, I) . . . all extents),

– list all intents (or extents) in lexicographic order,

– note that B(X, Y, I) can be reconstructed from Int(X, Y, I) due to

B(X, Y, I) = {〈B↓, B〉 |B ∈ Int(X, Y, I)},

– one of most popular algorithms, easy to implement,

– we present NextClosure for intents.

Suppose Y = {1, . . . , n} (that is, we denote attributes by positive integers, this way,
we fix an ordering of attributes).

Definition 2.53 (lexicographic ordering of sets of attributes). For A,B ⊆ Y , i ∈
{1, . . . , n} put

A <i B iff i ∈ B −A a A ∩ {1, . . . , i− 1} = B ∩ {1, . . . , i− 1},
A < B iff A <i B for some i.

Note that < is a lexicographic ordering (thus, every two distinct sets A,B ⊆ are com-
parable w.r.t. <). For i = 1, we put {1, . . . , i − 1} = ∅. Note also that one may
think of B ⊆ Y in terms of its characteristic vector. For Y = {1, 2, 3, 4, 5, 6, 7} and
B = {1, 3, 4, 6}, the characteristic vector of B is 1011010.

Example 2.54. Let Y = {1, 2, 3, 4, 5, 6}, consider sets {1}, {2}, {2, 3}, {3, 4, 5}, {3, 6},
{1, 4, 5}. We have

• {2} <1 {1} because 1 ∈ {1}−{2} = {1} and A∩∅ = B∩∅. Characteristic vectors:
010000 <1 100000.

• {3, 6} <4 {3, 4, 5} because 4 ∈ {3, 4, 5} − {3, 6} = {4, 5} and A ∩ {1, 2, 3} =
B ∩ {1, 2, 3}. Characteristic vectors: 001001 <4 001110.

• All sets ordered lexicographically:
{3, 6} <4 {3, 4, 5} <2 {2} <3 {2, 3} <1 {1} <4 {1, 4, 5}.
Characteristic vectors:
001001 <4 001110 <2 010000 <3 011000 <1 100000 <4 100110.

Note that if B1 ⊂ B2 then B1 < B2.

Definition 2.55. For A ⊆ Y , i ∈ {1, . . . , n}, put

A⊕ i := ((A ∩ {1, . . . , i− 1}) ∪ {i})↓↑.

Example 2.56.
I 1 2 3 4
x1 × × ×
x2 × × × ×
x3 ×

• A = {1, 3}, i = 2.
A⊕ i = (({1, 3} ∩ {1, 2}) ∪ {2})↓↑ = ({1} ∪ {2})↓↑ = {1, 2}↓↑ = {1, 2, 4}.

• A = {2}, i = 1.
A⊕ i = (({2} ∩ ∅) ∪ {1})↓↑ = {1}↓↑ = {1, 2, 4}.

Lemma 2.57. For any B,D,D1, D2 ⊆ Y :

(1) If B <i D1, B <j D2, and i < j then D2 <i D1;

(2) if i 6∈ B then B < B ⊕ i;

(3) if B <i D and D = D↓↑ then B ⊕ i ⊆ D;

(4) if B <i D and D = D↓↑ then B <i B ⊕ i.

Proof. (1) by easy inspection.

(2) is true because B ∩ {1, . . . , i− 1} ⊆ B ⊕ i ∩ {1, . . . , i− 1} and i ∈ (B ⊕ i)−B.

(3) Putting C1 = B ∩ {1, . . . , i − 1} and C2 = {i} we have C1 ∪ C2 ⊆ D, and so
B ⊕ i = (C1 ∪ C2)↓↑ ⊆ D↓↑ = D.

(4) By assumption, B ∩ {1, . . . , i − 1} = D ∩ {1, . . . , i − 1}. Furthermore, (3) yields
B ⊕ i ⊆ D and so B ∩ {1, . . . , i − 1} ⊇ B ⊕ i ∩ {1, . . . , i − 1}. On the other hand,
B ⊕ i ∩ {1, . . . , i − 1} ⊇ (B ∩ {1, . . . , i − 1})↓↑ ∩ {1, . . . , i − 1} ⊇ B ∩ {1, . . . , i − 1}.
Therefore, B ∩ {1, . . . , i− 1} = B ⊕ i ∩ {1, . . . , i− 1}. Finally, i ∈ B ⊕ i.

The following is a main theorem we need for the NextClosure algorithm.

Theorem 2.58 (lexicographic successor). The least intent B+ greater (w.r.t. <) than B ⊆
Y is given by

B+ = B ⊕ i

where i is the greatest one with B <i B ⊕ i.

Proof. Let B+ be the least intent greater than B (w.r.t. <). We have B < B+ and thus
B <i B+ for some i such that i ∈ B+. By Lemma (4), B <i B ⊕ i, i.e. B < B ⊕ i.
Lemma (3) yields B ⊕ i ≤ B+ which gives B+ = B ⊕ i since B+ is the least intent
with B < B+. It remains to show that i is the greatest one satisfying B <i B ⊕ i.
Suppose B <k B ⊕ k for k > i. By Lemma (1), B ⊕ k <i B ⊕ i which is a contradiction
to B ⊕ i = B+ < B ⊕ k (B+ is the least intent greater than B and so B+ < B ⊕ k).
Therefore we have k = i.

pseudo-code of NextClosure algorithm:

1. A:=∅↓↑; (leastIntent)
2. store(A);
3. while not(A=Y) do
4. A:=A+;
5. store(A);
6. endwhile.

Note that the time complexity of computing A+ is O(|X| · |Y |2):
complexity of computing C↑ is O(|X| · |Y |), for D↓ it is O(|X| · |Y |), thus for D↓↑ it is
O(|X| · |Y |); complexity of computing A⊕ i is thus O(|X| · |Y |); to get A+ we need to
compute A⊕ i |Y |-times in the worst case. As a result, complexity of computing A+ is
O(|X| · |Y |2).

Therefore, the time complexity of NextClosure is O(|X| · |Y |2 · |B (X, Y, I)|).

Note also that NextClosure has almost no space requirements. However, NextClosure
does not directly give information about ≤.

Example 2.59 (NextClosure Algorithm – simulation). Simulate NextClosure algorithm
on the following example.

I 1 2 3
x1 × × ×
x2 × ×
x3 × ×
x4 ×

1. A = ∅↓↑ = ∅.
2. Next, we are looking for A+, i.e. ∅+, which is A ⊕ i s.t. i is the largest one with

A <i A⊕ i. We proceed for i = 3, 2, 1 and test whether A <i A⊕ i:

– i = 3: A⊕ i = {3}↓↑ = {3} and ∅ <3 {3} = A⊕ i, therefore A+ = {3}.

3. Next, {3}+:

– i = 3: A ⊕ i = {3}↓↑ = {3} and {3} 6<3 {3} = A ⊕ i, therefore we proceed
for i = 2.

– i = 2: A ⊕ i = {2}↓↑ = {2, 3} and {3} <2 {2, 3} = A ⊕ i, therefore A+ =
{2, 3}.

4. Next, {2, 3}+:

– i = 3: A ⊕ i = {2, 3}↓↑ = {2, 3} and {2, 3} 6<3 {2, 3} = A ⊕ i, therefore we
proceed for i = 2.

– i = 2: A ⊕ i = {2}↓↑ = {2, 3} and {2, 3} 6<2 {2, 3} = A ⊕ i, therefore we
proceed for i = 1.

– i = 1: A⊕i = {1}↓↑ = {1} and {2, 3} <1 {1} = A⊕i, therefore we A+ = {1}.

5. Next, {1}+:

– i = 3: A ⊕ i = {1, 3}↓↑ = {1, 3} and {1} <3 {1, 3} = A ⊕ i, therefore
A+ = {1, 3}.

6. Next, {1, 3}+:

– i = 3: A ⊕ i = {1, 3}↓↑ = {1, 3} and {1, 3} 6<3 {1, 3} = A ⊕ i, therefore we
proceed for i = 2.

– i = 2: A ⊕ i = {1, 2}↓↑ = {1, 2, 3} and {1, 3} <2 {1, 2, 3} = A ⊕ i, therefore
A+ = {1, 2, 3} = Y .

Therefore, the intents from Int(X, Y, I), ordered lexicographically, are:
∅ < {3} < {2, 3} < {1} < {1, 3} < {1, 2, 3}.

I 1 2 3
x1 × × ×
x2 × ×
x3 × ×
x4 ×

Int(X, Y, I) = {∅, {3}, {2, 3}, {1}, {1, 3}, {1, 2, 3}}.

From this list, we can get the corresponding extents:
X = ∅↓, {x1, x2, x3} = {3}↓, {x1, x3} = {2, 3}↓, {x1, x3, x4} = {1}↓, {x1, x2} = {1, 3}↓,
{x1} = {1, 2, 3}↓.

Therefore, B(X, Y, I) consists of: 〈{x1}, {1, 2, 3}〉, 〈{x1, x2}, {1, 3}〉, 〈{x1, x3}, {2, 3}〉,
〈{x1, x2, x3}, {3}〉, 〈{x1, x2, x4}, {1}〉, 〈{x1, x2, x3, x4}, ∅〉.

Note the following:

– If ↓↑ is replaced by an arbitrary closure operator C, NextClosure computes all
fixpoints of C. This is easy to see: all that matters in the proofs of Theorem and
Lemma justifying correctness of NextClosure, is that ↓↑ is a closure operator.

– Therefore, NextClosure is essentially an algorithm for computing all fixpoints of
a given closure operator C.

– Computational complexity of NextClosure depends on computational complex-
ity of computing C(A) (computing closure of arbitrary set A).

3 Attribute Implications

Goals: This chapter provides basic information regarding particular attribute depen-
dencies in cross-tables. These dependencies are called attribute implications.

Keywords: attribute implication, attribute dependency, entailment, non-redundant
basis, Armstrong axioms.

3.1 Basic Notions Regarding Attribute Implications

Attribute implications represent data dependencies such as

– every number divisible by 2 and 3 is divisible by 6,

– every patient with symptom s2 and symptom s5 has also symptom s1 and symp-
tom s3.

Definition 3.1 (attribute implication). Let Y be a non-empty set (of attributes). An
attribute implication over Y is an expression

A ⇒ B
where A ⊆ Y and B ⊆ Y (A and B are sets of attributes).

Example 3.2. – Let Y = {y1, y2, y3, y4}. Then {y2, y3} ⇒ {y1, y4}, {y2, y3} ⇒
{y1, y2, y3}, ∅ ⇒ {y1, y2}, {y2, y4} ⇒ ∅ are AIs over Y .

– Let Y = {watches-TV, eats-unhealthy-food, runs-regularly,
normal-blood-pressure, high-blood-pressure}. Then
{watches-TV, eats-unhealthy-food} ⇒ {high-blood-pressure},
{runs-regularly} ⇒ {normal-blood-pressure}
are attribute implications over Y .

Basic semantic structures in which we evaluate attribute implications are rows of ta-
bles (of formal contexts). Table rows can be regarded as sets of attributes. In table

y1 y2 y3 y4

x1 × × × ×
x2 × ×
x3

,

rows corresponding to x1, x2, and x3 can be regarded as sets M1 = {y1, y2, y3, y4},
M2 = {y1, y4}, and M3 = ∅.

Therefore, we need to define a notion of a validity of an AI in a set M of attributes.

Definition 3.3 (validity of attribute implication). An attribute implication A ⇒ B over
Y is true (valid) in a set M ⊆ Y iff

A ⊆ M implies B ⊆ M .

– We write

||A ⇒ B||M =
{

1 if A ⇒ B is true in M,
0 if A ⇒ B is not true in M.

– Let M be a set of attributes of some object x. ||A ⇒ B||M = 1 says “if x has all
attributes from A then x has all attributes from B”, because “if x has all attributes
from C” is equivalent to C ⊆ M .

Example 3.4. Let Y = {y1, y2, y3, y4}. Then

A ⇒ B M ||A ⇒ B||M why
{y2, y3} ⇒ {y1} {y2} 1 A 6⊆ M
{y2, y3} ⇒ {y1} {y1, y2} 1 A 6⊆ M
{y2, y3} ⇒ {y1} {y1, y2, y3} 1 A ⊆ M and B ⊆ M
{y2, y3} ⇒ {y1} {y2, y3, y4} 0 A ⊆ M but B 6⊆ M
{y2, y3} ⇒ {y1} ∅ 1 A 6⊆ ∅

∅ ⇒ {y1} {y1, y4} 1 ∅ ⊆ M and B ⊆ M .
∅ ⇒ {y1} {y3, y4} 0 ∅ ⊆ M but B 6⊆ M .

{y2, y3} ⇒ ∅ any M 1 ∅ ⊆ M

We now extend the validity of A ⇒ B to collections M of M ’s (collections of subsets
of attributes), i.e. define validity of A ⇒ B in M⊆ 2Y .

Definition 3.5. Let M ⊆ 2Y (elements of M are subsets of attributes). An attribute
implication A ⇒ B over Y is true (valid) in M if A ⇒ B is true in each M ∈M.

– Again,

||A ⇒ B||M =
{

1 if A ⇒ B is true in M,
0 if A ⇒ B is not true in M.

Therefore, ||A ⇒ B||M = minM∈M ||A ⇒ B||M .

Definition 3.6 (validity of attribute implications in formal contexts). An attribute im-
plication A ⇒ B over Y is true in a table (formal context) 〈X, Y, I〉 iff A ⇒ B is true in

M = {{x}↑ |x ∈ X}.

– We write ||A ⇒ B||〈X,Y,I〉 = 1 if A ⇒ B is true in 〈X, Y, I〉.
– Note that, {x}↑ is the set of attributes of x (row corresponding to x). Hence,
M = {{x}↑ |x ∈ X} is the collection whose members are just sets of attributes of
objects (i.e., rows) of 〈X, Y, I〉. Therefore, ||A ⇒ B||〈X,Y,I〉 = 1 iff A ⇒ B is true
in each row of 〈X, Y, I〉 iff
for each x ∈ X :

if x has all attributes from A then x has all attributes from B.

Example 3.7. Consider attributes normal blood pressure (nbp), high blood pressure
(hbp), watches TV (TV), eats unhealthy food (uf), runs regularly (r), and table

I nbp hbp TV uf r
a × ×
b × × ×
c × × ×
d × ×
e ×

Then

A ⇒ B ||A ⇒ B||〈X,Y,I〉 why
{r} ⇒ {nbp} 1

{TV,uf} ⇒ {hbp} 1
{TV} ⇒ {hbp} 1
{uf} ⇒ {hbp} 0 b counterexample
{nbp} ⇒ {r} 0 e counterexample

{nbp,hbp} ⇒ {r,TV} 1 A never satisfied
{uf,r} ⇒ {r} 1

– In the previous example: {TV,uf} ⇒ {hbp} intuitively follows from {TV} ⇒
{hbp}. Therefore, provided we establish validity of {TV} ⇒ {hbp}, AI
{TV,uf} ⇒ {hbp} is redundant.
Another example: A ⇒ C follows from A ⇒ B and B ⇒ C (for any A,B, C).

– We need to capture intuitive notion of entailment of attribute implications. We
use standard notions of a theory and model.

– Eventually, we want to have a small set T of AIs which are valid in 〈X, Y, I〉 such
that all other AIs which are true in 〈X, Y, I〉 follow from T .

Definition 3.8 (theory, model). A theory (over Y) is any set T of attribute implications
(over Y).
A model of a theory T is any M ⊆ Y such that every A ⇒ B from T is true in M .

– Mod(T) denotes all models of a theory T , i.e.
Mod(T) = {M ⊆ Y | for each A ⇒ B ∈ T : A ⇒ B is true in M}.

– Intuitively, a theory is some “important” set of attribute implications. For in-
stance, T may contain AIs established to be true in data (extracted from data).

– Intuitively, a model of T is (a set of attributes of some) object which satisfies
every AI from T .

– Notions of theory and model do not depend on some particular 〈X, Y, I〉.

Example 3.9 (theories over {y1, y2, y3}). – T1 = {{y3} ⇒ {y1, y2}, {y1, y3} ⇒
{y2}}.

– T2 = {{y3} ⇒ {y1, y2}}.
– T3 = {{y1, y3} ⇒ {y2}}.
– T4 = {{y1} ⇒ {y3}, {y3} ⇒ {y1}, {y2} ⇒ {y2}}.
– T5 = ∅.
– T6 = {∅ ⇒ {y1}, ∅ ⇒ {y3}}.
– T7 = {{y1} ⇒ ∅, {y2} ⇒ ∅, {y3} ⇒ ∅}.
– T8 = {{y1} ⇒ {y2}, {y2} ⇒ {y3}, {y3} ⇒ {y1}}.

Example 3.10 (models of theories over {y1, y2, y3}). Determine Mod(T) of the follow-
ing theories over {y1, y2, y3}.

– T1 = {{y3} ⇒ {y1, y2}, {y1, y3} ⇒ {y2}}.
Mod(T1) = {∅, {y1}, {y2}, {y1, y2}, {y1, y2, y3}},

– T2 = {{y3} ⇒ {y1, y2}}.
Mod(T2) = {∅, {y1}, {y2}, {y1, y2}, {y1, y2, y3}} (note: T2 ⊂ T1 but Mod(T1) =
Mod(T2)),

– T3 = {{y1, y3} ⇒ {y2}}.
Mod(T3) = {∅, {y1}, {y2}, {y3}, {y1, y2}, {y2, y3}, {y1, y2, y3}} (note: T3 ⊂ T1,
Mod(T1) ⊂ Mod(T2)),

– T4 = {{y1} ⇒ {y3}, {y3} ⇒ {y1}, {y2} ⇒ {y2}}.
Mod(T4) = {∅, {y2}, {y1, y3}, {y1, y2, y3}}

– T5 = ∅. Mod(T5) = 2{y1,y2,y3}. Why: M ∈ Mod(T) iff
for each A ⇒ B: if A ⇒ B ∈ T then ||A ⇒ B||M = 1.

– T6 = {∅ ⇒ {y1}, ∅ ⇒ {y3}}. Mod(T6) = {{y1, y3}, {y1, y2, y3}}.
– T7 = {{y1} ⇒ ∅, {y2} ⇒ ∅, {y3} ⇒ ∅}. Mod(T7) = 2{y1,y2,y3}.
– T8 = {{y1} ⇒ {y2}, {y2} ⇒ {y3}, {y3} ⇒ {y1}}. Mod(T8) = {∅, {y1, y2, y3}}.

The next notion we deal with is that of a semantic consequence (entailment).

Definition 3.11 (semantic consequence). An attribute implication
A ⇒ B follows semantically from a theory T , which is denoted by

T |= A ⇒ B,
iff A ⇒ B is true in every model M of T ,

– Therefore, T |= A ⇒ B iff for each M ⊆ Y : if M ∈ Mod(T) then ||A ⇒ B||M = 1.
– Intuitively, T |= A ⇒ B iff A ⇒ B is true in every situation where every AI from

T is true (replace “situation” by “model”).
– Later on, we will see how to efficiently check whether T |= A ⇒ B.
– Terminology: T |= A ⇒ B . . . A ⇒ B follows semantically from T . . . A ⇒ B is

semantically entailed by T . . . A ⇒ B is a semantic consequence of T .

How to decide by definition whether T |= A ⇒ B?

1. Determine Mod(T).
2. Check whether A ⇒ B is true in every M ∈ Mod(T); if yes then T |= A ⇒ B; if

not then T 6|= A ⇒ B.

Example 3.12 (semantic entailment). Let Y = {y1, y2, y3}. Determine whether T |=
A ⇒ B.

• T = {{y3} ⇒ {y1, y2}, {y1, y3} ⇒ {y2}}, A ⇒ B is {y2, y3} ⇒ {y1}.
1. Mod(T) = {∅, {y1}, {y2}, {y1, y2}, {y1, y2, y3}}.
2. ||{y2, y3} ⇒ {y1}||∅ = 1, ||{y2, y3} ⇒ {y1}||{y1} = 1, ||{y2, y3} ⇒ {y1}||{y2} = 1,
||{y2, y3} ⇒ {y1}||{y1,y2} = 1, ||{y2, y3} ⇒ {y1}||{y1,y2,y3} = 1.
Therefore, T |= A ⇒ B.

• T = {{y3} ⇒ {y1, y2}, {y1, y3} ⇒ {y2}}, A ⇒ B is {y2} ⇒ {y1}.
1. Mod(T) = {∅, {y1}, {y2}, {y1, y2}, {y1, y2, y3}}.
2. ||{y2} ⇒ {y1}||∅ = 1, ||{y2} ⇒ {y1}||{y1} = 1, ||{y2} ⇒ {y1}||{y2} = 0, we can
stop.
Therefore, T 6|= A ⇒ B.

Example 3.13. Let Y = {y1, y2, y3}. Determine whether T |= A ⇒ B.

• T1 = {{y3} ⇒ {y1, y2}, {y1, y3} ⇒ {y2}}.
A ⇒ B: {y1, y2} ⇒ {y3}, ∅ ⇒ {y1}.

• T2 = {{y3} ⇒ {y1, y2}}.
A ⇒ B: {y3} ⇒ {y2}, {y3, y2} ⇒ ∅.

• T3 = {{y1, y3} ⇒ {y2}}.
A ⇒ B: {y3} ⇒ {y1, y2}, ⇒ ∅.

• T4 = {{y1} ⇒ {y3}, {y3} ⇒ {y2}, }.
A ⇒ B: {y1} ⇒ {y2}, {y1} ⇒ {y1, y2, y3}.

• T5 = ∅.
A ⇒ B: {y1} ⇒ {y2}, {y1} ⇒ {y1, y2, y3}.

• T6 = {∅ ⇒ {y1}, ∅ ⇒ {y3}}.
A ⇒ B: {y1} ⇒ {y3}, ∅ ⇒ {y1, y3} {y1} ⇒ {y2}.

• T7 = {{y1} ⇒ ∅, {y2} ⇒ ∅, {y3} ⇒ ∅}.
A ⇒ B: {y1, y2} ⇒ {y3}, {y1, y2} ⇒ ∅.

• T8 = {{y1} ⇒ {y2}, {y2} ⇒ {y3}, {y3} ⇒ {y1}}.
A ⇒ B: {y1} ⇒ {y3}, {y1, y3} ⇒ {y2}.

3.2 Armstrong Rules and Reasoning With Attribute Implications

– Some attribute implications semantically follow from others.

– Example: A ⇒ C follows from A ⇒ B and B ⇒ C (for every A,B, C ⊆ Y), i.e.
{A ⇒ B,B ⇒ C} |= A ⇒ C.

– Therefore, we can introduce a deduction rule
(Tra) from A ⇒ B and B ⇒ C infer A ⇒ C.

– We can use such rule to derive new AI such as

– start from T = {{y1} ⇒ {y2, y5}, {y2, y5} ⇒ {y3}, {y3} ⇒ {y2, y4}},

– apply (Tra) to the first and the second AI in T to infer {y1} ⇒ {y3},

– apply (Tra) to {y1} ⇒ {y3} and the second AI in T to infer {y1} ⇒ {y2, y4}.

Therefore, the following question arises:

– Is there a collection of simple deduction rules which allow us to determine
whether T |= A ⇒ B?, i.e., rules such that

– 1. if A ⇒ B semantically follows from T then one can derive A ⇒ B from T
using those rules (like above) and

– 2. if one can derive A ⇒ B from T then A ⇒ B semantically follows from T .

Our system for reasoning about attribute implications consists of the following
(schemes of) deduction rules:

(Ax) infer A ∪B ⇒ A,
(Cut) from A ⇒ B and B ∪ C ⇒ D infer A ∪ C ⇒ D,

for every A,B, C, D ⊆ Y .

– (Ax) is a rule without the input part “from . . . ”, i.e. A ∪ B ⇒ A can be inferred
from any AIs.

– (Cut) has both the input and the output part.

– Rules for reasoning about AIs go back to Armstrong’s research on reasoning
about functional dependencies in databases:
Armstrong W. W.: Dependency structures in data base relationships. IFIP
Congress, Geneva, Switzerland, 1974, pp. 580–583.

– There are several systems of deduction rules which are equivalent to (Ax), (Cut),
see later.

Example 3.14 (how to use deduction rules). (Cut)
If we have two rules which are of the form A ⇒ B and B ∪ C ⇒ D, we can derive (in
a single step, using deduction rule (Cut)) a new AI of the form A ∪ C ⇒ D.
Consider AIs {r, s} ⇒ {t, u} and {t, u, v} ⇒ {w}.
Putting A = {r, s}, B = {t, u}, C = {v}, D = {w}, {r, s} ⇒ {t, u} is of the form A ⇒ B,
{t, u, v} ⇒ {w} is of the form A ∪ C ⇒ D,
and we can infer A ∪ C ⇒ D which is {r, s, v} ⇒ {w}.

(Ax)
We can derive (in a single step, using deduction rule (Ax), with no assumptions) a
new AI of the form A ∪B ⇒ A.
For instance, we can infer {y1, y3, y4, y5} ⇒ {y3, y5}. Namely, putting A = {y3, y5} and
B = {y1, y4}, A ∪B ⇒ A becomes {y1, y3, y4, y5} ⇒ {y3, y5}.

How to formalize the concept of a derivation of new AIs using our rules?

Definition 3.15 (proof). A proof of A ⇒ B from a set T of AIs is a sequence
A1 ⇒ B1, . . . , An ⇒ Bn

of AIs satisfying:

1. An ⇒ Bn is just A ⇒ B,
2. for every i = 1, 2, . . . , n:

– either Ai ⇒ Bi is from T (“assumption”),

– or Ai ⇒ Bi results by application of (Ax) or (Cut) to some of preceding AIs
Aj ⇒ Bj ’s (“deduction”).

In such case, we write T ` A ⇒ B and say that A ⇒ B is provable (derivable) from T
using (Ax) and (Cut).

– proof as a sequence?: makes sense: informally, we understand a proof to be a
sequence of our arguments which we take from 1. assumptions (from T) of 2.
infer pro previous arguments by deduction steps.

Example 3.16 (simple proof). Proof of P ⇒ R from T = {P ⇒ Q,Q ⇒ R} is a
sequence:

P ⇒ Q,Q ⇒ R,P ⇒ R
because: P ⇒ Q ∈ T ; Q ⇒ R ∈ T ; P ⇒ R can be inferred from P ⇒ Q and Q ⇒ R
using (Cut). Namely, put A = P , B = Q, C = Q, D = R; then A ⇒ B becomes P ⇒ Q,
B ∪ C ⇒ D becomes Q ⇒ R, and A ∪ C ⇒ D becomes P ⇒ R.

Note that this works for any particular sets P,Q,R. For instance for P = {y1, y3},
Q = {y3, y4, y5}, R = {y2, y4}, or
P = {watches-TV,unhealthy-food}, Q = {high-blood-pressure}, R = {often-visits-
doctor}.

In the latter case, we inferred:
{watches-TV,unhealthy-food} ⇒ {often-visits-doctor} from
{watches-TV,unhealthy-food} ⇒ {high-blood-pressure} and {high-blood-
pressure} ⇒ {often-visits-doctor}.

The notions of a deduction rule and proof are syntactic notions. Proof results by “ma-
nipulation of symbols” according to deduction rules. We do not refer to any data table
when deriving new AIs using deduction rules.
A typical scenario: (1) We extract a set T of AIs from data table and then (2) infer fur-
ther AIs from T using deduction rules. In (2), we do not use the data table. Next, we
turn to the following two notions:

– Soundness: Is our inference using (Ax) and (Cut) sound? That is, is it the case
that IF T ` A ⇒ B (A ⇒ B can be inferred from T) THEN T |= A ⇒ B (A ⇒ B
semantically follows from T , i.e., A ⇒ B is true in every table in which all AIs
from T are true)?

– Completeness: Is our inference using (Ax) and (Cut) complete? That is, is it the
case that IF T |= A ⇒ B THEN T ` A ⇒ B?

Definition 3.17 (derivable rule). Deduction rule
from A1 ⇒ B1, . . . , An ⇒ Bn infer A ⇒ B

is derivable from (Ax) and (Cut) if {A1 ⇒ B1, . . . , An ⇒ Bn} ` A ⇒ B.

– Derivable rule = new deduction rule = shorthand for a derivation using the basic
rules (Ax) and (Cut).

– Why derivable rules: They are natural rules which can speed up proofs.

– Derivable rules can be used in proofs (in addition to the basic rules (Ax) and
(Cut)). Why: By definition, a single deduction step using a derivable rule can
be replaced by a sequence of deduction steps using the original deduction rules
(Ax) and (Cut) only.

Theorem 3.18 (derivable rules). The following rules are derivable from (Ax) and (Cut):
(Ref) infer A ⇒ A,

(Wea) from A ⇒ B infer A ∪ C ⇒ B,
(Add) from A ⇒ B and A ⇒ C infer A ⇒ B ∪ C,
(Pro) from A ⇒ B ∪ C infer A ⇒ B,
(Tra) from A ⇒ B and B ⇒ C infer A ⇒ C,

for every A,B, C, D ⊆ Y .

Proof. In order to avoid confusion with symbols A,B, C, D used in (Ax) and (Cut), we
use P,Q,R, S instead of A,B, C, D in (Ref)–(Tra).

(Ref): We need to show {} ` P ⇒ P , i.e. that P ⇒ P is derivable using (Ax) and (Cut)
from the empty set of assumptions.
Easy, just put A = P and B = P in (Ax). Then A∪B ⇒ A becomes P ⇒ P . Therefore,
P ⇒ P can be inferred (in a single step) using (Ax), i.e., a one-element sequence
P ⇒ P is a proof of P ⇒ P . This shows {} ` P ⇒ P .

(Wea): We need to show {P ⇒ Q} ` P ∪R ⇒ Q.
A proof (there may be several proofs, this is one of them) is:

P ∪R ⇒ P, P ⇒ Q,P ∪R ⇒ Q.
Namely, 1. P ∪R ⇒ P is derived using (Ax), 2. P ⇒ Q is an assumption, P ∪R ⇒ Q
is derived from P ∪ R ⇒ P and P ⇒ Q using (Cut) (put A = P ∪ R, B = P , C = P ,
D = Q).

(Add): EXERCISE.

(Pro): We need to show {P ⇒ Q ∪R} ` P ⇒ Q.
A proof is:

P ⇒ Q ∪R,Q ∪R ⇒ Q,P ⇒ Q.
Namely, 1. P ⇒ Q ∪ R is an assumption, 2. Q ∪ R ⇒ Q by application of (Ax), 3.
P ⇒ Q by application of (Cut) to P ⇒ Q∪R,Q∪R ⇒ Q (put A = P , B = C = Q∪R,
D = Q).

(Tra): We need to show {P ⇒ Q,Q ⇒ R} ` P ⇒ R. This was checked earlier.

– (Ax) . . . “axiom”, and (Cut) . . . “rule of cut”,

– (Ref) . . . “rule of reflexivity”, (Wea) . . . “rule of weakening”, (Add) . . . “rule of
additivity”, (Pro) . . . “rule of projectivity”, (Ref) . . . “rule of transitivity”.

Alternative notation for deduction rules: rule “from A1 ⇒ B1, . . . , An ⇒ Bn infer
A ⇒ B” displayed as

A1 ⇒ B1, . . . , An ⇒ Bn

A ⇒ B
.

So, (Ax) and (Cut) displayed as

A ∪B ⇒ A
and

A ⇒ B,B ∪ C ⇒ D

A ∪ C ⇒ D
.

Definition 3.19 (sound deduction rules). Deduction rule “from
A1 ⇒ B1, . . . , An ⇒ Bn infer A ⇒ B” is sound if

{A1 ⇒ B1, . . . , An ⇒ Bn} |= A ⇒ B.

– Soundness of a rule: if A1 ⇒ B1, . . . , An ⇒ Bn are true in a data table, then
A ⇒ B needs to be true in that data table, too.

– Meaning: Sound deduction rules do not allow us to infer “untrue” AIs from true
AIs.

Theorem 3.20. (Ax) and (Cut) are sound.

Proof. (Ax): We need to check {} |= A ∪ B ⇒ A, i.e. that A ∪ B ⇒
A semantically follows from an empty set T of assumptions. That is, we
need to check that A ∪ B ⇒ A is true in any M ⊆ Y (notice: any
M ⊆ Y is a model of the empty set of AIs). This amounts to verifying

A ∪B ⊆ M implies A ⊆ M ,
which is evidently true.

(Cut): We need to check {A ⇒ B,B ∪ C ⇒ D} |= A ∪ C ⇒ D. Let M be a model of
{A ⇒ B,B ∪ C ⇒ D}. We need to show that M is a model of A ∪ C ⇒ D, i.e. that

A ∪D ⊆ M implies D ⊆ M .
Let thus A ∪ C ⊆ M . Then A ⊆ M , and since we assume M is a model of A ⇒ B,
we need to have B ⊆ M . Furthermore, A ∪ C ⊆ M yields C ⊆ M . That is, we have
B ⊆ M and C ⊆ M , i.e. B ∪ C ⊆ M . Now, taking B ∪ C ⊆ M and invoking the
assumption that M is a model of B ∪ C ⇒ D gives D ⊆ M .

Corollary 3.21 (soundness of inference using (Ax) and (Cut)). If T ` A ⇒ B then
T |= A ⇒ B.

Proof. Direct consequence of previous theorem: Let
A1 ⇒ B1, . . . , An ⇒ Bn

be a proof from T . It suffices to check that every model M of T is a model of Ai ⇒ Bi

for i = 1, . . . , n. We check this by induction over i, i.e., we assume that M is a model
of Aj ⇒ Bj ’s for j < i and check that M is a model of Ai ⇒ Bi. There are two options:
1. Either Ai ⇒ Bi if from T . Then, trivially, M is a model of Ai ⇒ Bi (our assumption).
2. Or, Ai ⇒ Bi results by (Ax) or (Cut) to some Aj ⇒ Bj ’s for j < i. Then, since we
assume that M is a model of Aj ⇒ Bj ’s, we get that M is a model of Ai ⇒ Bi by
soundness of (Ax) and (Cut).

Corollary 3.22 (soundness of derived rules). (Ref), (Wea), (Add), (Pro), (Tra) are sound.

Proof. As an example, take (Wea). Note that (Wea) is a derived rule. This means that
{A ⇒ B} ` A ∪ C ⇒ B. Applying previous corollary yields {A ⇒ B} |= A ∪ C ⇒ B
which means, by definition, that (Wea) is sound.

– We have two notions of consequence, semantic and syntactic.
– Semantic: T |= A ⇒ B . . . A ⇒ B semantically follows from T .
– Syntactic: T ` A ⇒ B . . . A ⇒ B syntactically follows from T (is provable from

T).
– We know (previous corollary on soundness) that T ` A ⇒ B implies T |= A ⇒

B.
– Next, we are going to check completeness, i.e. T |= A ⇒ B implies T ` A ⇒ B.

Definition 3.23 (semantic closure, syntactic closure). – Semantic closure of T is the
set sem(T) = {A ⇒ B |T |= A ⇒ B}
of all AIs which semantically follow from T .

– Syntactic closure of T is the set syn(T) = {A ⇒ B |T ` A ⇒ B}
of all AIs which syntactically follow from T (i.e., are provable from T using (Ax)
and (Cut)).

– T is semantically closed if T = sem(T).
– T is syntactically closed if T = syn(T).

– It can be checked that sem(T) is the least set of AIs which is semantically closed
and which contains T .

– It can be checked that syn(T) is the least set of AIs which is syntactically closed
and which contains T .

Lemma 3.24. T is syntactically closed iff for any A,B, C, D ⊆ Y

1. A ∪B ⇒ B ∈ T ,
2. if A ⇒ B ∈ T and B ∪ C ⇒ D ∈ T implies A ∪ C ⇒ D ∈ T .

Proof. “⇒”: If T is syntactically closed then any AI which is provable from T needs to
be in T . In particular, A ∪ B ⇒ B is provable from T , therefore A ∪ B ⇒ B ∈ T ; if
A ⇒ B ∈ T and B ∪ C ⇒ D ∈ T then, obviously, A ∪ C ⇒ D is provable from T (by
using (Cut)), therefore A ∪ C ⇒ D ∈ T .

“⇐”: If 1. and 2. are satisfied then, obviously, any AI which is provable from T needs
to belong to T , i.e. T is syntactically closed.

This says that T is syntactically closed iff T is closed under deduction rules (Ax) and
(Cut).

Lemma 3.25. If T is semantically closed then T is syntactically closed.

Proof. Let T be semantically closed. In order to see that T is syntactically closed, it
suffices to verify 1. and 2. of previous Lemma.
1.: We have T |= A∪B ⇒ B (we even have {} |= A∪B ⇒ B). Since T is semantically
closed, we get A ∪B ⇒ B ∈ T .
2.: Let A ⇒ B ∈ T and B ∪C ⇒ D ∈ T . Since {A ⇒ B,B ∪C ⇒ D} |= A∪C ⇒ D (cf.
soundness of (Cut)), we have T |= A ∪ C ⇒ D. Now, since T is semantically closed,
we get A ∪ C ⇒ D ∈ T , verifying 2.

Lemma 3.26. If T is syntactically closed then T is semantically closed.

Proof. Let T be syntactically closed. In order to show that T is semantically closed,
it suffices to show sem(T) ⊆ T . We prove this by showing that if A ⇒ B 6∈ T then
A ⇒ B 6∈ sem(T). Recall that since T is syntactically closed, T is closed under all
(Ref)–(Tra).

Let thus A ⇒ B 6∈ T . To see A ⇒ B 6∈ sem(T), we show that there is M ∈ Mod(T)
which is not a model of A ⇒ B. For this purpose, consider M = A+ where A+ is
the largest one such that A ⇒ A+ ∈ T . A+ exists. Namely, consider all AIs A ⇒
C1, . . . , A ⇒ Cn ∈ T . Note that at least one such AI exists. Namely, A ⇒ A ∈ T
by (Ref). Now, repeated application of (Add) yields A ⇒

⋃n
i=1 Ci ∈ T and we have

A+ =
⋃n

i=1 Ci.

Now, we need to check that (a) ||A ⇒ B||A+ = 0 (i.e., A+ is not a model of A ⇒ B)
and (b) for every C ⇒ D ∈ T we have ||C ⇒ D||A+ = 1 (i.e., A+ is a model of T).

(a): We need to show ||A ⇒ B||A+ = 0. By contradiction, suppose ||A ⇒ B||A+ = 1.
Since A ⊆ A+, ||A ⇒ B||A+ = 1 yields B ⊆ A+. Since A ⇒ A+ ∈ T , (Pro) would give
A ⇒ B ∈ T , a contradiction to A ⇒ B 6∈ T .

(b): Let C ⇒ D ∈ T . We need to show ||C ⇒ D||A+ = 1, i.e.
if C ⊆ A+ then D ⊆ A+.

To see this, it is sufficient to verify that if C ⊆ A+ then A ⇒ D ∈ T .
Namely, since A+ is the largest one for which A ⇒ A+ ∈ T , A ⇒ D ∈ T implies
D ⊆ A+. So let C ⊆ A+. We have
(b1) A ⇒ A+ ∈ T (by definition of A+),
(b2) A+ ⇒ C ∈ T (this follows by (Pro) from C ⊆ A+),
(b3) C ⇒ D ∈ T (our assumption).
Therefore, applying (Tra) to (b1), (b2), (b3) twice gives A ⇒ D ∈ T .

Theorem 3.27 (soundness and completeness). T ` A ⇒ B iff T |= A ⇒ B.

Proof. Clearly, it suffices to check syn(T) = sem(T). Recall: A ⇒ B ∈ syn(T) means
T ` A ⇒ B, A ⇒ B ∈ sem(T) means T |= A ⇒ B.

“sem(T) ⊆ syn(T)”: Since syn(T) is syntactically closed, it is also semantically
closed (previous lemma). Therefore, sem(syn(T)) = syn(T) (semantic closure of

syn(T) is just syn(T) because syn(T) is semantically closed). Furthermore, since
T ⊆ syn(T), we have sem(T) ⊆ sem(syn(T)). Putting this together gives

sem(T) ⊆ sem(syn(T)) = syn(T).

“syn(T) ⊆ sem(T)”: Since sem(T) is semantically closed, it is also syntacti-
cally closed (previous lemma). Therefore, syn(sem(T)) = sem(T). Furthermore,
since T ⊆ sem(T), we have syn(T) ⊆ syn(sem(T)). Putting this together gives

syn(T) ⊆ syn(sem(T)) = sem(T).

Summary:
– (Ax) and (Cut) are elementary deduction rules.
– Proof . . . formalizes derivation process of new AIs from other AIs.
– We have two notions of consequence:

– T |= A ⇒ B . . . semantic consequence (A ⇒ B is true in every model of T).
– T ` A ⇒ B . . . syntactic consequence (A ⇒ B is provable T , i.e. can be

derived from T using deduction rules).
– Note: proof = syntactic manipulation, no reference to semantic notions; in order

to know what T ` A ⇒ B means, we do not have to know what it means that
an AI A ⇒ B is true in M .

– Derivable rules (Ref)–(Tra) . . . derivable rule = shorthand, inference of new AIs
using derivable rules can be replaced by inference using original rules (Ax) and
(Cut).

– Sound rule . . . derives true conclusions from true premises; (Ax) and (Cut) are
sound; in detail, for (Cut): soundness of (Cut) means that for every M in which
both A ⇒ B and B ∪ C ⇒ D are true, A ∪ C ⇒ D needs to be true, too.

– Soundness of inference using sound rules: if T ` A ⇒ B (A ⇒ B is provable
from T) then T |= A ⇒ B (A ⇒ B semantically follows from T), i.e. if A ⇒ B
is provable from T then A ⇒ B is true in every M in which every AI from T
is true. Therefore, soundness of inference means that if we take an arbitrary M
and take a set T of AIs which are true in M , then evey AI A ⇒ B which we can
infer (prove) from T using our inference rules needs to be true in M .

– Consequence: rules, such as (Ref)–(Tra), which can be derived from sound rules
are sound.

– sem(T) . . . set of all AIs which are semantic consequences of T ,
syn(T) . . . set of all AIs which are syntactic consequences of T (provable from T).

– T is syntactically closed iff T is closed under (Ax) and (Cut).
– (Syntactico-semantical) completeness of rules (Ax) and (Cut): T ` A ⇒ B iff

T |= A ⇒ B.

Example 3.28. – Explain why {} |= A ⇒ B means that (1) A ⇒ B is true in every
M ⊆ Y , (2) A ⇒ B is true in every formal context 〈X, Y, I〉.

– Explain why soundness of inference implies that if we take an arbitrary formal
context 〈X, Y, I〉 and take a set T of AIs which are true in 〈X, Y, I〉, then evey AI
A ⇒ B which we can infer (prove) from T using our inference rules needs to be
true in 〈X, Y, I〉.

– Let R1 and R2 be two sets of deduction rules, e.g. R1 = {(Ax), (Cut)}. Call R1

and R2 equivalent if every rule from R2 is a derived rule in terms of rules from
R1 and, vice versa, every rule from R1 is a derived rule in terms of rules from
R2.
For instance, we know that taking R1 = {(Ax), (Cut)}, every rule from R2 =
{(Ref),. . . , (Tra)} is a derived rule in terms of rules of R1.
Verify that R1 = {(Ax), (Cut)} and R2 = {(Ref),(Wea), (Cut)} are equivalent.

Example 3.29. – Explain: If R1 and R2 are equivalent sets of inference rules then
A ⇒ B is provable from T using rules from R1 iff A ⇒ B is provable from T
using rules from R2.

– Explain: Let R2 be a set of inference rules equivalent to R1 = {(Ax), (Cut)}.
Then A ⇒ B is provable from T using rules from R2 iff T |= A ⇒ B.

– Verify that sem(· · ·) is a closure operator, i.e. that T ⊆ sem(T), T1 ⊆ T2 implies
sem(T1) ⊆ sem(T2), and sem(T) = sem(sem(T)).

– Verify that syn(· · ·) is a closure operator, i.e. that T ⊆ syn(T), T1 ⊆ T2 implies
syn(T1) ⊆ syn(T2), and syn(T) = syn(syn(T)).

– Verify that for any T , sem(T) is the least semantically closed set which contains
T .

– Verify that for any T , syn(T) is the least syntactically closed set which contains
T .

3.3 Models of Attribute Implications

For a set T of attribute implications, denote

Mod(T) = {M ⊆ Y | ||A ⇒ B||M = 1 for every A ⇒ B ∈ T}

That is, Mod(T) is the set of all models of T .

Definition 3.30 (closure system). A closure system in a set Y is any system S of subsets
of Y which contains Y and is closed under arbitrary intersections.

That is, Y ∈ S and
⋂
R ∈ S for every R ⊆ S (intersection of every subsystem R of S

belongs to S).

{{a}, {a, b}, {a, d}, {a, b, c, d}} is a closure system in {a, b, c, d} while
{{a, b}, {c, d}, {a, b, c, d}} is not.

There is a one-to-one relationship between closure systems in Y and closure operators
in Y . Given a closure operator C in Y , SC = {A ∈ 2X |A = C(A)} = fix(C) is a closure
system in Y .

Given a closure system in Y , putting

CS(A) =
⋂
{B ∈ S | A ⊆ B}

for any A ⊆ X , CS is a closure operator on Y . This is a one-to-one relationship, i.e.
C = CSC

and S = SCS (we omit proofs).

Lemma 3.31. For a set T of attribute implications, Mod(T) is a closure system in Y .

Proof. First, Y ∈ Mod(T) because Y is a model of any attribute implication.

Second, let Mj ∈ Mod(T) (j ∈ J). For any A ⇒ B ∈ T , if A ⊆
⋂

j Mj then for each
j ∈ J : A ⊆ Mj , and so B ⊆ Mj (since Mj ∈ Mod(T), thus in particular Mj |= A ⇒ B),
from which we have B ⊆

⋂
j Mj .

We showed that Mod(T) contains Y and is closed under intersections, i.e. Mod(T) is a
closure system.

Remark 3.32. (1) If T is the set of all attribute implications valid in a formal context
〈X, Y, I〉, then Mod(T) = Int(X, Y, I), i.e. models of T are just all the intents of the
concept lattice B(X, Y, I) (see later).

(2) Another connection to concept lattices is: A ⇒ B is valid in 〈X, Y, I〉 iff A↓ ⊆ B↓ iff
B ⊆ A↓↑ (see later).

Since Mod(T) is a closure system, we can consider the corresponing closure operator
CMod(T) (i.e., the fixed points of CMod(T) are just models of T). Therefore, for every
A ⊆ Y there exist the least model of Mod(T) which contains A, namely, such least
model is just CMod(T)(A).

Theorem 3.33 (testing entailment via least model). For any A ⇒ B and any T , we have

T |= A ⇒ B iff ||A ⇒ B||CMod(T)(A) = 1,

i.e., A ⇒ B semantically follows from T iff A ⇒ B is true in the least model CMod(T)(A) of
T which contains A.

Proof. “⇒”: If T |= A ⇒ B then, by definition, A ⇒ B is true in every model of T .
Therefore, in particular, A ⇒ B is true in CMod(T)(A).

“⇐”: Let A ⇒ B be true in CMod(T)(A). Since A ⊆ CMod(T)(A), we have B ⊆
CMod(T)(A). We need to check that A ⇒ B is true in every model of T . Let thus
M ∈ Mod(T). If A 6⊆ M then, clearly, A ⇒ B is true in M . If A ⊆ M then, since
M is a model of T containing A, we have CMod(T)(A) ⊆ M . Putting together with
B ⊆ CMod(T)(A), we get B ⊆ M , i.e. A ⇒ B is true in M .

– Previous theorem ⇒ testing T |= A ⇒ B by checking whether A ⇒ B is true in
a single particular model of T . This is much better than going by definition |=
(definition says: T |= A ⇒ B iff A ⇒ B is true in every model of T).

– How can we obtain CMod(T)(A)?

Definition 3.34. For Z ⊆ Y , T a set of implications, put

1. ZT = Z ∪
⋃
{B | A ⇒ B ∈ T,A ⊆ Z},

2. ZT0 = Z,
3. ZTn = (ZTn−1)T (for n ≥ 1).

Define define operator C : 2Y → 2Y by

C(Z) =
⋃∞

n=0 ZTn

Theorem 3.35. Given T , C (defined on previous slide) is a closure operator in Y such that
C(Z) = CMod(T)(Z).

Proof. First, check that C is a closure operator.
Z = ZT0 yields Z ⊆ C(Z).
Evidently, Z1 ⊆ Z2 implies ZT

1 ⊆ ZT
2 which implies ZT1

1 ⊆ ZT1
2 which implies

ZT2
1 ⊆ ZT2

2 which implies . . . ZTn
1 ⊆ ZTn

2 for any n. That is, Z1 ⊆ Z2 implies
C(Z1) =

⋃∞
n=0 ZTn

1 ⊆
⋃∞

n=0 ZTn
2 = C(Z2).

C(Z) = C(C(Z)): Clearly, ZT0 ⊆ ZT1 ⊆ · · ·ZTn ⊆ · · · .
Since Y is finite, the above sequence terminates after a fi-
nite number n0 of steps, i.e. there is n0 such that

C(Z) =
⋃∞

n=0 ZTn = ZTn0 .
This means (ZTn0)T = ZTn0 = C(Z) which gives C(Z) = C(C(Z)).

Next, we check C(Z) = CMod(T)(Z).
1. C(Z) is a model of T containing Z:
Above, we checked thatC(Z) contains Z. Take any A ⇒ B ∈ T and verify that A ⇒ B
is valid in C(Z) (i.e., C(Z) is a model of A ⇒ B). Let A ⊆ C(Z). We need to check
B ⊆ C(Z). A ⊆ C(Z) means that for some n, A ⊆ ZTn . But then, by definition,
B ⊆ (ZTn)T which gives B ⊆ ZTn+1 ⊆ C(Z).

2. C(Z) is the least model of T containing Z:
Let M be a model of T containing Z, i.e. ZT0 = Z ⊆ M . Then ZT ⊆ MT (just check

definition of (· · ·)T). Evidently, M = MT . Therefore, ZT1 = ZT ⊆ M . Applying this
inductively gives ZT2 ⊆ M , ZT3 ⊆ M , Putting together yields C(Z) =

⋃∞
n=0 ZTn ⊆

M . That is, C(Z) is contained in every model M of T and is thus the least one.

– Therefore, C is the closure operator which computes, given Z ⊆ Y , the least
model of T containing Z.

– As argued in the proof, since Y is finite,
⋃∞

n=0 ZTn “stops” after a finite number
of steps. Namely, there is n0 such that ZTn = ZTn0 for n > n0.

– The least such n0 is the smallest n with ZTn = ZTn+1 .
– Given T , C(Z) can be computed: Use definition

and stop whenever ZTn = ZTn+1 . That is, put
C(Z) = Z ∪ ZT1 ∪ ZT2 ∪ · · · ∪ ZTn .

– There is a more efficient algorithm (called LinClosure) for computing C(Z). See
Maier D.: The Theory of Relational Databases. CS Press, 1983.

Example 3.36. Back to one of our previous examples: Let Y = {y1, y2, y3}. Determine
whether T |= A ⇒ B.

– T = {{y3} ⇒ {y1, y2}, {y1, y3} ⇒ {y2}}, A ⇒ B is {y2, y3} ⇒ {y1}.
1. Mod(T) = {∅, {y1}, {y2}, {y1, y2}, {y1, y2, y3}}.
2. By definition: ||{y2, y3} ⇒ {y1}||∅ = 1, ||{y2, y3} ⇒ {y1}||{y1} = 1, ||{y2, y3} ⇒
{y1}||{y2} = 1, ||{y2, y3} ⇒ {y1}||{y1,y2} = 1, ||{y2, y3} ⇒ {y1}||{y1,y2,y3} = 1.
Therefore, T |= A ⇒ B.
3. Now, using our theorem: The least model of T containing A = {y2, y3} is
CMod(T)(A) = {y1, y2, y3}. Therefore, to verify T |= A ⇒ B, we just need to check
whether A ⇒ B is true in {y1, y2, y3}. Since ||{y2, y3} ⇒ {y1}||{y1,y2,y3} = 1, we
conclude T |= A ⇒ B.

– T = {{y3} ⇒ {y1, y2}, {y1, y3} ⇒ {y2}}, A ⇒ B is {y2} ⇒ {y1}.
1. Mod(T) = {∅, {y1}, {y2}, {y1, y2}, {y1, y2, y3}}.
2. By definition: ||{y2} ⇒ {y1}||∅ = 1, ||{y2} ⇒ {y1}||{y1} = 1, ||{y2} ⇒
{y1}||{y2} = 0, we can stop.
Therefore, T 6|= A ⇒ B.
3. Now, using our theorem: The least model of T containing A = {y2} is
CMod(T)(A) = {y2}. Therefore, to verify T |= A ⇒ B, we need to check whether
A ⇒ B is true in {y2}. Since ||{y2} ⇒ {y1}||{y2} = 0, we conclude T 6|= A ⇒ B.

Example 3.37. Let Y = {y1, . . . , y10}, T = {{y1, y4} ⇒ {y3}, {y2, y4} ⇒
{y1}, {y1, y2} ⇒ {y4, y7}, {y2, y7} ⇒ {y3}, {y6} ⇒ {y4}, {y2, y8} ⇒ {y3}, {y9} ⇒
{y1, y2, y7}}

1. Decide whether T |= A ⇒ B for A ⇒ B being {y2, y5, y6} ⇒ {y3, y7}.

We need to check whether ||A ⇒ B||CMod(T)(A) = 1.
First, we compute CMod(T)(A) =

⋃∞
n=0 ATn . Recall:

ATn = ATn−1 ∪
⋃
{D |C ⇒ D ∈ T,C ⊆ ATn}.

– AT0 = A = {y2, y5, y6}.
– AT1 = AT0 ∪

⋃
{{y4}} = {y2, y4, y5, y6}.

Note: {y4} added because for C ⇒ D being {y6} ⇒ {y4} we have {y6} ⊆ AT0 .
– AT2 = AT1 ∪

⋃
{{y1}, {y4}} = {y1, y2, y4, y5, y6}.

– AT3 = AT2 ∪
⋃
{{y3}, {y1}, {y4}} = {y1, y2, y3, y4, y5, y6}.

– AT4 = AT3 ∪
⋃
{{y3}, {y1}, {y4, y7}, {y4}} = {y1, y2, y3, y4, y5, y6, y7}.

– AT5 = AT4∪
⋃
{{y3}, {y1}, {y4, y7}, {y4}} = {y1, y2, y3, y4, y5, y6, y7} = AT4 , STOP.

Therefore, CMod(T)(A) = {y1, y2, y3, y4, y5, y6, y7}. Now, we
need to check if ||A ⇒ B||CMod(T)(A) = 1, i.e. if

||{y2, y5, y6} ⇒ {y3, y7}||{y1,y2,y3,y4,y5,y6,y7} = 1.
Since this is true, we conclude T |= A ⇒ B.

2. Decide whether T |= A ⇒ B for A ⇒ B being {y1, y2, y8} ⇒ {y4, y7}.

We need to check whether ||A ⇒ B||CMod(T)(A) = 1. First, we compute CMod(T)(A) =⋃∞
n=0 ATn .

– AT0 = A = {y1, y2, y8}.
– AT1 = AT0 ∪

⋃
{{y3}} = {y1, y2, y3, y8}.

– AT2 = AT1 ∪
⋃
{{y7}, {y3}} = {y1, y2, y3, y7, y8}.

– AT3 = AT2 ∪
⋃
{{y7}, {y3}} = {y1, y2, y3, y7, y8} = AT2 , STOP.

Thus, CMod(T)(A) = {y1, y2, y3, y7, y8}. Now, we need to check if ||A ⇒ B||CMod(T)(A) =
1, i.e. if ||{y1, y2, y8} ⇒ {y4, y7}||{y1,y2,y3,y7,y8} = 1. Since this is not true, we conclude
T 6|= A ⇒ B.

3.4 Non-Redundant Bases of Attribute Implications

Definition 3.38 (non-redundant set of AIs). A set T of attribute implications is called
non-redundant if for any A ⇒ B ∈ T we have

T − {A ⇒ B} 6|= A ⇒ B.

That is, if T ′ results from T be removing an arbitrary A ⇒ B from T , then A ⇒ B does
not semantically follow from T ′, i.e. T ′ is weaker than T .

How to check if T is redundant or not? Pseudo-code:

1. for A ⇒ B ∈ T do
2. T ′ := T − {A ⇒ B};
3. if T ′ |= A ⇒ B then
3. output(‘‘REDUNDANT’’);
4. stop;
5. endif;
6. endfor;
7. output(‘‘NONREDUNDANT’’).

– Checking T ′ |= A ⇒ B: as described above, i.e. test whether ||A ⇒
B||CMod(T ′)(A) = 1.

– Modification of this algorithm gives an algorithm which, given T , returns a
non-redundant subset nrT of T which is equally strong as T , i.e. for any C ⇒ D,

T |= C ⇒ D iff nrT |= C ⇒ D.
Pseudo-code:

1. nrT := T;
2. for A ⇒ B ∈ nrT do
3. T ′ := nrT − {A ⇒ B};
4. if T ′ |= A ⇒ B then

5. nrT := T ′;
6. endif;
7. endfor;
8. output(nrT).

Definition 3.39 (complete set of AIs). Let 〈X, Y, I〉 be a formal con-
text, T be a set of attribute implications over Y . T is called com-
plete in 〈X, Y, I〉 if for any attribute implication C ⇒ D we have

C ⇒ D is true in 〈X, Y, I〉 IFF T |= C ⇒ D.

– This is a different notion of completeness (different from syntactico-semantical
completeness of system (Ax) and (Cut) of Armstrong rules).

– Meaning: T is complete iff validity of any AI C ⇒ D in data 〈X, Y, I〉 is encoded
in T via entailment: C ⇒ D is true in 〈X, Y, I〉 iff C ⇒ D follows from T . That
is, T gives complete information about which AIs are true in data.

– Definition directly yields: If T is complete in 〈X, Y, I〉 then every A ⇒ B from T
is true in 〈X, Y, I〉. Why: because T |= A ⇒ B for every A ⇒ B from T .

Theorem 3.40 (criterion for T being complete in 〈X, Y, I〉). T is complete in 〈X, Y, I〉 iff
Mod(T) = Int(X, Y, I), i.e. models of T are just intents of formal concepts from B(X, Y, I).

Proof. Omitted.

Definition 3.41 (non-redundant basis of 〈X, Y, I〉). Let 〈X, Y, I〉 be a formal context. A
set T of attribute implications over Y is called a non-redundant basis of 〈X, Y, I〉 iff

1. T is complete in 〈X, Y, I〉,
2. T is non-redundant.

– Another way to say that T is a non-redundant basis of 〈X, Y, I〉:
(a) every AI from T is true in 〈X, Y, I〉;
(b) for any other AI C ⇒ D: C ⇒ D is true in 〈X, Y, I〉 iff C ⇒ D follows from
T ;
(c) no proper subset T ′ ⊆ T satisfies (a) and (b).

Example 3.42 (testing non-redundancy of T). Let Y = {ab2, ab6, abs, ac, cru, ebd}with
the following meaning of attributes: ab2 . . . has 2 or more airbags, ab6 . . . has 6 or more
airbags, abs . . . has ABS, ac . . . has air-conditioning, ebd . . . has EBD.
Let T consist of the following attribute implications: {ab6} ⇒ {abs, ac}, {} ⇒ {ab2},
{ebd} ⇒ {ab6, cru}, {ab6} ⇒ {ab2}.
Determine whether T is non-redundant.
We can use the above algorithm, and proceed as follows: We go over all A ⇒ B from
T and test whether T ′ |= A ⇒ B where T ′ = T − {A ⇒ B}.

– A ⇒ B = {ab6} ⇒ {abs, ac}. Then, T ′ = {{} ⇒ {ab2}, {ebd} ⇒
{ab6, cru}, {ab6} ⇒ {ab2}}. In order to decide whether T ′ |= {ab6} ⇒
{abs, ac}, we need to compute CMod(T ′)({ab6}) and check ||{ab6} ⇒
{abs, ac}||CMod(T ′)({ab6}). Putting Z = {ab6}, and denoting ZT ′

i by Zi,

we get Z0 = {ab6}, Z1 = {ab2, ab6}, Z2 = {ab2, ab6}, we can stop
and we have CMod(T ′)({ab6}) =

⋃
i=01 Zi = {ab2, ab6}. Now, ||{ab6} ⇒

{abs, ac}||CMod(T ′)({ab6}) = ||{ab6} ⇒ {abs, ac}||{ab2,ab6} = 0, i.e. T ′ 6|= {ab6} ⇒
{abs, ac}. That is, we need to go further.

– A ⇒ B = {} ⇒ {ab2}. Then, T ′ = {{ab6} ⇒ {abs, ac}, {ebd} ⇒
{ab6, cru}, {ab6} ⇒ {ab2}}. In order to decide whether T ′ |= {} ⇒ {ab2},
we need to compute CMod(T ′)({}) and check ||{} ⇒ {ab2}||CMod(T ′)({}). Putting

Z = {}, and denoting ZT ′
i by Zi, we get Z0 = {}, Z1 = {} (because there is no

A ⇒ B ∈ T ′ such that A ⊆ {}), we can stop and we have CMod(T ′)({}) = Z0 = {}.
Now, ||{} ⇒ {ab2}||CMod(T ′)({}) = ||{} ⇒ {ab2}||{} = 0, i.e. T ′ 6|= {} ⇒ {ab2}.
That is, we need to go further.

– A ⇒ B = {ebd} ⇒ {ab6, cru}. Then, T ′ = {{ab6} ⇒ {abs, ac}, {} ⇒
{ab2}, {ab6} ⇒ {ab2}}. In order to decide whether T ′ |= {ebd} ⇒ {ab6, cru},
we need to compute

CMod(T ′)({ebd}) and check ||{ebd} ⇒ {ab6, cru}||CMod(T ′)({ebd}). Putting Z =

{ebd}, and denoting ZT ′
i by Zi, we get Z0 = {ebd}, Z1 = {ab2, ebd}, Z2 =

{ab2, ebd}, we can stop and we have CMod(T ′)({ebd}) = Z0 = {ab2, ebd}. Now,
||{ebd} ⇒ {ab6, cru}||CMod(T ′)({ab2,ebd}) = ||{ebd} ⇒ {ab6, cru}||{ab2,ebd} = 0, i.e.
T ′ 6|= {ebd} ⇒ {ab6, cru}. That is, we need to go further.

– A ⇒ B = {ab6} ⇒ {ab2}. Then, T ′ = {{ab6} ⇒ {abs, ac}, {} ⇒ {ab2}, {ebd} ⇒
{ab6, cru}}. In order to decide whether T ′ |= {ab6} ⇒ {ab2}, we need to
compute CMod(T ′)({ab6}) and check ||{ab6} ⇒ {ab2}||CMod(T ′)({ab6}). Putting

Z = {ab6}, and denoting ZT ′
i by Zi, we get Z0 = {ab6}, Z1 = {ab2, ab6, abs, ac},

Z2 = {ab2, ab6, abs, ac}, we can stop and we have CMod(T ′)({ab6}) =
⋃

i=01 Zi =
{ab2, ab6, abs, ac}. Now, ||{ab6} ⇒ {ab2}||CMod(T ′)({ab6}) = ||{ab6} ⇒
{ab2}||{ab2,ab6,abs,ac} = 1, i.e. T ′ |= {ab6} ⇒ {ab2}. Therefore, T is redundant
(we can remove {ab6} ⇒ {ab2}).

We can see that T is redundant by observing that T ′ ` {ab6} ⇒ {ab2} where T ′ =
T − {{ab6} ⇒ {ab2}}. Namely, we can infer {ab6} ⇒ {ab2} from {} ⇒ {ab2} by
(Wea). Syntactico-semantical completeness yields T ′ |= {ab6} ⇒ {ab2}, hence T is
redundant.

Example 3.43 (deciding whether T is complete w.r.t 〈X, Y, I〉). Consider attributes nor-
mal blood pressure (nbp), high blood pressure (hbp), watches TV (TV), eats unhealthy
food (uf), runs regularly (r), persons a, . . . , e, and formal context (table) 〈X, Y, I〉

I nbp hbp TV uf r
a × ×
b × × ×
c × × ×
d × ×
e ×

Decide whether T is complete w.r.t. 〈X, Y, I〉 for sets T described below.

Due to the above theorem, we need to check Mod(T) = Int(X, Y, I). That is, we need
to compute Int(X, Y, I) and Mod(T) and compare.

We have Int(X, Y, I) = {{}, {nbp}, {uf}, {uf, hbp}, {nbp, r}, {uf, hbp, TV },
{nbp, r, uf}, {hbp, nbp, r, TV, uf}}

1. T consists of {r} ⇒ {nbp}, {TV, uf} ⇒ {hbp}, {r, uf} ⇒ {TV }.
T is not complete w.r.t. 〈X, Y, I〉 because {r, uf} ⇒ {TV } is not true in 〈X, Y, I〉
(person b is a counterexample). Recall that if T is complete, every AI from T is
true in 〈X, Y, I〉.

2. T consists of {r} ⇒ {nbp}, {TV, uf} ⇒ {hbp}, {TV } ⇒ {hbp}.
In this case, every AI from T is true in 〈X, Y, I〉. But still, T is not com-
plete. Namely, Mod(T) 6⊆ Int(X, Y, I). For instance, {hbp, TV } ∈ Mod(T) but
{hbp, TV } 6∈ Int(X, Y, I).
In this case, T is too weak. T does not entail all attribute implications which
are true in 〈X, Y, I〉. For instance {hbp, TV } ⇒ {uf} is true in 〈X, Y, I〉 but
T 6|= {hbp, TV } ⇒ {uf}. Indeed, {hbp, TV } is a model of T but ||{hbp, TV } ⇒
{uf}||{hbp,TV } = 0.

3. T consists of {r} ⇒ {nbp}, {TV, uf} ⇒ {hbp}, {TV } ⇒ {uf}, {TV } ⇒ {hbp},
{hbp, TV } ⇒ {uf}, {nbp, uf} ⇒ {r}, {hbp} ⇒ {uf}, {uf, r} ⇒ {nbp},
{nbp, TV } ⇒ {r}, {hbp, nbp} ⇒ {r, TV }.
One can check that Mod(T) consists of {}, {nbp}, {uf}, {uf, hbp}, {nbp, r},
{uf, hbp, TV }, {nbp, r, uf}, {hbp, nbp, r, TV, uf}}. Therefore, Mod(T) =
Int(X, Y, I). This implies that T is complete in 〈X, Y, I〉.
(An easy way to check it is to check that every intent from Int(X, Y, I) is a model
of T (there are 8 intents in our case), and that no other subset of Y is a model
of T (there are 25 − 8 = 24 such subsets in our case). As an example, take
{hbp, uf, r} 6∈ Int(X, Y, I). {hbp, uf, r} is not a model of T because {hbp, uf, r} is
not a model of {r} ⇒ {nbp}.)

Example 3.44 (reducing T to a non-redundant set). Continuing our previous exam-
ple, consider again T consisting of {r} ⇒ {nbp}, {TV, uf} ⇒ {hbp}, {TV } ⇒ {uf},
{TV } ⇒ {hbp}, {hbp, TV } ⇒ {uf}, {nbp, uf} ⇒ {r}, {hbp} ⇒ {uf}, {uf, r} ⇒ {nbp},
{nbp, TV } ⇒ {r}, {hbp, nbp} ⇒ {r, TV }.

From the previous example we know that T is complete in 〈X, Y, I〉. Check whether
T is non-redundant. If not, transform T into a non-redundant set nrT . (Note: nrT is
then a non-redundant basis of 〈X, Y, I〉.)

Using the above algorithm, we put nrT := T and go through all A ⇒ B ∈ nrT and
perform: If for T ′ := nrT −{A ⇒ B}we find out that T ′ |= A ⇒ B, we remove A ⇒ B
from nrT , i.e. we put nrT := T ′. Checking T ′ |= A ⇒ B is done by verifying whether
||A ⇒ B||CMod(T ′)(A).

– For A ⇒ B = {r} ⇒ {nbp}: T ′ := nrT − {{r} ⇒ {nbp}}, CMod(T ′)(A) = {r} and
||A ⇒ B||{r} = 0, thus T ′ 6|= A ⇒ B, and nrT does not change.

– For A ⇒ B = {TV, uf} ⇒ {hbp}: T ′ := nrT − {{TV, uf} ⇒ {hbp}},
CMod(T ′)(A) = {TV, uf, hbp} and ||A ⇒ B||{TV,uf,hbp} = 1, thus T ′ |= A ⇒ B,
and we remove {TV, uf} ⇒ {hbp} from nrT . That is, nrT = T − {{TV, uf} ⇒
{hbp}}.

– For A ⇒ B = {TV } ⇒ {uf}: T ′ := nrT − {{TV } ⇒ {uf}}, CMod(T ′)(A) =
{TV, hbp, uf} and ||A ⇒ B||{TV,hbp,uf} = 1, thus T ′ |= A ⇒ B, and we remove
{TV } ⇒ {uf} from nrT . That is, nrT = T−{{TV, uf} ⇒ {hbp}, {TV } ⇒ {uf}}.

– For A ⇒ B = {TV } ⇒ {hbp}: T ′ := nrT − {{TV } ⇒ {hbp}}, CMod(T ′)(A) =
{TV } and ||A ⇒ B||{TV } = 0, thus T ′ 6|= A ⇒ B, nrT does not change. That is,
nrT = T − {{TV, uf} ⇒ {hbp}, {TV } ⇒ {uf}}.

– For A ⇒ B = {hbp, TV } ⇒ {uf}: T ′ := nrT − {{hbp, TV } ⇒ {uhf}},
CMod(T ′)(A) = {hbp, TV, uf} and ||A ⇒ B||{hbp,TV,uf} = 1, thus T ′ |= A ⇒ B, we
remove {hbp, TV } ⇒ {uf} from nrT . That is, nrT = T − {{TV, uf} ⇒ {hbp},
{TV } ⇒ {uf}, {hbp, TV } ⇒ {uf}}.

– For A ⇒ B = {nbp, uf} ⇒ {r}: T ′ := nrT − {{nbp, uf} ⇒ {r}}, CMod(T ′)(A) =
{nbp, uf} and ||A ⇒ B||{nbp,uf} = 0, thus T ′ 6|= A ⇒ B and nrT does not change.
That is, nrT = T − {{TV, uf} ⇒ {hbp}, {TV } ⇒ {uf}, {hbp, TV } ⇒ {uf}}.

– For A ⇒ B = {hbp} ⇒ {uf}: T ′ := nrT −{{hbp} ⇒ {uf}}, CMod(T ′)(A) = {hbp}
and ||A ⇒ B||{hbp} = 0, thus T ′ 6|= A ⇒ B and nrT does not change. That is,
nrT = T − {{TV, uf} ⇒ {hbp}, {TV } ⇒ {uf}, {hbp, TV } ⇒ {uf}}.

– For A ⇒ B = {uf, r} ⇒ {nbp}: T ′ := nrT − {{uf, r} ⇒ {nbp}}, CMod(T ′)(A) =
{uf, r, nbp} and ||A ⇒ B||{uf,r,nbp} = 1, thus T ′ |= A ⇒ B and we remove
{uf, r} ⇒ {nbp} from nrT . That is, nrT = T − {{TV, uf} ⇒ {hbp}, {TV } ⇒
{uf}, {hbp, TV } ⇒ {uf}, {uf, r} ⇒ {nbp}}.

– For A ⇒ B = {nbp, TV } ⇒ {r}: T ′ := nrT − {{nbp, TV } ⇒ {r}}, CMod(T ′)(A) =
{nbp, TV, hbp, uf, r} and ||A ⇒ B||{nbp,TV,hbp,uf,r} = 1, thus T ′ |= A ⇒ B and
we remove {nbp, TV } ⇒ {r} from nrT . That is, nrT = T − {{TV, uf} ⇒ {hbp},
{TV } ⇒ {uf}, {hbp, TV } ⇒ {uf}, {uf, r} ⇒ {nbp}, {nbp, TV } ⇒ {r}}.

– For A ⇒ B = {hbp, hbp} ⇒ {r, TV }: T ′ := nrT − {{hbp, nbp} ⇒ {r, TV }},
CMod(T ′)(A) = {hbp, nbp, uf, r} and ||A ⇒ B||{hbp,nbp,uf,r} = 0, thus T ′ 6|= A ⇒ B
and nrT does not change. That is, nrT = T−{{TV, uf} ⇒ {hbp}, {TV } ⇒ {uf},
{hbp, TV } ⇒ {uf}, {uf, r} ⇒ {nbp}, {nbp, TV } ⇒ {r}}.

We obtained nrT = {{r} ⇒ {nbp}, {TV } ⇒ {hbp}, {nbp, uf} ⇒ {r}, {hbp} ⇒
{uf}, {hbp, nbp} ⇒ {r, TV }}. nrT is a non-redundant set of AIs.

Since T is complete in 〈X, Y, I〉, nrT is complete in 〈X, Y, I〉, too (why?). Therefore,
nrT is a non-redundant basis of 〈X, Y, I〉.

In the last example, we obtained a non-redundant basis nrT of 〈X, Y, I〉, nrT =
{{r} ⇒ {nbp}, {TV } ⇒ {hbp}, {nbp, uf} ⇒ {r}, {hbp} ⇒ {uf}, {hbp, nbp} ⇒
{r, TV }}.

How to compute non-redundant bases from data?

We are going to present an approach based on the notion of a pseudo-intent. This
approach is due to Guigues and Duquenne. The resulting non-redundant basis is
called a Guigues-Duquenne basis.

Two main features of Guigues-Duquenne basis are

– it is computationally tractable,
– it is optimal in terms of its size (no other non-redundant basis has is smaller in

terms of the number of AIs it contains).

Definition 3.45 (pseudo-intents). A pseudo-intent of 〈X, Y, I〉 is a subset A ⊆ Y for
which

1. A 6= A↓↑,
2. B↓↑ ⊆ A for each pseudo-intent B ⊂ A.

Theorem 3.46 (Guigues-Duquenne basis). The set T =
{A ⇒ A↓↑ | A is a pseudointent of (X, Y, I)} of implications is a non-redundant basis
of 〈X, Y, I〉.

Proof. We show that T is complete and non-redundant.

Complete: It suffices to show that Mod(T) ⊆ Int(X, Y, I). Let C ∈ Mod(T). Assume
C 6= C↓↑. Then C is a pseudo-intent (indeed, if P ⊂ C is a pseudo-intent then since
||P ⇒ P ↓↑||C = 1, we get P ↓↑ ⊆ C). But then C ⇒ C↓↑ ∈ T and so ||C ⇒ C↓↑||C = 1.
But the last fact means that if C ⊆ C (which is true) then C↓↑ ⊆ C which would give
C↓↑ = C, a contradiction with the assumption C↓↑ 6= C. Therefore, C↓↑ = C, i.e.
C ∈ Int(X, Y, I).

Non-redundant: Take any P ⇒ P ↓↑. We show that T − {P ⇒ P ↓↑} 6|= P ⇒ P ↓↑. Since
||P ⇒ P ↓↑||P = 0 (obvious, check), it suffices to show that ||T − {P ⇒ P ↓↑}||P =
1. That is, we need to show that for each Q ⇒ Q↓↑ ∈ T − {P ⇒ P ↓↑} we have
||Q ⇒ Q↓↑||P = 1, i.e. that if Q ⊆ P then Q↓↑ ⊆ P . But this follows from the defi-
nition of a pseudo-intent (apply to P).

Lemma 3.47. If P,Q are intents or pseudo-intents and P 6⊆ Q, Q 6⊆ P , then P ∩ Q is an
intent.

Proof. Let T = {R ⇒ R↓↑ | R a pseudo-intent} be the G.-D. basis. Since T is complete,
it is sufficient to show that P ∩ Q ∈ Mod(T) (since then, P ∩ Q is a model of any
implication which is true in 〈X, Y, I〉, and so P ∩Q is an intent).

Obviously, P,Q are models of T − {P ⇒ P ↓↑, Q ⇒ Q↓↑}, whence P ∩Q is a model of
T −{P ⇒ P ↓↑, Q ⇒ Q↓↑} (since the set of models is a closure system, i.e. closed under
intersections).

Therefore, to show that P ∩ Q is a model of T , it is sufficient to show that P ∩ Q is
a model of {P ⇒ P ↓↑, Q ⇒ Q↓↑}. Due to symmetry, we only verify that P ∩ Q is a
model of {P ⇒ P ↓↑: But this is trivial: since P 6⊆ Q, the condition “if P ⊆ P ∩ Q
implies P ↓↑ ⊆ P ∩Q” is satisfied for free. The proof is complete.

Lemma 3.48. If T is complete, then for each pseudo-intent P , T contains A ⇒ B with A↓↑ =
P ↓↑

Proof. For pseudointent P , P 6= P ↓↑, i.e. P is not an intent. Therefore, P cannot be a
model of T (since models of a complete T are intents). Therefore, there is A ⇒ B ∈ T
such that ||A ⇒ B||P = 0, i.e. A ⊆ P but B 6⊆ P . As ||A ⇒ B||〈X,Y,I〉 = 1, we have
B ⊆ A↓↑ (Thm. on basic connections . . .). Therefore, A↓↑ 6⊆ P (otherwise B ⊆ P , a
contradiction). Therefore, A↓↑∩P is not an intent (). By the foregoing Lemma, P ⊆ A↓↑

which gives P ↓↑ ⊆ A↓↑. On the other hand, A ⊆ P gives A↓↑ ⊆ P ↓↑. Altogether,
A↓↑ = P ↓↑, proving the claim.

Theorem 3.49 (Guigues-Duquenne basis is the smalest one). If T is the Guigues-
Duquenne base and T ′ is complete then |T | ≤ |T ′|.

Proof. Direct corollary of the above Lemma.

P ... set of all pseudointents of 〈X, Y, I〉

THE base we need to compute: {A ⇒ A↓↑ | A ∈ P}

Q: What do we need? A: Compute all pseudointents.

We will see that the set of all P ⊆ Y which are intents or pseudo-intents is a closure
system.

Q: How to compute the fixed points (closed sets)?

For Z ⊆ Y , T a set of implications, put

ZT = Z ∪
⋃
{B | A ⇒ B ∈ T,A ⊂ Z}

ZT0 = Z
ZTn = (ZTn−1)T (n ≥ 1)

define CT : 2Y → 2Y by

CT (Z) =
⋃∞

n=0 ZTn (note: terminates, Y finite)

Note: this is different from the operator computing the least model CMod(T)(A) of T
containing A (instead of A ⊆ Z, we have A ⊂ Z here).

Theorem 3.50. Let T = {A ⇒ A↓↑ | A ∈ P} (G.-D. base). Then

1. CT is a closure operator,
2. P is a fixed point of CT iff P ∈ P (P is a pseudo-intent) or P ∈ Int(X, Y, I) (P is an

intent).

Proof. 1. easy (analogous to the proof concerning the closure operator for CMod(T)(A)).

2. P ∪ Int(X, Y, I) ⊆ fix(CT): easy. fix(CT) ⊆ P ∪ Int(X, Y, I): It suffices to show
that if P ∈ fix(CT) is not an intent (P 6= P ↓↑) then P is an pseudo-intent. So take
P ∈ fix(CT), i.e. P = CT (P), which is not an intent. Take any pseudointent Q ⊂ P .
By definition (notice that Q ⇒ Q↓↑ ∈ T), Q↓↑ ⊆ CT (P) = P which means that P is a
pseudo-intent.

So: fix(CT) = P ∪ Int(X, Y, I)

Therefore, to compute P , we can compute fix(CT) and exclude Int(X, Y, I), i.e. P =
fix(CT)− Int(X, Y, I).

computing fix(CT): by Ganter’s NextClosure algorithm.

Caution! In order to compute CT , we need T , i.e. we need P , which we do not know
in advance. Namely, recall what we are doing:

– Given input data 〈X, Y, I〉, we need to compute G.-D. basis T = {A ⇒ A↓↑ |A ∈
P}.

– For this, we need to compute P (pseudo-intents of 〈X, Y, I〉).
– P can be obtained from zfix(CT) (fixed points of CT).
– But to compute CT , we need T (actually, we need only a part of T).

But we are not in circulus vitiosus: The part of T (or P) which is needed at a given point
is already available (computed) at that point.

Computing G.-D. basis manually is tedious. Algorithms available, e.g. Peter Burmeis-
ter’s ConImp software.

References

[1] Barbut M., Monjardet B.: L’ordre et la classification, algèbre et combinatoire, tome II. Paris, Hachette,
1970.

[2] Carpineto C., Romano G.: Concept Data Analysis. Theory and Applications. J. Wiley, 2004.

[3] Correia J. H., Stumme G., Wille R.: Conceptual Knowledge Discovery—A Human-Centered
Approach. Applied Artificial Intelligence 17,3 (2003), 281–302.

[4] Ganter B.: Attribute Exploration with Background Knowledge. Theor. Comput. Sci. 217,2 (1999),
215–233.

[5] Ganter B., Wille R.: Formal Concept Analysis. Mathematical Foundations. Springer, 1999.

[6] Ganter B., Stumme G., Wille R.: Formal Concept Analysis. Foundations and Applications. Springer,
2005.

[7] Guigues J.-L., Duquenne V.: Familles minimales dimplications informatives resultant dun
tableau de donnes binaires. Math. Sci. Humaines 95 (1986), 5–18.

[8] Kuznetsov S., Obiedkov S., Comparing performance of algorithms for generating concept lat-
tices. J. Experimental and Theoretical Articial Intelligence 14,2–3 (2002), 189–216.

[9] Ore O.: Galois connexions. Trans. Amer. Math. Soc. 55 (1944), 493–513.

[10] Wille R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: I. Rival
(Ed.): Ordered Sets, 445–470, Reidel, Dordrecht-Boston, 1982.

[11] Wille R.: Methods of Conceptual Knowledge Processing. ICFCA 2006, LNAI 3874, Springer,
Heidelberg 2006, pp. 1–29.

