Sec. 11.4 Multiconditional Approximate Reasoning 317

TABLE 11.4 GENERALIZED HYPOTHETICAL SYLLOGISMS

Name Standard intersection | Algebraic product | Bounded difference | Drastic intersection
Early Zadeh N N N N
Im
Gaines-Rescher y v y ¥
3s
Goded ¥ ¥ y y
Jg
Goguen N Y Y Y
da
Kieene-Dienes N N ¥ ¥
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ar
Willmott N N N N
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Wu Y Y Y Y
gwn
3ss Y Y Y Y
3sg Y Y Y Y
Jes Y Y Y Y
Jgs Y Y Y Y

11.4 MULTICONDITIONAL APPROXIMATE REASONING

The general schema of multiconditional approximate reasoning has the form:

Rule 1 : If Xis A;, then Y is By

Rule 2 : If X is A5, then Y is B,

Rulen : If Xis A,, then Y is B, (11.16)
Fact : Xis A

Conclusion: Y is B’
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Given n if-then rules, rules 1 through n, and a fact “X is A’ we conclude that “Y is B')”
where A", A; € F(X). B, B; € F(Y) forall j € N,;, and X, Y are sets of values of variables
X and Y. This kind of reasoning is typical in fuzzy logic controliers (Chapter 12).

The most common way to determine B’ tn (11.16) is referred to as a method of
interpolation. 1t consists of the following two steps:

Step 1. Calculate the degree of consistency, r;(A’), between the given fact and the
antecedent of each if-then rule j in terms of the height of intersection of the associated sets
A"and A;. That is, for each j € N,

ri(A) =h(A' NA)j
or, using the standard fuzzy intersection,

ri(A) = Eg};min[A'(x), A; (). (11.17)

Step 2. Calculate the conclusion B’ by truncating each set B; by the value of r;(4").
which expresses the degree to which the antecedent A; is compatible with the given fact A’,
and taking the union of the truncated sets. That is,

B'(y) = su\g; min[7;(A"), B;(y)] (11.18)
jeN,
forall y e Y.

An illustration of the method of interpolation for two if-then rules is given in Fig. 11.3,
which is self-explanatory.

The interpolation method is actually a special case of the compositional rule of inference.
To show this, assume that R is a fuzzy relation on X x Y defined by
R(x,y) = supmin[A;(x), B;(¥)] (11.19)
jeN,
forall x € X,y € Y. Then, B’ obtained by (11.18) is equal to 4’ R, where < denotes the

sup-min composition. This equality can be easily demonstrated. Using (11.18) and (11.17),
the following holds:

B'(y) = S? min[r;(A"), B;(y)]

JEN,

= sup min[sup min{A'(x), A,;(x)), B;(y)]
JGN, zeX

= sup sup[min(4'(x), A;(x), B;(y)]
JER, xeX

= sup sup min[A'(x), min(A ;(x}, B;(y)}]
x€X jeR,

= supmin[A’'(x). sup min(A;(x), B;(y))]
xeX jEN,

= sugm[A’(x), R(x, y)]

= (A" R)}{(y).
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Figure 11.3 [lustration of the method of interpolation.

Hence, B' = A'°R.
Observe that the fuzzy relation R employed in the reasoning is obtained from the given

if-then rules in (11.16) in the following way. For each rule j in (11.16), we determine a
relation R, by the formula

R;(x,y) =min[A;(x), B;(¥)] (11.20)

forall x € X,y € Y. Then, R is defined by the union of relations R; for all rules in (11.16).
That is,

R= R, (11.21)
jeN,
In this case, we treat the if-then rules as disjunctive. This means that we obtain a conclusion
for a given fact A’ whenever r;(A’) > O for at least one rule j. When r;(A") > 0, we say that
rule j fires for the given fact A",
The if-then rules in (11.16) may also be treated as conjunctive. In this case, we define
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R by the intersection

R=(R; (11.22)
jeNa
We obtain a conclusion for a given fact A’ only if r;(A") > O for all j € N,. That is, to obtain
a conclusion, all rules in {11.16) must fire.

The interpretation of the rules in (11.16) as either disjunctive or conjunctive depends on
their intended use and the way R; is obtained. For either interpretation, there are two possible
ways of applying the compositional rule of inference: the compositional rule is applied to
the fuzzy relation R, after it is calculated by either (11.21) or (11.22); or the compositional
rule is applied locally to each relation R;, and then, the resulting fuzzy sets are combined in
either disjunctive or conjunctive ways. Hence, we have the following four possible ways of
calculating the conclusion B"

B, = A<(|JR). (11.23)
j€N,
B, = A'>({\R)), (11.24)
jeN.
B, = |JA°R, (11.25)
jeN,
B,= ((A'-R,. (11.26)
jeN,

The four distinct fuzzy sets obtained by these formulas are ordered in the way stated in the
following theorem.

Theorem 11.6. B; C B, C B{ = B;.
Proof: First, we prove that B; € B,. Forally € Y,
Bi(y) = inf (A" R)(¥)
JEl,

= inf sup min[A'(x), R;(x, y}]
JeNo zex

> sup inf min[A'(x), R;(x, y)]
xex jeN,

= supmin[A’(x), inf R,(x, y)]
xeX jen,

= supmin[4’(x). ( () R;)(x. y}]

xeX j€N,

[A"= () RpIY)

j€Na
= B,(y).
Hence, B; C B;. Next, we prove that B, € B]. This is rather trivial, since
AR SA<({JR)

J€RN,
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for all j € N, and, hence,
By= AR, CA(|JR)) =B,

jel, jeN,
Finally, we prove that B] = B;. Forally € Y,
B, (y) = supmin[A'(x), |J R,(x, )]

xeX JEN,

= sup sup min[A’(x), R;(x, y)]

xeX jeN,

= sup sup min[A'(x), R;{x, y)]
JEN, x€X

= (UAR)M

JeR,
= B;(_v)
Hence, B; = B;, which completes the proof. W

Let us mention that this theorem is not restricted to the sup-min composition. It holds
for any sup-i composition, provided that the ¢-norm ¢ i$ continuous.

In gencral, R; may be determined by a suitable fuzzy implication, as discussed in
Sec. 11.3. That is,

R;(x,y) = 3[A;{x), B;(y)] (11.27)

is a general counterpart of (11.20). Furthermore, R may be determined by solving appropriate
fuzzy relation equations, as discussed in the next section, rather than by aggregating
relations R;.

11.5 THE ROLE OF FUZZY RELATION EQUATIONS

As previously explained, any conditional (if-then) fuzzy proposition can be expressed in terms
of a fuzzy relation R between the two variables involved. One of the key issues in approximate
reasoning is to determine this relation for each given proposition. QOnce it is determined, we
can apply the compositional rule of inference to facilitate our reasoning process.

One way of determining R, which is discussed in Sec. 11.3, is to determine a suitable
fuzzy implication J, which operates on fuzzy sets involved in the given proposition, and
to express R in terms of J (see, e.g., (11.12)). As criteria for determining suitable fuzzy
implications, we require that the various generalized rules of inference coincide with their
classical counterparts. For each rule of inference, this requirement is expressed by a fuzzy
relation equation that fuzzy implications suitable for the rule must satisfy. However, the
problem of determining R for a given conditional fuzzy proposition may be detached from
fuzzy implications and viewed solely as a problem of solving the fuzzy relation equation
for R.

As explained in Sec. 11.3, the equation to be solved for modus ponens has the form

B=A+%R, (11.28)



12

Fuzzy SysTEMS

12.1 GENERAL DISCUSSION

In general, a fuzzy system is any system whose variables (or, at least, some of them) range
over states that are fuzzy sets. For each variable, the fuzzy sets are defined on some relevant
unijversal set, which is often an interval of real numbers. In this special but important case, the
fuzzy sets are fuzzy numbers, and the associated variables are linguistic variables (Sec. 4.2).

Representing states of variables by fuzzy sets is a way of quantizing the variables.
Due to the finite resolution of any measuring instrument, appropriate quantization, whose
coarseness reflects the limited measurement resolution, is inevitable whenever a variable
represents a real-world attribute. For example, when measurements of values of a variable
can be obtained only to an accuracy of one decimal digit, two decimal digits, and so
on, a particular quantization takes place. The interval of real numbers that represents the
range of values of the variable is partitioned into appropriate subintervals. Distinct values
within each subinterval are indistinguishable by the measuring instrument involved and,
consequently, are considered equivalent. The subintervals are labelled by appropriate real
numbers (i.e., relevant real numbers with one significant digit, two significant digits, etc.),
and these labels are viewed as siates of the variable. That is, states of any quantized
variable are representatives of equivalence classes of actual values of the variable. Each
given state of a quantized variable is associated with uncertainty regarding the actual value
of the variable. This uncertainty can be measured by the size of the equivalence class, as
explained in Sec. 9.2,

To illustrate the usual quantization just described, let us consider a variable whose range
is [0, 1). Assume that the measuring instrument employed allows us to measure the variable
to an accuracy of one decimal digit. That is, states of the variable are associated with intervals
[0,.05), [.05, .15), [.15, .25), ..., [.85, .95),[.95, 1] that are labelled, respectively, by their
representatives 0, .1, .2, ..., . 9, 1. This example of quantization is shown in Fig. 12.1a.

Measurement uncertainty, expressed for each measuring instrument by a particular
coarseness of states of the associated variable, is an example of forced uncertainty. In
general, forced uncertainty is a result of information deficiency. Measurement uncertainty,

327
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Figure 12.1 Examples of distinct types of quamtization: (a) crisp farced; (b) fuzzy forced; (<)
crisp opted; (d) fuzzy opled.

for example, results from the principal inability of any measuring instrument to overcome its
limiting finite resolution.

Although the usual quantization of variables is capable of capturing limited resolutions
of measuring instruments, it completely ignores the issue of measurement errors. While rep-
resenting states of a variable by appropriate equivalence classes of its values is mathematically
convenient, the ever-present measurement errors make this tepresentation highly unrealis-
tic. It can be made more realistic by expressing the states as fuzzy sets. This is illustrated
for our previous example in Fig. 12.1b. Fuzzy sets are, in this example, fuzzy numbers with
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the shown triangular membership functions, and their representations are the linguistic la-
bels around Q, around .1, around .2, and so forth. Fuzzy quantization is often called granu-
lation.

Forced uncertainty must be distinguished from opted uncertainty. The latter is not a
result of any information deficiency but, instead, results from the lack of need for higher
certainty. Opted uncertainty is obtained, for example, by quantizing a variable beyond the
coarseness induced by the measuring instrument involved. This additional quantization allows
us to reduce information regarding the vatiable to a level desirable for a given task. Hence,
while forced uncertainty is a subject of epistemology, opted uncertainty is of a pragmatic
nature.

Considering our previous example, assume that we need to distinguish only three
states of the variable instead of the eleven states that are made available by our measuring
instrument. It is reasonable to label these states as low, medium, and high. A crisp definition
of these states and its more meaningful fuzzy counterpart are shown in Figs. 12.1¢ and d,
respectively.

One reason for eliminating unnecessary information in complex systems with many
vanables is to reduce the complexity when using the system for a given task. For example,
to describe a procedure for parking a car in terms of a set of relevant variables (position of
the car relative to other objects on the scene, direction of its movement, speed, etc.), it would
not be practical to specify values of these variables with high precision. As is well known, a
description of this procedure in approximate linguistic terms is quite efficient. This important
role of uncertainty in reducing complexity is well characterized by Zadeh [1973}:

Given the deeply entrenched tradition of scientific thinking which equates the understanding
of a phenomenon with the ability to analyze it in quantitative terms, one is certain to strike
a dissonant note by questioning the growing tendency to analyze the behavior of humanistic
systems as if they were mechanistic systems governed by differeace, differential, or integral
equations.

Essentially, our contention is that the conventional quantitative techniques of system
analysis are intrinsically unsuited for dealing with humanistic systems or, for that matter, any
system whose complexity is comparable to that of humanistic systems. The basis for this
contention rests on what might be called the principle of incomparibility. Stated informally, the
essence of this principle is that as the complexity of a system increases, our ability to make
precise and yet significant statements about its behavior diminishes until a threshold is reached
beyond which precision and significance (or relevance) become almost mutually exclusive
characteristics. It is in this sense that precise analyses of the behavior of humanistic systems are
not likely to have much relevance to the real-world societal, political, economic, and other types
of problems which involve humans either as individuals or in groups.

An alternative approach... is based on the premise that the key elements in human
thinking are not numbers, but labels of fuzzy sets, that is, classes of objects in which the
trapsition from membership to non-membership is gradual rather than abrupt. Indeed, the
pervasiveness of fuzziness in human thought processes suggests that much of the logic behind
human reasoning is not the traditional two-valued or even multivalued logic, but a logic with
fuzzy truths, fuzzy connectives, and fuzzy rules of inference. In our view, it is this fuzzy, and
as yet not well-understood, logic that plays a basic role in what may well be one of the most
important facets of buman thinking, namely, the ability to summarize information—to extract
from the collection of masses of data impinging upon the human brain those and only those
subcollections which are relevant to the performance of the task at hand,
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By its nature, a summary is an approXimation to what it summarizes. For mapv
purposes, a very approximate characterization of a collection of data is sufficient because most
of the basic tasks performed by humans do not require a high degree of precision in their
execution. The human brain takes advantage of this tolerance for imprecision by encodiog
the “task-relevant” {(or “decision-relevant™) information into labels of fuzzv sets which hear_an
approximate relation to the primary data. In this way, the stream of information reaching the
brain via the visual, auditory, tactile, and other senses is eventually reduced to the trickle that
is needed to perform a specific task with a minimal degree of precision. Thus, the ability 10
manipulate fuzzy sets and the consequent summarizing capability constitute one of the most
important assets of the human mind as well as a fundamental characteristic that distinguishes
buman intelligence from the type of machine intelligence that is embodied in present-
day digital computers.

Viewed in this perspective, the traditional techniques of system apalysis are not well suited
for dealing with humanistic systems because they fail to come to grips with the reality of the
fuzziness of human thinking and behavior. Thus to deal with such systems radically, we need
approaches which do not make a fetish of precision, rigor, and mathematical formalism, and
which employ instead a metbodological framework which is tolerant of imprecision and partial
truths.

A lot of work has already been done to explore the utility of fuzzy set theory in various
subareas of systems analysis. However, the subject of systems analysis is too extensive to
be covered here in a comprehensive fashion. Hence, we can cover only a few representative
aspects and rely primarily on the Notes at the end of this chapter to overview the rapidly
growing literature on this subject.

The most successful application area of fuzzy systems has undoubtedly been the area of
fuzzy control. It is thus appropriate to cover fuzzy control in greater detail than other topics.
Our presentation of furzy control includes a discussion of the connection between fuzzy
controllers and neural networks, the importance of which has increasingly been recognized.
Furthermore, we also discuss the issue of fuzzifying neural networks.

122 FUZZY CONTROLLERS: AN OVERVIEW

In general, fuzzy controllers are special expert systems (Sec. 11.1). Each employs a knowledge
base, expressed in terms of relevant fuzzy inference mles, and an appropriate inference engine
to solve a given control problem. Fuzzy controllers vary substantially according to the nature
of the control problems they are supposed to solve. Control problems range from compiex
tasks, typical in robotics, which require a muititude of coordinated actions, to simple goals,
such as maintaining a prescribed state of a single variable. Since specialized books on fuzzy
controllers are now available (Note 12.2), we restrict our exposition to relatively simple
control problems.

Fuzzy controllers, contrary to classical controllers, are capable of utilizing knowledge
elicited from human operators. This is crucial in control problems for which it is difficult
or even impossible to construct precise mathematical models, or for which the acquired
models are difficult or expensive to use. These difficnities may result from inherent
nonlinearities, the time-varying nature of the processes to be controlled, large unpredictable
environmental disturbances, degrading sensors or other difficulties in obtaining precise and
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reliable measurements, and a host of other factors. It has been observed that experienced
hurnan operators are generally able to perform well under these circumstances.

The knowledge of an experienced human operator may be used as an alternative to a
precise model of the controlied process. While this knowledge is also difficult to express
in precise terms, an imprecise linguistic description of the manner of control can usually be
articulated by the operator with relative ease. This linguistic description consists of a set of

control rules that make use of fuzzy propositions. A typical form of these rules is exemplified
by the rule

IF the temperature is very high
AND the pressure is slightly low
THEN the heat change should be slightly negative,

where temperature and pressure are the observed state variables of the process, and heat
change is the action to be taken by the controller. The vague terms very high, slightly low,
and slightly negative can be conveniently represented by fuzzy sets defined on the universes
of discourse of temperature values, pressure values, and heat change values, respectively.
This type of linguistic rule has formed the basis for the design of a great variety of fuzzy
controllers described in the literature.

A general fuzzy controller consists of four modules: a fuzzy rule base, a fuzzy inference
engine, and fuzzification/defuzzification modules. The interconnections among these modules
and the controlled process are shown in Fig. 12.2.

A fuzzy controller operates by repeating a cycle of the following four steps. First,
measurements are taken of all variables that represent relevant conditions of the controlled
process. Next, these measurements are converted into appropriate fuzzy sets to express
measurement uncertainties. This step is called a fuzzification. The fuzzified measurements
are then used by the inference engine to evaluate the contro] rules stored in the fuzzy rule
base. The result of this evaluation is a fuzzy set (or several fuzzy sets) defined on the universe
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Figure 12.2 A general scheme of a fuzzy controller.
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of possible actions. This fuzzy set is then converted, in the final siep of the cycle, into 2
single (crisp) value (or a vector of values) that, in some sense, is the best representative of the
fuzzy set (or fuzzy sets). This conversion is called a defuzzificarion. The defuzzified values
represent actions taken by the fuzzy controller in individual control cycles.

To characterize the steps involved in designing a fuzzy controller, let us consider a very
simple control problem, the problem of keeping a desired value of a single variable in spite
of environmental disturbances. In this case, two conditions are usually monitored by the
controller: an error, e, defined as the difference between the actual value of the controlled
variable and its desired value, and the derivarive of the error, ¢, which expresses the rate
of change of the error. Using values of e and é, the fuzzy controlier produces values of a
controlling variable v, which represents relevant control actions.

Let us now discuss the basic steps invelved in the design of fuzzy controllers and
illustrate each of them by this simple control problem, expressed by the scheme in Fig. 12.3.

Disturbances
Actions
¥
Y
Controlled Fuzzy
process controller
- ‘e \é Figure 12.3 A general scheme for
Conditions controlling a desired value of a single
vaniable.

The design involves the following five steps.

Step 1.  After identifying relevant input and output variables of the controller and
ranges of their values, we have to select meaningful linguistic states for each variable and
express them by appropriate fuzzy sets. In most cases, these fuzzy sets are fuzzy numbers,
which represent linguistic labels such as approximately zero, positive small, negative small,
positive medium, and so on.

To illustrate this step by the simple control problem depicted in Fig. 12.3, assume that
the ranges of the input variables e and € are [—a, a] and [—b, b], respectively, and the range
of the output variable v is [—c. ¢]. Assume further that the following seven Linguistic states
are selected for each of the three variables:

NL—mnegative large PL—pasitive large
NM—negative medium PM-—positive medium
NS—negative small PS—positive smali
AZ—approximately zero

Representing, for example, these linguistic states by triangular-shape fuzzy numbers that are
equally spread over each range, we obtain the fuzzy quantizations exemplified for variable
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Figure 12.4 Possible fuzzy quantization of the range [—a.a] by triangular-shaped fuzzy
numbers.

¢ in Fig. 12.4; for variables & and v, value 2 in Fig. 12.4 is replaced with values b and c,
respectively.

It is important to realize that the fuzzy quantization defined in Fig. 12.4 for the range
[—a,a] and the sever given linguistic labels are only a reasonable example. For various
reasons, emerging from specific applications, other shapes of the membership functions might
be preferable to the triangular shapes. The shapes need not be symmetric and need not be
equally spread over the given ranges. Moreover, different fuzzy quantizations may be defined
for different variables. Some intujtively reasonable definitions of the membership functions
(e.g., those given in Fig. 12.4) are usually chosen only as preliminary candidates. They are
later modified by appropriate learning methods, often implemented by neural networks.

Step 2. In this step, a fuzzificarion function is introduced for each input variable to
express the associated measurement uncertainty. The purpose of the fuzzification function
is to interpret measurements of input variables, each expressed by a real number, as mote
realistic fuzzy approximations of the respective real numbers. Consider, as an example,
a fuzzification function f, applied to vanable e. Then, the fuzzification function has the
form

foi[-a,a)l = R,

where R denotes the set of all fuzzy numbers, and f,(x,) is a fuzzy number chosen by f,
as a fuzzy approximation of the measurement e = xo. A possible definition of this fuzzy
number for any x, € [—a, a] is given in Fig. 12.5, where ¢ denotes a parameter that has to
be determined in the context of each particular application. It is obvious that, if desirable,
other shapes of membership functions may be used to represent the fuzzy numbers f,(xo).
For each measurement e = xg, the fuzzy set f.(xo) enters into the inference process (Step 4)
as a fact.

In some fuzzy controllers, input variables are not fuzzified. That is, measurements
of input variables are emploved in the inference process directly as facts. In these cases,
function f, has, for each measurement e = x; the special form f.(xp) = xo.

Step 3. In this step, the knowledge pertaining to the given control problem is
formulated in terms of a set of fuzzy inference rules. There are two principal ways in which
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Figure 12.5 An example of the fuzzification function for variable e,

relevant inference rules can be determined. Omne way is to elicit them from experienced
human operators. The other way is to obtain them from empirical data by suitable learning
methods, usually with the help of neural networks.

In our example with variables e, €, and v, the inference rules have the canonical form

Ife=Aande=38, thenv =C, (12.1)

where A, B, and C are fuzzy numbers chosen from the set of fuzzy numbers that represent the
linguistic states NL, NM, NS, AZ, PS. PM, and PL. Since each input variable has, in this
example, seven linguistic states, the total number of possible nonconflicting fuzzy inference
rules is 7> = 49. They can conveniently be represented in a matrix form, as exemplified in
Fig. 12.6. This matrix and the definitions of the linguistic states (Fig. 12.4) form the fuzzy
rule base of our fuzzy controller. In practice, a small subset of all possible fuzzy inference
rules is often sufficient to obtain acceptable performance of the fuzzy controller. Appropriate
pruning of the fuzzy rule base may be guided, for example, by statistical data regarding the
utility of the individual fuzzy inference rules under specified circumstances.
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To determine proper fuzzy inference rules experimentally, we need a set of input-
output data

{{x, ¥x. 26}k € K},

where z; is a desirable value of the output variable v for given values x; and y; of the input
variables e and é , respectively, and K is an appropriate index set. Let A(xy), B(yi), C(zx)
denote the largest membership grades in fuzzy sets representing the linguistic states of
variables e, é, v, respectively. Then, it is reasonable to define a degree of relevance of the
rule (12.1) by the formula

i1[i2(A(xe), B(ya)), C (2],

where i, i are z-norms. This degree, when calculated for all rules activated by the input-
output data, allows us to avoid conflicting rules in the fuzzy rule base. Among rules that
conflict with one another, we select the one with the largest degree of relevance.

Siep 4. Measurements of input variables of a fuzzy controller must be properly
combined with relevant fuzzy information rules to make inferences regarding the output
variables. This is the purpose of the inference engine. In designing inference engines, we
can directly utilize some of the material covered in Chapters 8 and 11.

In our example with variables e, &, v, we may proceed as follows. First, we convert
given fuzzy inference rules of the form (12.1) into equivalent simple fuzzy conditional
propositions of the form

Ifle.é)is A x B, thenvisC,
where
[A x B](x,y) = min[A(x), B(y)]
forallx € [—a,a)and all y € [—b, b]. Similarly, we express the fuzzified input measurements
fe(xo) and f.(yo) as a single joint measurement,
(€0, &) = fo(xa) X filyo).

Then, the problem of inference regarding the output variable v becomes the problem of
approximate reasoning with several conditional fuzzy propositions, which is discussed in
Sec. 11.4. When the fuzzy rnule base consists of » fuzzy inference rules, the reasoning schema
has, in our case, the form

Rule I : If (e, é) is Ay x By, thenv is C;
Rule 2 : If (e, e) is A» x B, then vis C;
Rulen: It (e, é)is A, x B,, then v is C,
Fact : (e, €) is f.(xo) x fe(yo)

Conclusion: visC

The symbols A;, B;, C;(j = 1,2, ..., n) denote fuzzy sets that represent the linguistic states
of variables e, é, v, respectively.

For each rule in the fuzzy rule base, there is a corresponding relation R;, which is
determined as explained in Sec. 8.3. Since the rules are interpreted as disjunctive, we may
use (11.25) to conclude that the state of variable v is characterized by the fuzzy set
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C = Ul felx) x f:00) © R;, (12.2)
J

where & is the sup-i composition for a ¢-norm i. The choice of the z-norm is a matter similat
to the choice of fuzzy sets for given linguistic labels. The ¢f-norm can be either elicited from
domain experts or determined from empirical data.

The method of interpolation explained in Sec. 11.4 and illustrated in Fig. 11.3 is the
usuval method employed in simple fuzzy controllers for determining the resulting fuzzy set
C in the described reasoning schema. The formulation of the method in Sec. 11.4 can be
applied to our case by taking X = {e, ¢) and Y = v. Linguistic states of {e, é) are fuzzy sets
defined on [—a, a] x [~b, b}, which are calculated from their counterparts for e and é by the
minimum operator.

Step 5. In this last step of the design process, the designer of a fuzzy controller must
select a suitable defuzzification method. The purpose of defuzzification is to convert each
conclusion obtained by the inference engine, which is expressed in terms of a fuzzy set, to
a single real number. The resulting number, which defines the action taken by the fuzzy
controller, is not arbitrary. It must, in some sense, summarize the elastic constraint imposed
on possible values of the output variable by the fuzzy set. The set to be defuzzified in our
example is, for any input measurements ¢ = xg and € = y,, the set C defined by (12.2).

A number of defuzzification methods leading to distinct results were proposed in the
literature. Each method is based on some rationale. The following three defuzzification
methods have beer predominant in the literature on fuzzy control.

Center of Area Method

In this method, which is sometimes called the center of gravity method or centroid method,
the defuzzified value, de 4 (C), is defined as the value within the range of variable v for which
the area under the graph of membership function C is divided into two equal subareas. This
value is calculated by the formula

doa(Cy = L €D (12.3
AT T @z )
For the discrete case, in which C is defined on a finite universal set {z;,z;,..., Zx}, the
formula is
Y Clzi)z
des(C) = S—— (12.4)
Z C(Zk)

If dc 4(C} is not equal to any value in the universal set, we take the value closest to it.
Observe that the values

Clzs)
Y Clzp)
k=1
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foral k = 1,2, ..., n form a probability distribution obtained from the membership function

C by the ratio-scale transformation. Consequently, the defuzzified value dc4(C) obtained by
formula (12.4) can be interpreted as an expected value of variable v.

Center of Maxima Methed

In this method, the defuzzified value, dey (C), is defined as the average of the smallest value
and the largest value of v for which C(z) is the height, #(C), of C. Formally,

deu(C) = Llfy;s—upM, (12.5)
where
M = {z e [~c.c}iC(z) = h(C)). (12.6)
For the discrete case,
e (C) = min{zx|z; € M} -I;max{zklz;, € M}‘ (12.7)
where
M = {z;|C(zx) = A(C)). {12.8)
Mean of Maxima Method

Jo this method, which is usually defined only for the discrete case, the defuzzified value,
daae (C), is the average of all values in the crisp set M defined by (12.8). That is,
pIE

neM

M}

In the continuous case, when M is given by (12.6), daa(C) may be defined as the arithmetic
average of mean values of all intervals contained in M, including intervals of length zero.
Alternatively, dy (C) may be defined as a weighted average of mean values of the intervals,
in which the weights are interpreted as the relative lengths of the intervals.

dyu(C) = (12.9)

An application of the four defuzzification methods (dca, deu, duar, and dyy weighted)
to a particular fuzzy set is illustrated in Fig. 12.7.

It is now increasingly recognized that these defuzzification methods, as well as other
methods proposed in the literature, may be viewed as special members of parametrized
families of defuzzification methods. For the discrete case, an interesting family is defined by
the formula

i Cf(z)zx
dp(C) = &, (12.10)
kZ C’(z)
=1
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L

Figure 12.7 [llustration of the described defuzzification methods: 1 — dcya, 2 — dyar, 3 — dew,
4 — dyp (weighted).

where p € (0, 00} is a parameter by which different defuzzification methods are distinguished.
This parameter has an interesting interpretation. When p = 1, the center of area method
is obtained. When p # 1, the parameter introduces a bias into the probability distribution
obtained from C by the ratio-scale transformation. When p < 1, probabilities of values z,
for which C(z;) < A(C) are magnified. The magnification increases with decreasing value p
and, for each given value of p, it increases with decreasing value of C(z;). When p > 1,
the biasing effect is inversed; that is, probabilities of value z; for which C(z) < A(C) ate
reduced. The reduction increases with decreasing values C(z;) and increasing values p.

When p — 0, all values in {z),z;,...,2,} are given equal probabilities and, hence,
dy(C) is equal to their arithmetic average. In this case, the shape of the membership function
C 1s totally discounted. Taking do(C) as a value that represents a summary of fuzzy set
C may be interpreted as an expression of very low confidence in the inference process.
At the other extreme, when p — o0, we obtain the mean of maxima method, and taking
do(C) = dyy(C) may be interpreted as the expression of full confidence in the reasoning
process. Hence, the value of p of the chosen defuzzification may be interpreted as an
indicator of the confidence placed by the designer in the reasoning process.

Observe that one particular value of p is obtained by the uncertainty invariance principle
explained in Sec. 9.7. In this case, the probability distribution that is used for calculating the
expected value of variable v preserves all information contained in the fuzzy set C. Hence, the
defuzzification method based on this value is the only method fully justified in information-
theoretic terms.

For the continuous case, the following formula is a counterpart of (12.10):

ff.CP(2)zdz
[ CP(dz

The formula is not directly applicable for p — oo, but it is reasonable (in analogy with the
discrete case) to define d as dyy given by (12.9).

dp(C) = (12.11)
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12.3 FUZZY CONTROLLERS: AN EXAMPLE

In this section, we describe a particular fuzzy controller of the simple type characterized
in Fig. 12.3. We use only one example since descriptions of many other fuzzy controllers,
designed for a great variety of control problems, can readily be found in the literature
{Note 12.2).

We chose to describe a fuzzy controller whose control problem is to stabilize an inverted
pendulum. This control problem, which has been quite popular in both classical control and
fuzzy control, has a pedagogical value. It can easily be understood, due to its appeal to
common sense, and yet it is not overly simple. We describe a very simple version, which
consists of only seven fuzzy inference rules. It was designed and implemented by Yamakawa
[1989]. He demonstrated that even such a simple fuzzy controller works reasonably well for
poles that are not too short or too light, and under environmental disturbances that are not
o0 severe. Although performance can be greatly improved by enlarging the fuzzy rule base,
the simple version is preferable from the pedagogical point of view.

The problem of stabilizing an inverted pendulum, which is illustrated in Fig. 12.8, is
described as follows. A movable pole is attached to a vehicle through a pivot, as showa in
the figure, This situation can be interpreted as an inverted pendulum. The control problem is
to keep the pole (pendulum) in the vertical position by moving the vehicle appropriately. The
three variables involved in this control problem have the following meaning: e is the angle
between the actual position of the pole and its desirable vertical position, € is the dernvative
(rate of change) of variable e, and v is proportional to the velocity, w, of the vehicle. While
variable e is directly measured by an appropriate angle sensor, its derivative ¢ is calculated
from successive measurements of e. When the pole is tilted toward left {or toward right), ¢ is
viewed as negative (or positive, respectively), and a similar convention applies to e. Variable
v is a suitable electrical quantity (electric current or voltage). Its values determine, through
an electric motor driven by an appropriate servomechanism, the force applied to the vehicle.
Again, the force is viewed as negative (or positive) when it causes the vehicle to move to
the left (or to the right, respectively). For convenience, we may express v in a suitable scale
for which it is numerically equal to the resulting force. Then, propositions about v may be
directly interpreted in terms of the force applied to the vehicle.

Observe that this simplified formulation of the control problem does not include
the requirement that the position of the vehicle also be stabilized. Two additional input
variables would have to be included in the fuzzy contreller to deal with this requirement:
a variable defined by the distance (positive or negative) between the actual position of the
vehicle and its desirable position, and the derivative of this variable expressing the velocity
of the vehicle (positive or negative). Assuming that seven linguistic states were again
recognized for each of the variables, the total number of possible nonconflicting fuzzy
inference rules would become 7* = 2, 401. It tumns out from experience that only a small
fraction of these rules, say 20 or so, is sufficient to achieve a high performance of the
resulting fuzzy controller.

To compare fuzzy control with classical control in dealing with the problem of stabilizing
an inverted pendulum, we briefly describe a mathematical model of the mechanics involved
by which proper movements of the vehicle would be determined in a classical controller.
The model consists of a system of four differential equations, whose derivation is outside the
scope of this text. The equations are
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Figure 12.8 Fuzzy controller as a stabilizer of an inverted pendulum.

Ié = Visine— HL cose,
V —mg = —mL(ésine + &°cose),

H = mi> + mL(écose — & sine),
U-H=Mu,

where e, e, é are the angle and its first and second derivatives, 2L is the length of the
pendulum, 1 is the second derivative of the position of the vehicle, m and M are masses
of the pendulum and the vehicle, H and V are horizontal and vertical forces at the pivot,
V is the driving force given to the vehicle, and / = mL?/3 is the moment of inertia. It
is clearly difficult to comprehend this model intuitively. Moreover, since the first three
equations are nonlinear, the system is difficult, if not impossible, to solve analytically. Hence,
we have to resort 1o computer simulation, which is not suitable for real-time control due to
excessive computational demands. To overcome these difficulties, special assumptions are
usually introduced to make the model linear. This, however, restricts the capabilities of the
coniroller. Another difficulty of the model-based classical coptrol is that the model must
be modified whenever some parameters change, (e.g., when one pendulum is replaced with
another of different size and weight). Fuzzy control, based on intuitively understandable
linguistic control rules, is not subject to these difficulties.

Let us now discuss the main issues involved in the design of a fuzzy controller for
stabilizing an inverted pendulum. The discussion is organized in terms of the five design
steps described in Sec 12.2,

Step 1. It is typical to use seven linguistic states for each variable in fuzzy controllers
designed for simple control problems such as the stabilization of an inverted pendulum. The
linguistic states are usually represented by fuzzy sets with triangular membership functions,
such as those defined in Fig. 12.4. Let us choose this representation for all three variables,
each defined for the appropriate range.

Stop 2.  Assume, for the sake of simplicity, that measurements of input variables are
employed directly in the inference process. However, the distinction made in the inference
process by fuzzified inputs is illustrated in Fig. 12.11.
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Step 3. Following Yamakawa [1989)], we select the seven linguistic inference rules
defined by the matrix in Fig. 12.9. The complete representation of these linguistic rules by
the fuzzy sets chosen in Step 1 is shown in Fig. 12.10. Observe that the linguistic states NL
and PL do not even participate in this very restricted set of inference rules.

e
3 NM NS AZ PS P
NS NS AZ
AZ NM AZ PM
PS AZ PS

Figure 12.9 Minimum set of lingnistic inference rules to stabilize an inverted pendulum.

The inference rules can easily be understood intuitively. For example, if the angle
is negative small (¢ = NS) and its rate of change is negative small (¢ = NS), then it
is quite natural that the velocity of the vehicle should be also negative small (v = NS)
to make a correction in the way the pole is moving. On the other hand, when the
angle is positive small (¢ = PS) and its rate of change is negative small (é = NS), the
movement of the pole is self-correcting; consequently, the velocity of the vehicle should be
approximately zero (v = AZ). Other rules can be easily explained by similar common-
sense reasoning.

Step 4. To illustrate the inference engine, let us choose the interpolation method
explained in Sec. 11.4 and extended as explained in Sec. 12.2. This method is frequently
used in simple fuzzy controllers. For each pair of input measurements, e = xg and é = yq,
or their fuzzified counterparts, ¢ = f.{xg) and & = f;(ys), we first calculate the degree of
their compatibility r;(x,, yo) with the antecedent (a fuzzy number) of each inference rule .
When 7;(xo. ¥o) > 0, we say that rule j fires for the measurements. We can see by a careful
inspection of our fuzzy rule base, as depicted in Fig. 12.10, that: (a) at least one rule fires for
all possible input measurements, crisp or fuzzified; (b) no more that two rules can fire when
the measurements of input variables are crisp; (c) more than two rules (and perhaps as many
as five) can fire when the measurements are fuzzified. For each pair of input measurements,
the value of the output variable v is approximated by a fuzzy set C(z) determined by (12.2),
as illustrated in Fig. 12.11 for both crisp and fuzzified measurements. Observe that only
rules 1 and 3 fire for the given crisp input measurements, while rules 1, 2, and 3 fire for their
fuzzified counterparts.

Step 5. The most frequently used defuzzifications method in the simple fuzzy
controller is the centroid method. If we accept it for our controller, we obtain our defuzzified
values by (12.3), as exemplified in Fig. 12.11.
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Figure 12.10 Fuzzy rule base of the described fuzzy controller designed for stabilizing an
inverted pendulum.

. /\ Az
. 5 N
A
0



Sec. 12.3 Fuzzy Controllers; An Example

e=x, =y,
{a) Crisp measurements

(b) Fuzzified measurements

e=f(x ) é=ty,)

Figure 12.11 Examples of furzy inference rules (of the fuzzy rule base specified in Fig.
11.10) that fire for given measurements of input variables: (a) crisp measurements; (b) fuzzified
measurements.
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